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The aim of this paper is to present a Complete Gradient ClusteringAlgorithm, its applicational aspects and

properties, as well as to illustrate them with specific practical problems from the subject of bioinformatics

(the categorization of grains for seed production), management (the design of a marketing support strategy

for a mobile phone operator) and engineering (the synthesis of a fuzzy controller). The main property

of the Complete Gradient Clustering Algorithm is that it does not require strict assumptions regarding

the desired number of clusters, which allows to better suit its obtained number to a real data structure.

In the basic version it is possible to provide a complete set of procedures for defining the values of all

functions and parameters relying on the optimization criterions. It is also possible to point out parameters,

the potential change which implies influence on the size of the number of clusters (while still not giving

an exact number) and the proportion between their numbers in dense and sparse areas of data elements.

Moreover, the Complete Gradient Clustering Algorithm can be used to identify and possibly eliminate

atypical elements (outliers). These properties proved to be very useful in the presented applications and

may also be functional in many other practical problems.

Keywords: data analysis and exploration; clustering; nonparametric methods; kernel estimators; seed

production; mobile phone operator; fuzzy controller

1. Introduction

Clustering is becoming a fundamental procedure in data analysis. It lies between classical data

analysis (where the aim of research is already recognized) and exploration data analysis, in which

the subject of the investigated regularity is not known a priori, and its discovery constitutes an
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integral part of the research. In the first instance, clustering can be treated as classification, albeit

without defined patterns, while the second views it as a division of the examined data set into

clusters – subsets, each containing elements similar to others in the same subset, yet significantly

differing from elements belonging to other subsets. For a basic notion, see the classical books,

e.g. [4,9] as well as many interesting papers on a subject similar to the methodology used here,

e.g. [8,17,23,24].

Clustering has no natural mathematical apparatus, such as for example differential calculus

for investigating the extremes of a function. In this situation the ambiguity of an interpretation

(important mainly in practical applications) as well as particular factors of the definition itself

(e.g. the meaning of ‘similarity’ and consequently ‘difference’ of elements, or if it is clear that the

number of clusters will be arbitrarily assumed or defined as a result of the structure of data itself

or how to measure the quality of the divisions imposed) imply a huge variety of concepts and thus

of clustering procedures. On one hand this significantly hinders the research, but on the other it

allows to better suit the applied method to the specifics and requirements of a definite task. This

also concerns the scale of ‘automation’ of a procedure – if the user wishes to select the values of

parameters and directly influence the features of an obtained solution, or to gain in this case at

least preliminary indications based on optimization criterions.

This paper aims to present the properties of the Complete Gradient Clustering Algorithm con-

cerning its applicational potential, illustrated in examples of practical problems of bioinformatics,

management and engineering, concerning the categorization of grains for seed production, the

design of a marketing support strategy for a mobile phone operator and the synthesis of a fuzzy

controller for the reduction of a rule set, respectively.

Consider the m elements data set comprising n-dimensional vectors

x1, x2, . . . , xm ∈ R
n, (1)

treated here as a sample obtained from an n-dimensional real random variable. In the concept

investigated here the natural assumption ismade that particular clusters correspond tomodes (local

maxima) of the density function of distribution of this variable, and so the ‘valleys’ constitute a

bordering of such clusters.

In the now classic paper [6] Fukunaga and Hostetler estimated such density using statistical

kernel estimators – presently the main method of nonparametric estimation. In the framework of

the numerical algorithm applied here, the elements of data set (1) are moved along the gradient of

the density function until they concentrate in ever more clearly defined clusters. This method was

formulated as a general idea only, leaving the details to the painstaking analysis of the user. Its

positive features, naturalness and clarity of interpretation allowed the application of the method

in many varied specialist tasks such as tracking, image segmentation, information fusion and

video processing (see [29] for a list of examples) as well as creating interesting mutations and

supplements (see e.g. [2,28]). In the literature, one can even find unintentional repetition of the

same idea [26].

The Complete Gradient Clustering Algorithm presented in this paper is based on Fukunaga’s

and Hostetler’s concept, and has been supplemented and given in its full form, suitable for direct

use without requiring users to have a deeper statistical knowledge or conduct laborious research.

It can be characterized by the following features:

1. all parameters can be effectively calculated using numerical procedures based on optimizing

criteria;

2. the algorithm does not demand strict assumptions regarding the desired number of clusters,

which allows the number obtained to be better suited to a real data structure;

3. the parameter directly responsible for the number of clusters is indicated; it will also be shown

how possible changes – e.g. with regard to values calculated using optimizing criteria (see
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point 1 stated above) – to this value, influence the increase or decrease in the number of

clusters without, however, defining their exact number;

4. moreover, the next parameter can be easily indicated, the value of which will influence the

proportion between the number of clusters in dense and sparse areas of elements of data set (1);

here also the value of this parameter can be assumed based on optimizing criteria (see again

point 1); it will also be shown here that potential lowering of the value of this parameter results

in a decrease in the number of clusters in dense regions of data as the number of clusters in

sparse areas increases, while a potential raise in its value has the opposite effect – increasing

the number of clusters in dense areas while simultaneously reducing or even eliminating them

from sparse regions of data set (1);

5. the appropriate relation between the two above-mentioned parameters allows for a reduction,

or even elimination of clusters in sparse areas, practically without influencing the number of

clusters in dense areas of data set elements;

6. the algorithm also creates small, even single-element clusters, which can be treated as atypical

elements (outliers) in a given configuration of clusters, which makes possible their elimination

or assignation to the closest cluster by a change – described in the previous point – in the

values of the appropriate parameters.

The features in point 4, and in consequence 5, are particularly worth underlining as practically

nonexistent in other clustering procedures. In practical applications, it is worth highlighting the

implications of points 1 and 2, and also potentially 3. Unusual possibilities are offered by the

property expressed in point 6.

2. Statistical kernel estimators

Let the n-dimensional random variable X : Ä → R
n, with a distribution having the density f , be

given. Its kernel estimator f̂ : R
n → [0,∞) is calculated on the basis of the m-elements random

sample (1) experimentally obtained from the variable X, and is defined in its basic form by

f̂ (x) = 1

mhn

m
∑

i=1
K

(

x − xi

h

)

, (2)

where the measurable function K : R
n → [0,∞), symmetrical with respect to zero and having a

weak global maximum in this point, fulfils the condition
∫

Rn K(x)dx = 1 and is called a kernel,

whereas the positive coefficient h is referred to as a smoothing parameter. It is worth noting that

a kernel estimator allows the identification of density for practically every distribution, without

any assumptions concerning its membership to a fixed class.Atypical, complex distributions, also

multimodal, are regarded here as textbook unimodal.

Setting the quantities introduced in definition (1), i.e. choice of the form of the kernel K

as well as calculation of the value for the smoothing parameter h, is most often carried out

according to the criterion of minimum of an integrated mean-square error. Broader discussion

and practical algorithms are found in the books [11,21,25]1. In particular, the choice of the

kernel K form has no practical meaning and thanks to this it is possible to first take into account

properties of the estimator obtained (e.g. its class of regularity, boundary of a support, etc.) or

aspects of calculations, advantageous from the point of view of the applicational problem under

consideration. On the contrary, the value of the smoothing parameter h has significant meaning for

quality of estimation. Too small a value causes a large number of local extremes of the estimator

f̂ to appear, on the other hand, too big values of the parameter h result in overflattening of this

estimator – this property will be successfully used here later.
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Practical applicationsmay also use additional procedures, some generally improving the quality

of the estimator, and others – optional – possibly fitting the model to an existing reality. For the

first group one should recommend themodification of the smoothing parameter [11, Section 3.1.6;

21, Section 5.3.1] and a linear transformation [11, Section 3.1.4; 21, Section 4.2.1], while for the

second, the boundaries of a support [11, Section 3.1.8; 21, Section 2.10].

Finally, the procedure of themodification of the smoothing parameter is outlined below, as itwill

be heavily used in the following. Thus, in the case of the basic definition of kernel estimator (1),

the influence of the smoothing parameter on particular kernels is the same. Advantageous results

are obtained thanks to the individualization of this effect, achieved by introducing the positive

modifying parameters s1, s2, . . . , sm mapped to particular kernels, whose value is given as

si =
(

f̂∗(xi)

s̄

)−c

, (3)

where c ∈ [0,∞), f̂∗ denotes the kernel estimator without modification, s̄ is the geometrical

mean of the numbers f̂∗(x1), f̂∗(x2), . . . , f̂∗(xm) and, finally, defining the kernel estimator with

modification of the smoothing parameter in the following form:

f̂ (x) = 1

mhn

m
∑

i=1

1

sn
i

K

(

x − xi

hsi

)

. (4)

Thanks to the above procedure, the areas in which the kernel estimator assumes small values

are flattened and the areas connected with large values – peaked. The parameter c stands for the

intensity of themodification procedure – the greater its value, the stronger (more distinct) the above

procedure. Based on indications for the criterion of the integrated mean-square error, the value

c = 0.5 (5)

can be tentatively suggested.

Detailed information regarding kernel estimators can be found in the monographs [11,21,25].

Example practical applications are presented in the publications [12,13].

3. Complete gradient clustering algorithm

Consider – as in the Introduction – the m-elements set of n-dimensional vectors (1). This will be

treated as a random sample obtained from the n-dimensional random variable X , with distribution

having the density f . Using the methodology described in Section 2, the kernel estimator f̂ can be

created. (Note that if the kernel K used is not only measurable – as was required in the definition

– but is also differentiable, then this will also be a property of the obtained estimator f̂ , which

ensures the existence of the gradient ∇ f̂ .) Take the natural assumption that particular clusters are

related to its modes (i.e. the local maxima of the function f̂ ), and elements of set (1) are mapped

onto them by shifting in the gradient ∇ f̂ direction, with the appropriate fixed step.

The above is carried out iteratively with the Gradient Clustering Algorithm [6], based on the

classic Newtonian procedure [10, Section 3.2], defined as

x0j = xj for j = 1, 2, . . . ,m, (6)

xk+1
j = xk

j + b
∇ f̂ (xk

j )

f̂ (xk
j )

for j = 1, 2, . . . ,m and k = 0, 1, . . . , k∗, (7)
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where b > 0 and k∗ ∈ N\{0}. In practice, it is recommended that

b = h2

n + 2 (8)

[6].2

Based on comprehensive research, the above concept was supplemented to its full form, useful

for effective application without having deeper knowledge in statistics or laborious subject inves-

tigations. Thanks to the appropriate utilization of specific features and additional procedures for

kernel estimators, the properties mentioned at the end of this paper’s Introduction are obtained.

To construct the estimator, the normal kernel

K(x) = 1

(2π)n/2
e−xTx/2 (9)

is applied, due to its differentiability in the whole domain, convenience for analytical considera-

tions connected with gradient, and assuming positive values, which in every case guards against

division by zero in formula (7). The procedure was used for modification of the smoothing param-

eter with standard intensity (5) and linear transformation [11, Section 3.1.4; 21, Section 4.2.1]

with a matrix of diagonal form3

R =













√
Var(X1) 0 · · · 0

0
√
Var(X2) · · · 0

...
...

. . .
...

0 0 · · ·
√
Var(Xn)













, (10)

whereVar(Xi)means the variance of the ith coordinate. Finally, the kernel estimator takes the form

f̂ (x) = 1

mhndet(R)

m
∑

i=1

1

sn
i

K

(

R−1 x − xi

hsi

)

. (11)

Next, it is assumed that algorithm (6)–(7) should be finished, if after the consecutive

kth step particular elements move very little, and so if – in consequence – the following

condition is fulfilled:
|Dk − Dk−1|

D0
≤ a, (12)

where a > 0 and

D0 =
m−1
∑

i=1

m
∑

j=i+1
d(xi, xj), (13)

Dk−1 =
m−1
∑

i=1

m
∑

j=i+1
d(xk−1

i , xk−1
j ), Dk =

m−1
∑

i=1

m
∑

j=i+1
d(xk

i , x
k
j ), (14)

while d means the Euclidean metric in R
n. Therefore, D0 and Dk−1, Dk denote sums of distances

between particular elements of set (1) before starting the algorithm and after the (k–1)th and kth

step, respectively. For correctness of formula (12), note that obviously D0 6= 0. Primarily, it is

recommended that

a = 0.001. (15)

The potential decrease in this value does not significantly influence the obtained results, although

increases require individual verification of their correctness.
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Finally, if after the kth step condition (12) is fulfilled, then

k∗ = k (16)

and consequently this step is treated as the last one.

Now, a procedure should be used for creating clusters and assigning particular elements to them

For this purpose, the following set is investigated:

xk∗

1 , x
k∗

2 , . . . , x
k∗

m , (17)

consisting of the elements of set (1) after the k∗th step of algorithm (6)–(7). Following this, the
set of mutual distances of the above elements

{d(xk∗

i , x
k∗

j )} i=1,2,...,m−1
j=i+1,i+2,...,m

(18)

should be defined. The number of elements of set (18) amounts to

md = m(m − 1)
2

. (19)

Taking set (18) as a sample of a one-dimensional random variable, i.e. as sample (1), the

auxiliary kernel estimator f̂d ought to be calculated using the methodology described in Section 2.

It can be interpreted as an estimator of distances between the elements of set (17). Normal kernel

(9) is once again proposed, as is the use of the procedure of smoothing parameter modification

with standard value of parameter (5), and additionally left-sided boundary of a support to the

interval [0,∞).

The next task is to find – with suitable precision – the ‘first’ (i.e. for the smallest value of an

argument) local minimum of the function f̂d belonging to the interval (0,D), where

D = max
i=1,2,...,m−1

j=i+1,i+2,...,m

d(xi, xj). (20)

For this purpose, one should treat set (18) as a random sample, calculate its standard deviation

σd, and next take in sequence the values x from the set

{0, 0.01 · σd , 0.02 · σd , . . . , [int(100 · D) − 1] · σd}, (21)

where int(100 · D) denotes an integral part of the number 100 · D, until the finding of the first (the

smallest) of them which fulfils the condition

f̂d(x − 0.01σd) > f̂d(x) and f̂d(x) ≤ f̂d(x + 0.01σd). (22)

Such calculated value4 will be denoted hereafter as xd, and it can be interpreted as half the distance

between ‘centers’ of potential clusters lying closest together.

Finally, the clusters will be created. To this aim one should:

1. take an element of set (17) and initially create a one-element cluster containing it;

2. find an element of set (17) different from the one in the cluster, closer than xd; if there is such

an element, then it should be added to the cluster; in the other case – proceed to point 4;

3. find an element of set (17) different from elements in the cluster, closer than xd to at least one

of them; if there is such an element, then it should be added to the cluster and point 3 repeated;

4. add the obtained cluster to a ‘list of clusters’ and remove from set (17) elements of this cluster;

if this so-reduced set (17) is not empty, return to point 1; in the other case – finish the algorithm.
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The ‘list of clusters’defined in such a way contains all clusters marked out in the above procedure.

Therefore, this becomes the Complete Gradient ClusteringAlgorithm in basic form – its possible

modifications and their influence on the obtained results will be presented in the next section.

Finally, it is worth mentioning the possibility of reducing set (18). In practice, it is too large not

only because of the square dependence regarding size of set (1), occurring in formula (19), but

also due to the fact that the estimator f̂d concerns the one-dimensional random variable, while f̂ ,

usually the multidimensional, by nature demands a notably greater sample size. For a very large

size of sample (18), it is worth using data-compression procedures well known in the literature,

see e.g. [7, 19, Section 2.5].

The concept presented in this article is universal, and in particular cases the details may be

refined; as an example see the different concepts of the stop criterion based on entropy applied in

the works [1,20] – when applied to the Complete Gradient Clustering Algorithm it proved to be

similarly effective as the one based on formula (12), although more laborious in implementation.

4. Influence of the values of parameters on results obtained

It is worth repeating that the presented clustering algorithm did not require a preliminary, in

practice often arbitrary, assumption concerning number of clusters – their size depending solely

on the internal structure of data, given as set (1). In the application of the Complete Gradient

ClusteringAlgorithm in its basic form, the values of the parameters used are effectively calculated

taking optimizing reasons into account. However, optionally – if the researchermakes the decision

– by an appropriate change in values of kernel estimator parameters it is possible to influence the

size of number of clusters, and also the proportion of their appearance in dense areas in relation

to sparse regions of elements in this set.

As mentioned in Section 2, too small a value of the smoothing parameter h results in the

appearance of too many local extremes of the kernel estimator, while too great a value causes

its excessive smoothing. In this situation lowering the value of the parameter h in respect to that

obtained by procedures based on the criterion of the mean integrated square error creates as a

consequence an increase in the number of clusters.At the same time, an increase in the smoothing

parameter value results in fewer clusters. It should be underlined that in both cases, despite having

an influence on the size of the cluster number, their exact number will still depend solely on the

internal structure of data. Based on research carried out one can recommend a change in the value

of the smoothing parameter of between −25% and +50%. Outside this range, results obtained
require individual verification.

Next, as mentioned in Section 2, the intensity of modification of the smoothing parameter is

implied by the value of the parameter c, given as standard by formula (5). Its increase smoothness

of the kernel estimator in areas where elements of set (1) are sparse, and also sharpens it in dense

areas – as a consequence, if the value of the parameter c is raised, then the number of clusters in

sparse areas of data decreases, while at the same time increasing in dense regions. Inverse effects

can be seen in the case of lowering this parameter value. Based on research carried out one can

recommend the value of the parameter c to be between 0 (meaning no modification) and 1.5.

An increase greater than 1.5 requires individual verification of the validity of results obtained.

Particularly it is recommended that c = 1.

Practice, however, often prevents changes to the clusters in dense areas of the data – the most

important from an applicational point of view – while at the same time requiring a reduction

or even elimination of clusters in sparse regions, as they frequently pertain to atypical elements

commonly arising due to various errors. Putting the above considerations together, one can propose

an increase in both the standard scale of the smoothing parameter modification (5) as well as the

value of the smoothing parameter h calculated on the criterion of the mean integrated square error,
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to the value h∗ defined by the formula

h∗ =
(

3

2

)c−0.5
h. (23)

The joint action of both these factors results in a twofold smoothing of the function f̂ in the regions

where the elements of set (1) are sparse. Meanwhile, these factors more or less compensate for

each other in dense areas, thereby having practically no influence on the detection of these clusters.

Based on research carried out, one can recommend a change in the value of the parameter c from

0.5 to 1.0. Increasing it to above 1.0 demands individual verification of the validity of results

obtained. Particularly, it is recommended that c = 0.75.

More details with illustrative examples can be found in the paper [14].

5. Applicational examples

The algorithm presented in this paper was comprehensively tested both for random statistical

data as well as generally available benchmarks. It was also compared with other well-known

clusteringmethods, k-means and hierarchical procedures. It is difficult to confirmhere the absolute

supremacy of any one of them – to a large degree the advantage stemmed from the conditions and

requirements formulated with regard to the problem under consideration, although the Complete

Gradient ClusteringAlgorithm allowed for greater possibilities of adjustment to the real structure

of data, and consequently the obtained results were more justifiable to a natural human point of

view. A very important feature for practitioners was the possibility of functioning using standard

parameters values first, and the option of changing them afterwards – according to individual

needs – by the modification of two of them with easy and illustrative interpretations. These

properties were actively used in three projects from the domains of bioinformatics, management

and engineering, which will be presented in detail in the following subsections.

5.1 Categorization of grains for seed production

Bioinformatics – a discipline concerning the application of mathematical and IT tools to solve

problems of biological science – is now growing on an exceptionally dynamic and diverse scale.

Opportunities are increasing thanks to the development and prevalence of computer technology

which have resulted in a sudden increase in mutual understanding and cooperation in the frame-

works of previously different research methods of hard and natural sciences. The results of

investigations carried out as part of a larger project on the categorization of grains according

to the geometric features of seeds, taken from X-ray images, for production purposes will be

presented below.

For an illustrative and comparative presentation of aspects of research using the Complete

Gradient Clustering Algorithm presented in this paper, an analysis will be made of a sample of

harvestedwheat grain originating from experimental fields explored at the Institute ofAgrophysics

of the Polish Academy of Sciences in Lublin. The examined group consisted of grains of three

strains of wheat –Kama, Rosa andCanadian – with 70 of each type selected randomly for testing.

A high-quality visualization of their internal structures was achieved using a soft X-ray technique,

without destroying the subject material.After scanning the resulting pictures, the following seven

geometric parameters of wheat kernels were obtained using the program GRAINS, specially

created to this aim: area A, perimeter P, compactness C = 4πA/P2, length of kernel, width of

kernel, asymmetry coefficient and length of kernel groove. Each was thus represented by a seven-

dimensional vector (n = 7), while their set comprises a 210-element sample (1). In the preliminary

phase, the data dimensionality was reduced to 2 using Principal Components Analysis.



Journal of Applied Statistics 1219

As a result of using the Complete Gradient Clustering Algorithm with the standard values

of the smoothing parameter h and the intensity of its modification c, obtained by the mean-

square criterion, seven clusters were found, of 76, 64, 57, 7, 3, 2, 1 elements each. It can be

deduced that the first three represent the three used for the analysis investigated here, while the

remaining four small clusters contain atypical elements, without excluding physically damaged.

If one disregards the 13 units contained in these 4 small clusters (6% of the entire population), the

number of correctly classified grains was, in order 91%, 97%, 88% forKama,Rosa andCanadian,

respectively. It is worth pointing out that the above results were obtained without the need for any

a priori assumption as to the required number of clusters, information which may be difficult or

even impossible to obtain in practical problems in biology.

If, however, a necessity is assumed to map every element to one of the larger clusters, then this

can be achieved by appropriately changing the values of the parameters h and c to those obtained

with optimization criterions. Thus, by successively increasing the value of the former, the number

of local extremes of the kernel estimator falls, while decreasing the latter makes it impossible to

divide the large clusters created in this way. In doing so, three large clusters are obtained for h

increasing by 75% and c decreased to a value of 0.1. The number of correct classifications was for

one strain slightly lower than that obtained earlier, and was 91%, 96%, 88% for particular strains,

respectively, and was still reached without any arbitrary assumptions as to number of clusters

required.

The above results were comparable to those for other methods, among others classic k-means,

although in this case it did require additional correct information regarding the number of classified

strains.

In summary, use of the Complete Gradient Clustering Algorithm, presented in this paper,

allowed the correct classification of the grains of three strains of wheat without a priori infor-

mation about their number. What is more, with standard parameters values, the above algorithm

also enabled the identification of atypical elements, e.g. physically damaged and – following

their elimination from the sample – a slight reduction in the number of misclassifications in the

remaining part.

The above illustratory example, concerning three strains of wheat, can be generalized for other

categorization tasks of seed produce of similar conditioning. This research was carried out in

cooperation with Prof. Jerzy Niewczas and Slawomir Zak.

5.2 Marketing support strategy for mobile phone operator

The highly dynamic growth prevalent on the mobile phone network market naturally necessitates

a company to permanently direct its strategy towards satisfying the differing needs of its clients,

while at the same time maximizing its income. The uncontrollable nature of this kind of activity,

however, can lead to a loss of coherence in treatingparticular clients, and their subsequent defection

to competitors.To avoid this, a formal solution of global naturemust be found.Below are presented

the results of research prepared for a Polish mobile phone network operator, concerning long-term

business clients, i.e. those with more than 30 SIM cards and an account history of at least 2 years.

In practice, there is a vast spectrumof quantities characterizing particular subscribers. Following

detailed analysis of the economic aspects of the task under investigation here, it was taken that

basic traits of business clients would be shown by three quantities: average monthly income per

SIM card, length of subscription and number of active SIM cards. Thus, each of m-elements of a

database x1, x2, . . . , xm is characterized by the following three-dimensional vector:

xi =





xi,1

xi,2

xi,3



 for i = 1, 2, . . . ,m, (24)
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where xi,1 denotes the average monthly income per SIM card of the ith client, xi,2 its length of

subscription, and xi,3 the number of active SIM cards.

In the initial phase, atypical elements of the set x1, x2, . . . , xm (outliers) are eliminated, according

to the procedure presented in the publication [16], based on kernel estimators methodology. The

uniformity of the data structure is so increased, and it is worth underlining that effect is obtained

by canceling only those elements which would not be of importance further in the procedure

investigated.

Next clustering of the data set is performed, using the Complete Gradient ClusteringAlgorithm

presented in this paper. This results in a division of the data set representing specific clients,

into groups of similar nature. The results obtained for typical intensity of smoothing parameter

modification (5) indicated that an excessive number of clusters of small sizes, located in areas of

low density of sample elements, most often contain insignificant specific clients, and that an overly

numerous main cluster contains over half the elements. In accordance with the properties of the

algorithm used, this value was increased to c = 1. This gave the desired effect: the number of

‘peripheral’ clusters lowered significantly and the main cluster was split. The obtained number of

clusters was satisfying, which led to any possible change in the value of the smoothing parameter

h becoming redundant. Finally, the sample, considered at this stage, containing 1639 elements

was divided into 26 clusters of the following sizes: 488, 413, 247, 128, 54, 41, 34, 34, 33, 28,

26, 21, 20, 14, 13, 12, 10, two 4-element clusters, three of 3-elements, two of 2-elements and

two of 1-element. It is worth noting the four clearly drawn groups: the first of these comprises

two numerous clusters of 488 and 413-elements, next two medium-sized 247- and 128-elements,

followed by small – nine clusters containing from 20 to 54 and lastly 13 clusters of less than 20

elements. Next began the elimination of these last clusters, with the exception however of those

containing key clients (clusters of 14, 13 and 10-elements) as well as one where at least half of its

elements were prestige clients (12-elements cluster). In the end, 17 clusters remained for further

analysis.

Next for each of the above-defined clusters, an optimal – from the point of view of expected

profit of the operator – strategy is created for treating subscribers belonging to it. With regard to

the imprecise evaluation of experts used here, elements of fuzzy logic and preference theory [5]

have been used – details are however beyond the scope of this paper.

It is worth pointing out that none of the above calculations must be carried out at the same time

as negotiating with the client, but merely updated (in practice once every 1–6 months).

The client being negotiated with is described with the aid – in reference to formula (24) – of a

three-dimensional vector, whose particular coordinates denote average monthly income per SIM

card of that client, length of its subscription and the number of its active SIM, respectively. These

data can relate to the subscriber history to date in a given network, when renegotiating contract

terms, or in a rival network if attempting to take them over. Mapping of the client being negotiated

to the proper subscriber group, from those obtained as a result of earlier-performed clustering,

was carried out using Bayes classification also applying kernel estimators methodology (for

subject bibliography see [15]). Due to the fact that the marketing strategies for particular clusters

have already been defined, this finally completes the procedure for the algorithm to support the

marketing strategy for a business client, investigated here.

The above method, researched with the cooperation of Dr Karina Daniel, was successfully

implemented for the needs of a Polish network operator.

5.3 Synthesis of fuzzy PID controller

Fuzzy PID controllers are a valuable – from an applicational point of view – generalization of

the commonly used, precisely examined and familiarized by practitioners classical PID feed-

back controllers. The fuzzy version is particularly useful for challenging systems, e.g. containing
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strong nonlinearities and uncertainties, thanks to the greater degree of freedom, such controllers

can better fit the specifics of an object. On the other hand, however, too great a degree of freedom

may cause difficulties in appropriately fixing their functions and parameters, implying an incor-

rectly working system, and in the extreme case impossible excessive expansion of its structure

making it impossible to realize in practice. The problem of a suitably large, but not lowering

quality, simplification of fuzzy PID controllers structures is therefore fundamentally significant

in applicational engineering.

Investigated below are the fuzzy PID controllers in Takagi–Sugeno sense [27]. Their concept

is built on the set (base) of k fuzzy rules of the form

IF (x is Aj) THEN (y = fj(x)) for j = 1, 2, . . . , k. (25)

If – according to the character of the fuzzy approach – the element x belongs to many sets to a

degree defined by values of their membership functions, i.e. with µA j
(x), then finally y takes the

form of the normalized mean

y =
∑k

j=1 µAj
(x)fj(x)

∑k
j=1 µAj

(x)
. (26)

In the case of fuzzy PID controllers, the coordinates of the vector x are connected with an error

and its integral and derivative, while the variable y constitutes a generated control. Even if one

assumes the simple triangular or trapezoid membership functionsµA j
, and that the functions fj are

linear, then the large number of parameters appearing in such a task may pose the threat of losing

the possibility of correct effective fixing of their values. The appropriate reduction in the size of

the fuzzy rules set (25) becomes therefore a fundamental problem, in particular for the complex

applicational cases. To solve the task of reducing fuzzy rules, many contemporary IT methods are

used, above all evolutionary algorithms, neuro-fuzzy systems or statistical approaches also, among

which dominate concepts based on the clustering technique. The Complete Gradient Clustering

Algorithm presented in this paper was applied successfully to this aim.

Let then be given the vector
[

x
y

]

and m measurements of values obtained during operation of

the system with the fuzzy PID controller in its primary form, i.e. without reducing the rules set:

[

x1
y1

]

,

[

x2
y2

]

, . . . ,

[

xm

ym

]

. (27)

Treating the above set as random sample (1) one can perform clustering with the use of the

Complete Gradient Clustering Algorithm presented in this paper. Let

[

x̃1
ỹ1

]

,

[

x̃2
ỹ2

]

, . . . ,

[

x̃m̃

ỹm̃

]

(28)

represent centers of m̃ clusters obtained in this way. Each of the element x̃i for i = 1, 2, . . . , m̃

may be the basis of ith fuzzy rule with the respective membership function

µi(x) = exp

(

−
∥

∥

∥

∥

x − x̃i

d

∥

∥

∥

∥

2
)

, (29)

where the ‘scaling’ parameter d > 0 characterizes the generalization ability resulting from the

fuzzy inference concerning the control system under design. The experimental research carried

out indicates that the value d = m̃/2 can be successfully used. As a consequence, formula (26)
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takes the following form:

y =
∑m̃

i=1 µi(x)fi(x)
∑m̃

i=1 µi(x)
, (30)

where fi are linear functions whose parameters may be calculated based on the classical least-

squares estimation task.

This method was positively verified in numerous practical problems. Presented below are

comparative results obtained for the control system of a hard-drive servo motor, presented in the

paper [22]. Its following model was used:

[

ṡ(t)

v̇(t)

]

=
[

1 1.664

0 1

] [

s(t)

v(t)

]

+
[

1.384

1.664

]

u(t), (31)

where u constitutes actuator input (in volts), s and v are the position (in tracks) and velocity of

the disk drive’s head. The problem of accurate positioning was analyzed with s(t) as an output.

Typically for such applications, a controller of PD type was considered [18].

First, the standard PD fuzzy controller with 49-rules was tuned for quick response with the step

reference signal. The 121-elements set (27) was obtained in this way:





e1
ė1
u1



 ,





e2
ė2
u2



 , . . . ,





e121
ė121
u121



 , (32)

where e represents error, was treated as random sample (1) and subjected to the Complete Gradient

Clustering Algorithm. As a result, the PD fuzzy controller with the base reduced to 38 rules was

obtained.

To compare the results acquired using a classical PD feedback-controller, a fuzzy PD controller

with full (unreduced) 49-element rule base [18], and the above investigated fuzzy controller with

base reduced to 38 rules, for each of them the values were obtained for the root-mean-square-error

index and the percentage overshoot for a responsewith the step reference signal. For the first value,

the results were 0.291, 0.198, 0.111, respectively, for the second 78%, 92%, 15%. For both, the

best results were provided by the use of the fuzzy PD controller with the rule set reduced using

the Complete Gradient Clustering Algorithm. Similar results were achieved for other conditions

and performance indexes.

Further testing was carried out for the systemwith the fuzzy controller with the rule set reduced

by the Complete Gradient ClusteringAlgorithm, for various – different from those obtained with

the integrated mean-square error criterion – values of the smoothing parameter h and the intensity

of modification c. The most advantageous results were achieved for the value of the latter, slightly

lowered – with respect to optimal (5) – to c = 0.25. This effect can be interpreted by an increase

in the number of peripheral clusters characterizing atypical states, ‘dangerous’ from the point

of view of correct behavior of the system. Moreover, the main cluster generally contained even

80% elements of set (32), representing ‘safe’ states, and its potential division did not bring any

positive changes. As before it was not necessary to alter – with respect to optimal – the value

of the smoothing parameter h. It proves once again the Complete Gradient Clustering Algorithm

adapts well to real data structures.

The presented concept was successfully implemented for the control of a robot under the

authority of the Department of Automatic Control and Information Technology of the Cracow

University of Technology.
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Notes

1. For calculating a smoothing parameter one can especially recommend the plug-in method in the one-dimensional

case [11, Section 3.1.5; 21, Section 3.6.1] as well as the cross-validation method [11, Section 3.1.5; 21, Section

3.4.3] in the multidimensional. Comments for the choice of kernel may best be found in [11, Section 3.1.3; 25,

Sections 2.7 and 4.5].

2. For convenience of calculating one canmake use of∇ f̂ (x)/f̂ (x) = ∇ ln(f̂ (x)).Moreover, the value of this expression
is sometimes obtained by computing a so-called mean shift – in this case, the Gradient Clustering Algorithm is

known in the literature as theMean ShiftAlgorithm (Procedure); see for example [2,3,28]. Themethod of calculation

of the above expression’s value is of no relevance for further parts of the presented material.

3. Using the general form of transformation matrix R =
√
Cov(X) [11, Section 3.1.4; 21, Section 4.2.1] results in a

lengthening of shape of kernels in one direction. This causes a difference in rate of convergence of algorithm (14)

and (15) with respect to the direction of transposition of elements of set (1), non-justified from the point of view of

the clustering task, and consequently interfering with obtained results. Also for this reason, the product kernel [11,

Section 3.1.3; 25, Section 4.2], very useful in practical applications, was rejected.

4. If such a value does not exist, then one should recognize the existence of one cluster and finish the procedure. A

similar suggestion may be made for the irrational, yet formally possible case wherem = 1, as set (23) is then empty.
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