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Many of today’s specialized applicational tasks are obliged to consider the influence of inevitable errors 
in the identification of parameters appearing in a model. Favourable results can also be achieved through 
measuring, and then accounting for definite (e.g. current) values of factors which show a significant reac-
tion to the values of those parameters. This paper is dedicated to the problem of the estimation of a vector 
of parameters, where losses resulting from their under- and overestimation are asymmetric and mutually 
correlated. The issue is considered from a supplementary conditional aspect, where particular coordinates 
of conditioning variables may be continuous, discrete, multivalued (in particular binary) or categorized 
(ordered and unordered). The final result is a ready-to-use algorithm for calculating the value of an estima-
tor, optimal in the sense of minimum expectation of losses using a multidimensional asymmetric quadratic 
function, for practically any distributions of describing and conditioning variables.
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1.  Introduction

The proper identification (estimation) of parameters’ values, used in a model describing the 
reality under consideration, is always of fundamental significance in modern problems of sci-
ence and practice.[1] In contemporary complex tasks, however, the individual parameters no 
longer describe definite physical quantities; they rather represent an entire range of complex 
phenomena, simplified in the framework of a model to one parameter, existing only formally. In 
this situation, their identification cannot be taken in the classic sense [2] to be the calculation of 
an estimators’ values as close as possible to the imagined ‘true’ – albeit unknown – parameters’ 
values (since they do not exist), but rather by allowing for the influence of their particular values 
on the behaviour of a considered environment. In particular, in many modern applicational tasks, 
the underestimation of parameters’ values may imply different results from overestimation, both 
in quality and quantity. The necessity for their inclusion becomes ever more attractive, with the
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complexity and sophistication of contemporary models growing, as well as the demands made 
by the task for which they are constructed.[3]

The need to consider different implications of under- and overestimations leads directly to the 
concept of asymmetrical form of a loss function.[4] The significance of this problem has been 
noted and investigated for simple cases of a single parameter (see the classic paper [5]). An 
interesting comparison of basic types of loss function used then – asymmetrical linear, asym-
metrical quadratic and linear-exponential LINEX (approximately linear on one side of zero and 
exponential on the other one) – is presented in the paper [6]. It is also worth noting the results 
concerning the estimation of a single parameter with asymmetrical polynomial loss function,[7] 
investigated in the paper [8] additionally in the conditional version, i.e. where the quantity under 
research is significantly dependent on conditioning factors. In engineering practice, such a fac-
tor may often be the current temperature. If the actual value of factors of this type is available 
metrologically, their inclusion can make the model used considerably more precise. In this paper 
that research is generalized for the multidimensional case, where one identifies a few separated 
parameters, treated as a vector, and the losses resulting from the over- and underestimation may 
be asymmetrical and correlated.

The concept presented here is based on the Bayes approach, which allows minimization of 
expected value of losses arising from estimation errors.

For defining probability characteristics, the nonparametric methodology of statistical ker-
nel estimators was used, which freed the investigated procedure from forms of distributions 
characterizing both the identified parameters and conditioning quantities.

Finally, to summarize, the goal of this paper is the provision of an algorithm for calculating the 
vector of independent parameters’ values, optimal in the sense of minimum expectation value of 
losses, when these losses are different for under- and overestimation and in addition correlated for 
particular parameters. The procedure is worked out for the conditional approach, which enables 
the result to be made more precise by a fixed (e.g. valid) value of a conditioning factor or factors. 
Both estimated parameter and conditioning factors can have any distribution. The algorithm will 
be given in its ready-to-use form, i.e. together with quoted bibliography it can be applied directly 
without detailed knowledge of theoretical aspects, laborious research or analytical calculations.

Thus, Section 2 outlines mathematical preliminaries: statistical kernel estimators and Bayes 
estimation. The algorithm worked out here is described in Sections 3 and 4. Section 5 presents 
the results of its numerical tests for illustrative, artificially generated data. Additional comments 
are provided in Section 6, while Section 7 offers as examples two applicational tasks, in which 
the investigated procedure can be found. The last section constitutes a summary of the designed 
method. Mathematical aspects are considered in the two appendixes closing the article.

The preliminary version of this paper was shortly presented as the publications.[9,10]

2.  Mathematical preliminaries

2.1.  Statistical kernel estimators

Let the n-dimensional random variable X be given, with a distribution characterized by the den-
sity f . Its kernel estimator f̂ : Rn → [0, ∞), calculated using experimentally obtained values for
the m-element random sample

x1, x2, . . . , xm, (1)

in its basic form is defined as

f̂ (x) = 1 

mhn

m∑
i=1

K

(
x − xi

h

)
, (2)
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where m ∈ N\{0}, the coefficient h > 0 is called a smoothing parameter, while the measurable
function K : Rn → [0, ∞) of unit integral 

∫
Rn K(x)dx = 1, symmetrical with respect to zero and 

having a weak global maximum in this place, takes the name of a kernel. The choice of form 
of the kernel K and the calculation of the smoothing parameter h are made most often with the 
criterion of the mean integrated square error.

Thus, the choice of the kernel form has – from a statistical point of view – no practical meaning 
and thanks to this, it becomes possible to take primarily into account properties of the estimator 
obtained or calculational aspects, advantageous from the point of view of the applicational prob-
lem under investigation; for broader discussion, see the books [11,Section 3.1.3;12,Sections 2.7 
and 4.5]. In practice, for the one-dimensional case (i.e. when n = 1), the function K is assumed
most often to be the density of a common probability distribution. In the multidimensional case, 
two natural generalizations of the above concept are used: radial and product kernels. However, 
the former is somewhat more effective, although from an applicational point of view, the differ-
ence is immaterial and the product kernel – significantly more convenient for analysis – is often 
favoured in practical problems. The n-dimensional product kernel K can be expressed as

K(x) = K

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ = K1(x1) K2(x2) . . . Kn(xn), (3)

where Ki denotes the previously mentioned one-dimensional kernels, while the expression hn

appearing in the basic formula (2) should be replaced by the product of the smoothing parameters 
for particular coordinates h1 · h2 · . . . · hn.

The fixing of the smoothing parameter h has significant meaning for quality of estimation. 
Fortunately many suitable procedures for calculating the value of the parameter h on the basis 
of random sample (1) have been worked out. For broader discussion of this task see the books 
[11–13]. In particular, for the one-dimensional case, the simple and effective plug-in method 
[11,Section 3.1.5;12,Section 3.6.1] is especially recommended. Of course this method can also 
be applied in the n-dimensional case when product kernel (3) is used, sequentially n times for 
each coordinate.

Practical applications may also use additional procedures generally improving the quality 
of estimator (2). For the method presented in this paper, the modification of the smoothing 
parameter [11,Section 3.1.6;13,Section 5.3.1] can be recommended.

The above concept will now be generalized for the conditional case. Here, besides the basic 
(sometimes termed the describing) nY -dimensional random variable Y , let also be given the 
nW -dimensional random variable W , called hereinafter the conditioning random variable. Their

composition X =
[

Y
W

]
is a random variable of the dimension nY + nW . Assume that distribu-

tions of the variables X and, in consequence, W have densities, denoted below as fX : RnY +nW →
[0, ∞) and fW : R

nW → [0, ∞), respectively. Let also be given the so-called conditioning value,
i.e. the fixed value of conditioning random variable w∗ ∈ R

nW , such that

fW (w∗) > 0. (4)

Then the function fY |W=w∗ : RnY → [0, ∞) given by

fY |W=w∗(y) = fX (y, w∗)
fW (w∗)

for every y ∈ R
nY (5)

constitutes a conditional density of probability distribution of the random variable Y for the 
conditioning value w∗. The conditional density fY |W=w∗ can so be treated as a ‘classic’ density,
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whose form has been made more accurate in practical applications with w∗ – a concrete value 
taken by the conditioning variable W in a given situation.

Let therefore the random sample [
y1

w1

]
,

[
y2 

w2 

]
, . . . , 

[
ym

wm

]
, (6)

obtained from the variable X =
[

Y
W

]
, be given. The particular elements of this sample are inter-

preted as the values yi taken in measurements from the random variable Y , when the conditioning 
variable W assumes the respective values wi. On the basis of sample (6), one can calculate f̂X ,
i.e. the kernel estimator of density of the random variable X probability distribution, while the 
sample

w1, w2, . . . , wm (7)

gives f̂W – the kernel density estimator for the conditioning variable W . The kernel estimator of
conditional density of the random variable Y distribution for the conditioning value w∗ is defined 
then – in natural consequence of formula (5) – as the function f̂Y |W=w∗ : RnY → [0, ∞) given by

f̂Y |W=w∗(y) = f̂X (y, w∗)

f̂W (w∗)
. (8)

If for the estimator f̂W one uses a kernel with positive values, then the inequality f̂W (w∗) > 0
implied by condition (4) is fulfilled for any w∗ ∈ R

nW .
In the case when for the estimators f̂X and f̂W the product kernel (3) is used, applying in pairs

the same positive kernels to the estimator f̂X for coordinates which correspond to the vector
W and to the estimator f̂W , then the expression for the kernel estimator of conditional density
becomes particularly helpful for practical applications. Formula (8) can then be specified to the 
form

f̂Y |W=w∗(y) = f̂Y |W=w∗

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

y1
y2
...

ynY

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

=

(1/h1h2 . . . hnY )
∑m

i=1 K1((y1 − yi,1)/h1)K2((y2 − yi,2)/h2) . . . KnY ((ynY
− yi,nY )/hnY )

×KnY +1((w∗
1 − wi,1)/hnY +1)KnY +2((w∗

2 − wi,2)/hnY +2) . . . KnY +nW ((w∗
nW

− wi,nW )/hnY +nW )∑m
i=1 KnY +1((w∗

1 − wi,1)/hnY +1)KnY +2((w∗
2 − wi,2)/hnY +2) . . . KnY +nW ((w∗

nW
− wi,nW )/hnY +nW )

,

(9)

where h1, h2, . . . , hnY +nW represent – respectively – smoothing parameters mapped to particular
coordinates of the random variable X , while the coordinates of the vectors w∗, yi and wi are
denoted as

w∗ =

⎡
⎢⎢⎢⎣

w∗
1

w∗
2

...
w∗

nW

⎤
⎥⎥⎥⎦ and yi =

⎡
⎢⎢⎢⎣

yi,1

yi,2
... 

yi,nY

⎤
⎥⎥⎥⎦ , wi =

⎡
⎢⎢⎢⎣

wi,1

wi,2
... 

wi,nW

⎤
⎥⎥⎥⎦ for i = 1, 2, . . . , m. (10)

Define the so-called conditioning parameters di for i = 1, 2, . . . , m by the following formula:

di = KnY +1

(
w∗

1 − wi,1

hnY +1 

)
KnY +2 

(
w∗

2 − wi,2

hnY +2 

)
. . . KnY +nW

(
w∗

nW
− wi,nW

hnY +nW

)
. (11)
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Thanks to the assumption of positive values for the kernels KnY +1, KnY +2, . . . , KnY +nW , these
parameters are also positive. So the kernel estimator of conditional density (9) can be finally 
presented in the form

f̂Y |W=w∗(y) = f̂Y |W=w∗

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

y1
y2
...

ynY

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

= 1

h1h2 . . . hnY

∑m
i=1 di

m∑
i=1 

diK1

(
y1 − yi,1

h1 

)
K2 

(
y2 − yi,2

h2 

)
. . . KnY

(
ynY

− yi,nY

hnY

)
.

(12)

The value of the parameter di characterizes the ‘distance’ of the given conditioning value w∗

from wi – that of the conditioning variable for which the ith element of the random sample was 
obtained. Then estimator (12) can be interpreted as the linear combination of kernels mapped to 
particular elements of a random sample obtained for the variable Y , when the coefficients of this 
combination characterize how representative these elements are for the given value w∗.

More details concerning kernel estimators can be found in the classic monographs.[11–14]

2.2.  Bayes estimation

The idea of Bayes estimation [2] as applied here can be derived illustratively from the Bayes 
decision rule common to decision theory,[4] treating the possible values of estimated parameters 
as states of nature, and the obtained values of estimators as a decision.

Assume therefore a nonempty set of all possible states of nature Z and f – the density of 
distribution of a probability measure defined on Z. Let there be given also the nonempty set 
of possible decisions D, as well as the loss function l:D × Z → R, while its values l(d , z) can 
be interpreted as losses occurring in a hypothetical case, when the state of nature is z and the 
decision d was taken. If for every d ∈ D the integral

∫
N l(d, z)f (z)dz exists, then the Bayes loss

function lB:D → R can be defined as

lB(d) =
∫

N
l(d, z)f (z)dz. (13)

Every element dB ∈ D such that

lB(dB) = min
d∈D

lB(d) (14)

is called a Bayes decision, and the procedure of its calculation – a Bayes decision rule. The Bayes 
decision is chosen in such a way, therefore, so as to minimize the expected value of losses 
following the decision d .

In this paper, the Bayes decision rule will be applied to the Bayes approach of the point 
estimation task. Namely, let the possible values of the parameters under consideration consti-
tute the set of nature states Z with their distribution density f , while the set where we search for 
the values of the estimators will be treated as the set of possible decisions D. Let also be given 
the loss function l, describing losses resulting from estimation errors. When the above-presented 
Bayes decision rule has been applied to such a task, the Bayes decision becomes the desired 
Bayes estimator value.
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3.  An algorithm

Consider the parameters, whose values are to be estimated, denoted in the form of the vector 
y ∈ R

nY . It will be treated as the value of the nY -dimensional random variable Y . Let also 
the nW -dimensional conditioning random variable W be given. The availability is assumed of 
the metrologically achieved measurements of the parameters’ vector y, i.e. y1, y2, . . . , ym ∈ R

nY ,
obtained for the values w1, w2, . . . , wm ∈ R

nW of the conditioning variable, respectively. Finally,
let w∗ ∈ R

nW denote any fixed conditioning value. The goal is to calculate the estimator of this 
parameters’ vector, denoted by ŷw∗ ∈ R

nY , optimal in the sense of minimum expected value of 
losses arising from errors of estimation, for conditioning value w∗.

In order to solve such a task, the Bayes decision rule described in Section 2.2 will be used. 
Let N = D = R

nY naturally. For clarity of presentation, a two-dimensional case (nY = 2) will be
considered here. The idea itself may be transposed for larger dimensions, although at a natural – 
in such a situation – cost of increasing complexity. It is worth noting however that in practical 
cases the correlations of estimation errors do not necessarily occur between all parameters; so 
the form can be significantly simplified with respect to the general one, depending on the specific 
conditions of the task considered.

Let therefore the estimated parameters be treated as the two-dimensional vector 

[
y1
y2

]
, as their

estimators

[
ŷ1
ŷ2

]
. The two-dimensional loss function is assumed in a quadratic and asymmetrical

form

l

([
ŷ1
ŷ2

]
,

[
y1 
y2 

])
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

al(ŷ1 − y1)
2 + ald(ŷ1 − y1)(ŷ2 − y2) + ad(ŷ2 − y2)

2

if ŷ1 − y1 ≤ 0 and ŷ2 − y2 ≤ 0,

ar(ŷ1 − y1)
2 + ard(ŷ1 − y1)(ŷ2 − y2) + ad(ŷ2 − y2)

2

if ŷ1 − y1 ≥ 0 and ŷ2 − y2 ≤ 0,

al(ŷ1 − y1)
2 + alu(ŷ1 − y1)(ŷ2 − y2) + au(ŷ2 − y2)

2

if ŷ1 − y1 ≤ 0 and ŷ2 − y2 ≥ 0,

ar(ŷ1 − y1)
2 + aru(ŷ1 − y1)(ŷ2 − y2) + au(ŷ2 − y2)

2

if ŷ1 − y1 ≥ 0 and ŷ2 − y2 ≥ 0,

(15)

where al, ar, au, ad > 0, ald , aru ≥ 0 and alu, ard ≤ 0. The coefficient al represents losses arising
from underestimation of the first parameter (note that it is multiplied by the factor (ŷ1 − y1)

2

relating to the estimation error of the first parameter, and also that it occurs in these options 
where the condition ŷ1 − y1 ≤ 0 showing its underestimation is obligatory). Similarly the coef-
ficient ar concerns losses resulting from overestimation of this parameter (it is multiplied by 
(ŷ1 − y1)

2 and appears when ŷ1 − y1 ≥ 0, which signifies overestimation). Analogically ad and
au are associated with losses caused by under- and overestimation of the second parameter. 
In turn, the coefficients ald , aru, alu, ard represent the correlation of errors in estimation for 
both parameters. Thus, the coefficient ald characterizes additional losses resulting from under-
estimation of both parameters, aru from their simultaneous overestimation, whereas alu from 
underestimation of the first and overestimation of the second, and ard conversely – from over-
estimation of the first and underestimation of the second. It is also worth noting that in the case 
ald = ard = alu = aru = 0, which means that errors resulting from the estimation of both param-
eters are not correlated, the problem is reduced to two separate one-dimensional quadratic tasks 
considered in Section 3.2 of [8].
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Assume conditional independence of the estimated parameters. Then the conditional density 
fY |W=w∗ representing their uncertainty may be shown as the product of the one-dimensional densi-
ties fY1|W=w∗ : R → [0, ∞) and fY2|W=w∗ : R → [0, ∞) corresponding to particular composites,
i.e.

fY |W=w∗(y1, y2) = fY1|W=w∗(y1)fY2|W=w∗(y2). (16)

Let also the functions fY1|W=w∗ and fY2|W=w∗ be continuous, and such that∫ ∞

−∞
y1fY1|W=w∗(y1) dy1 < ∞, (17)

∫ ∞

−∞
y2fY2|W=w∗(y2) dy2 < ∞. (18)

The Bayes loss function (13) for the losses described by the formula (15) is therefore given as

lB 

([
ŷ1
ŷ2

])
= ar

∫ ŷ1

−∞
(ŷ1 − y1)

2fY1|W=w∗(y1) dy1

∫ ∞

−∞
fY2|W=w∗(y2) dy2

+ al

∫ ∞

ŷ1

(ŷ1 − y1)
2fY1|W=w∗(y1) dy1

∫ ∞

−∞
fY2|W=w∗(y2) dy2

+ ard

∫ ŷ1

−∞
(ŷ1 − y1)fY1|W=w∗(y1) dy1

∫ ∞

ŷ2

(ŷ2 − y2)fY2|W=w∗(y2) dy2

+ ald

∫ ∞

ŷ1

(ŷ1 − y1)fY1|W=w∗(y1) dy1

∫ ∞

ŷ2

(ŷ2 − y2)fY2 |W=w∗ (y2) dy2

+ alu

∫ ∞

ŷ1

(ŷ1 − y1)fY1 |W=w∗ (y1) dy1 

∫ ŷ2

−∞
(ŷ2 − y2)fY2|W=w∗(y2) dy2

+ aru

∫ ŷ1

−∞
(ŷ1 − y1)fY1|W=w∗(y1) dy1

∫ ŷ2

−∞
(ŷ2 − y2)fY2 |W=w∗ (y2) dy2

+ ad

∫ ∞

−∞
fY1 |W=w∗ (y1) dy1

∫ ∞

ŷ2

(ŷ2 − y2)
2fY2|W=w∗(y2) dy2

+ au

∫ ∞

−∞
fY1 |W=w∗ (y1) dy1

∫ ŷ2

−∞
(ŷ2 − y2)

2fY2|W=w∗(y2) dy2. (19)

Taking into account the assumptions made earlier concerning continuity of the functions fY1|W=w∗

and fY2|W=w∗ , the partial derivatives of the function lB exist and are

∂lB
∂ ŷ1

([
ŷ1
ŷ2

])
=

(
ald

∫ ∞

ŷ1

fY1|W=w∗(y1) dy1 + ard

∫ ŷ1

−∞
fY1|W=w∗(y1) dy1

)

×
∫ ∞

ŷ2

(ŷ2 − y2)fY1|W=w∗(y2) dy2 +
(

alu

∫ ∞

ŷ1

fY1|W=w∗(y1) dy1 (20)

+ aru

∫ ŷ1

−∞
fY1|W=w∗(y1) dy1

) ∫ ŷ2

−∞
(ŷ2 − y2)fY2|W=w∗(y2) dy2

+ 2al

∫ ∞

ŷ1

(ŷ1 − y1)fY1|W=w∗(y1) dy1 + 2ar

∫ ŷ1

−∞
(ŷ1 − y1)fY1|W=w∗(y1) dy1,
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∂lB
∂ ŷ2

([
ŷ1
ŷ2

])
=

(
ald

∫ ∞

ŷ2

fY2|W=w∗(y2) dy2 + alu

∫ ŷ2

−∞
fY2|W=w∗(y2) dy2

)

×
∫ ∞

x̂1 

(ŷ1 − y1)fY1|W=w∗(y1) dy1 +
(

ard

∫ ∞

ŷ2

fY2|W=w∗(y2) dy2 (21)

+ aru

∫ ŷ2

−∞
fY2|W=w∗(y2) dy2

) ∫ ŷ1

−∞
(ŷ1 − y1)fY1|W=w∗(y1) dy1

+ 2ad

∫ ∞

ŷ2

(ŷ2 − y2)fY2|W=w∗(y2) dy2 + 2au

∫ ŷ2

−∞
(ŷ2 − y2)fY2|W=w∗(y2) dy2.

Making use of the additivity of an integral with respect to an integration set, and equating them to 
zero one obtains the equations which are a necessary condition for the extreme of this function:

∫ ŷ1

−∞
fY1|W=w∗(y1) dy1

[
(aru − ard − alu + ald)

(
ŷ2

∫ ŷ2

−∞
fY2|W=w∗(y2) dy2

−
∫ ŷ2

−∞
y2fY2|W=w∗(y2) dy2

)
+ (ard − ald)

(
ŷ2 −

∫ ∞

−∞
y2fY2|W=w∗(y2) dy2

)]

+ 2al

(
ŷ1 −

∫ ∞

−∞
y1fY1|W=w∗(y1) dy1

)
+ 2(ar − al)

(
ŷ1

∫ ŷ1

−∞
fY1|W=w∗(y1) dy1

−
∫ ŷ1

−∞
y1fY1|W=w∗(y1) dy1

)
+ ald

(
ŷ2 −

∫ ∞

−∞
y2fY2|W=w∗(y2) dy2

)

+ (alu − ald)

(
ŷ2

∫ ŷ2

−∞
fY2|W=w∗(y2) dy2 −

∫ ŷ2

−∞
y2fY2|W=w∗(y2) dy2

)
= 0, (22)

∫ ŷ2

−∞
fY2|W=w∗(y2) dy2

[
(aru − ard − alu + ald)

(
ŷ1

∫ ŷ1

−∞
fY1|W=w∗(y1) dy1

−
∫ ŷ1

−∞
y1fY1|W=w∗(y1) dy1

)
+ (alu − ald)

(
ŷ1 −

∫ ∞

−∞
y1fY1|W=w∗(y1) dy1

)]

+ 2ad

(
ŷ2 −

∫ ∞

−∞
y2fY2|W=w∗(y2) dy2

)
+ 2(au − ad)

(
ŷ2

∫ ŷ2

−∞
fY2|W=w∗(y2) dy2

−
∫ ŷ2

−∞
y2fY2|W=w∗(y2) dy2

)
+ ald

(
ŷ1 −

∫ ∞

−∞
y1fY1|W=w∗(y1) dy1

)

+ (ard − ald)

(
ŷ1

∫ ŷ1

−∞
fY1|W=w∗(y1) dy1 −

∫ ŷ1

−∞
y1fY1|W=w∗(y1) dy1

)
= 0. (23)

Appendix 1 shows that a solution exists, is unique and constitutes a global minimum of the 
function lB. Calculating its value in the general case, however, is not an easy task, although if 
estimation of the densities present above is reached using statistical kernel estimators described 
in Section 2.1, then one can design an effective numerical algorithm to this end.
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Thus, with any fixed i = 1, 2, . . . , m, one can define the functions U1,i : R → R, U2,i : R →
R, V1,i : R → R and V2,i : R → R, given as

U1,i(ŷ1) = 1 

h1

∫ ŷ1

−∞
K

(
y1 − yi,1

h1

)
dy1, (24)

U2,i(ŷ2) = 1 

h2

∫ ŷ2

−∞
K

(
y2 − yi,2

h2

)
dy2, (25)

V1,i(ŷ1) = 1 

h1

∫ ŷ1

−∞
y1 K

(
y1 − yi,1

h1

)
dy1, (26)

V2,i(ŷ2) = 1 

h2

∫ ŷ2

−∞
y2 K

(
y2 − yi,2

h2

)
dy2. (27)

Norm also the conditioning parameters di by introducing the positive values

d∗
i = di∑m

i=1 di
for i = 1, 2, . . . , m; (28)

note that
m∑

i=1 

d∗
i = 1. (29)

After entering the above notations and allowing for the form of the kernel estimator of 
conditioning random variable (12), criterions (25) and (26) can be given in the equivalent form

m∑
i=1 

d∗
i U1,i(ŷ1)

[
(aru − ard − alu + ald)

m∑
i=1 

d∗
i (ŷ2U2,i(ŷ2) − V2,i(ŷ2))

+(ard − ald)

(
ŷ2 −

m∑
i=1 

d∗
i yi, 2

)]
+ 2al

(
ŷ1 −

m∑
i=1 

d∗
i yi, 1

)
+ 2(ar − al)

m∑
i=1 

d∗
i (ŷ1U1,i(ŷ1)

− V1,i(ŷ1)) + ald

(
ŷ2 −

m∑
i=1 

d∗
i yi, 2

)
+ (alu − ald)

m∑
i=1 

d∗
i (ŷ2U2,i(ŷ2) − V2,i(ŷ2)) = 0, (30)

m∑
i=1 

d∗
i U2,i(ŷ2)

[
(aru − ard − alu + ald)

m∑
i=1 

d∗
i (ŷ1U1,i(ŷ1) − V1,i(ŷ1))

+ (alu − ald)

(
ŷ1 −

m∑
i=1 

d∗
i yi, 1

)]
+ 2ad

(
ŷ2 −

m∑
i=1 

d∗
i yi, 2

)
+ 2(au − ad)

m∑
i=1 

d∗
i (ŷ2U2,i(ŷ2)

− V2,i(ŷ2)) + ald

(
ŷ1 −

m∑
i=1 

d∗
i yi, 1

)
+ (ard − ald)

m∑
d∗

i (ŷ1U1,i(ŷ1) − V1,i(ŷ1)) = 0. (31)
i=1 

If one denotes the left sides of the above equations as L1(ŷ1,ŷ2) and L2(ŷ1,ŷ2), their partial
derivatives are given as

∂L1(ŷ1, ŷ2)

∂ ŷ1 
=

m∑
i=1 

d∗
i

1 

h1si,1 
K

(
ŷ1 − yi,1

h1si,1

) [
(aru − ard − alu + ald)

m∑
i=1 

d∗
i (ŷ2U2,i(ŷ2) − V2,i(ŷ2))

+ (ard − ald)(ŷ2 −
m∑

i=1 

d∗
i yi, 2)

]
+ 2(ar − al)

m∑
i=1 

d∗
i U1,i(ŷ1) + 2al, (32)
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∂L1(ŷ1, ŷ2)

∂ ŷ2 
=

m∑
i=1 

d∗
i U1,i(ŷ1)

[
(aru − ard − alu + ald)

m∑
i=1 

d∗
i U2,i(ŷ2) + (ard − ald)

]

+ (alu − ald)

m∑
i=1 

d∗
i U2,i(ŷ2) + ald , (33)

∂L2(ŷ1, ŷ2)

∂ ŷ1 
=

m∑
i=1 

d∗
i U2,i(ŷ2)

[
(aru − ard − alu + ald)

m∑
i=1 

d∗
i U1,i(ŷ1) + (alu − ald)

]

+ (ard − ald)

m∑
i=1 

d∗
i U1,i(ŷ1) + ald , (34)

∂L2(ŷ1, ŷ2)

∂ ŷ2 
=

m∑
i=1 

d∗
i

1 

h2si,2 
K

(
ŷ2 − yi,2

h2si,2

) [
(aru − ard − alu + ald)

m∑
i=1 

d∗
i (ŷ1U1,i(ŷ1) − V1,i(ŷ1))

+ (alu − ald)

(
ŷ1 −

m∑
i=1 

d∗
i yi, 1

)]
+ 2(au − ad)

m∑
i=1 

d∗
i U2,i(ŷ2) + 2ad . (35)

Then the solution of Equations (22) and (23) can be calculated through Newton’s multidi-

mensional algorithm [15] as the limit of the two-dimensional sequence 

{
ŷj, 1

ŷj, 2

}∞

j=0 

defined by

formulas

ŷ0, 1 =
∑m

i=1 diyi, 1∑m
i=1 di

, (36)

ŷ0, 2 =
∑m

i=1 diyi, 2∑m
i=1 di

, (37)

[
ŷj+1, 1

ŷj+1, 2

]
=

[
ŷj, 1

ŷj, 2

]
−

⎡
⎢⎢⎢⎣

∂L1(ŷj, 1, ŷj, 2)

∂ ŷ1

∂L1(ŷj, 1, ŷj, 2)

∂ ŷ2

∂L2(ŷj, 1, ŷj, 2)

∂ ŷ1

∂L2(ŷj, 1, ŷj, 2)

∂ ŷ2

⎤
⎥⎥⎥⎦

−1 [
L1(ŷj, 1,ŷj, 2)

L2(ŷj, 1,ŷj, 2)

]
for j = 0, 1, . . . ,

(38)

while the quantities in the above dependencies are given by Equations (30)–(35), whereas a stop 
condition takes the form of the conjunction of the following inequalities:

|ŷj,1 − ŷj−1,1| ≤ 0, 01 σ̂1, (39)

|ŷj,2 − ŷj−1,2| ≤ 0, 01 σ̂2, (40)

where σ̂1 and σ̂2 denote the estimators of standard deviations for particular coordinates of the 
vector Y .

4.  Kernel used

As mentioned, the important positive feature of kernel estimators constitutes a possibility 
to choose the kernel form with regard to the demands of the practical task being worked 
out. With respect to the previous considerations, the following four requirements should be
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formulated:

• continuity and positivity of the function K;
• the finite first moment of the above function, i.e.

∫ ∞
−∞ xK(x) dx < ∞;

• the function I : R → R defined as I(x) = ∫ x
−∞ K(y) dy should be expressed by a relatively

simple analytical formula;
• similar to the above with respect to the real function J : R → R given by J(x) =∫ x

−∞ yK(y) dy.

Because of the above conditions, the Cauchy kernel

K(x) = 2 

π

1

(1 + x2)
2 (41)

can be proposed. Then

Ui(ŷ) = 1 

π
arctg

(
ŷ − yi

h

)
+

ŷ − yi

h

π

[
1 +

(
ŷ − yi

h

)2
] + 1

2
, (42)

Vi(ŷ) = yi

⎡
⎢⎢⎢⎢⎣

1 

π
arctg

(
ŷ − yi

h

)
+

ŷ − yi

h

π

[
1 +

(
ŷ − yi

h

)2
] + 1

2

⎤
⎥⎥⎥⎥⎦ − h

π

[
1 +

(
ŷ − yi

h

)2
] , (43)

while if one applies the plug-in method recommended here, the constants there amount to∫
R

x2K(x) dx = 1 and
∫

R
K(x)2 dx = 5/4π .

5.  Numerical testing

The correctness of the investigated algorithm was comprehensively examined both with illus-
trative artificial data obtained from a generator (acquired results are presented below) and in 
experimental research concerning practical tasks, described in Section 7.

Assume – for transparency of the results interpretation – that nY = 2 and nW = 1, and let the

tested random variable X =
[

Y
W

]
=

⎡
⎣Y1

Y2

W

⎤
⎦ has distribution being the sum of five Gauss factors

with expected values, covariance matrixes and shares, respectively,

E1 =
⎡
⎣2 

2 
0

⎤
⎦ , Cov1 =

⎡
⎣ 1 −0.49 0.7

−0.49 1 −0.7
0.7 −0.7 1

⎤
⎦ , 30%, (44)

E2 =
⎡
⎣−2 

2 
0

⎤
⎦ , Cov2 =

⎡
⎣ 1 −0.49 0.7

−0.49 1 −0.7
0.7 −0.7 1

⎤
⎦ , 20%, (45)

E3 =
⎡
⎣−2

−2 
0

⎤
⎦ , Cov3 =

⎡
⎣ 1 −0.49 0.7

−0.49 1 −0.7
0.7 −0.7 1

⎤
⎦ , 15%, (46)
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E4 =
⎡
⎣ 2

−2 
0

⎤
⎦ , Cov4 =

⎡
⎣ 1 −0.49 0.7

−0.49 1 −0.7
0.7 −0.7 1

⎤
⎦ , 15%, (47)

E5 =
⎡
⎣0 

0 
0

⎤
⎦ , Cov5 =

⎡
⎣4 0 0 

0 4 0 
0 0 1

⎤
⎦ , 20%. (48)

Comments on conditionally independent random variables can be found in Appendix 2. In the 
case of factors (44)–(47), the conditioning variable W is positively correlated with the first coor-
dinate of the describing variable Y , i.e. with Y1, and negatively with the second coordinate Y2.
Factor (48), with uncorrelated coordinates, acts as an additional – apart from the natural uncer-
tainty of the variables Y and W – disturbance. The expected values of variables Y1, Y2 and W as 
well as their standard deviations are

EY1 = 0.2, σY1 
∼= 2.2, (49)

EY2 = 0.4, σY2 
∼= 2.2, (50)

EW = 0, σW = 1. (51)

The results acquired with the algorithm described in Sections 3 and 4, for w∗ = 0, w∗ = 1,
w∗ = 2, so for the modal value of the conditioning random variable as well as at the first and
second standard deviation, are presented in Tables 1–3, respectively. Each of their cells shows the 
obtained values of the estimator, calculated on the basis of 100 tests and recorded in the classic 
formula: ‘mean value ± standard deviation’. The symbol ∞ denotes the analytically achieved
theoretical value.

In Tables 1–3 the results have been shaded where the mean estimation error is greater than 10% 
of the standard deviation of the describing variable – i.e. 0.22 for both coordinates Y1 and Y2 – or 
where the standard deviation of the estimation error is greater than 20% of the standard deviation 
of the describing variable – i.e. 0.44 for Y1 and Y2 (see formulas (49)–(51)). One can note that the 
remaining (unshaded) results are for samples of sizes from 50 to 100 for w∗ = 0, 100 to 200 for
w∗ = 1, 200 to 500 for w∗ = 2. Taking into account that the distribution of the describing random
variable Y is four-modal, the existence of an additional disturbance represented by factor (48), 
and the complex multidimensional character of the task, the need for such size seems reasonable 
in practice. In particular, estimation at the second standard deviation of the conditioning variable 
(Table 3) appears to be an especially difficult problem, which justifies the need for a sample size 
of at least 500.

Analysis of particular columns of Tables 1–3 will now be discussed.
The first three columns serve an auxiliary purpose. Above all, the first constitutes a reference 

point. Through the assumption ald = ard = alu = aru = 0, it means that the estimation errors
of both parameters are not correlated, and thus the problem is reduced to two separate one-
dimensional quadratic tasks worked out in Section 3.2 of [8]. Additionally, the first case al =
ar = ad = au = 1 shows the problem with symmetrical losses.

In the second column, errors of estimation are still uncorrelated, while the coefficient al value 
is three times larger. According to the form of loss function (15), it means that underestimations 
of the first parameters result in greater losses than overestimations. In consequence, the calcu-
lated value of the first coordinate of the estimator is greater than that in the first column, which 
lowers the probability of underestimations unfavourable here. The value of the second coordinate 
of the estimators remains – due to the lack of changes in the coefficients ad and au – unaltered.
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Table 1. Results of simulations for w* = 0.

al = 1.0, ar = 1.0 al = 3.0, ar = 1.0 al = 10.0, ar = 1.0
alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0
ald = 0.0, ard = 0.0 ald = 0.0, ard = 0.0 ald = 0.0, ard = 0.0

m au = 1.0, ad = 1.0 au = 1.0, ad = 1.0 au = 1.0, ad = 1.0

∞ 0.200 1.146 1.899
0.400 0.400 0.400

50 0.219 ± 0.394 1.196 ± 0.345 2.049 ± 0.322
0.520 ± 0.413 0.520 ± 0.413 0.520 ± 0.413

100 0.184 ± 0.305 1.157 ± 0.261 1.982 ± 0.239
0.426 ± 0.284 0.426 ± 0.284 0.426 ± 0.284

200 0.188 ± 0.216 1.153 ± 0.189 1.961 ± 0.180
0.433 ± 0.228 0.433 ± 0.228 0.433 ± 0.228

500 0.211 ± 0.166 1.165 ± 0.142 1.951 ± 0.130
0.415 ± 0.171 0.415 ± 0.171 0.415 ± 0.171

1000 0.210 ± 0.119 1.158 ± 0.100 1.930 ± 0.092
0.409 ± 0.127 0.409 ± 0.127 0.409 ± 0.127

2000 0.204 ± 0.092 1.156 ± 0.076 1.925 ± 0.070
0.405 ± 0.094 0.405 ± 0.094 0.405 ± 0.094

5000 0.210 ± 0.063 1.159 ± 0.054 1.923 ± 0.048
0.402 ± 0.064 0.402 ± 0.064 0.402 ± 0.064

10,000 0.204 ± 0.051 1.153 ± 0.043 1.915 ± 0.036
0.406 ± 0.050 0.406 ± 0.050 0.406 ± 0.050

al = 1.0, ar = 1.0 al = 1.0, ar = 1.0 al = 3.0, ar = 3.0
alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0 alu = − 1.0, aru = 3.0
ald = 3.0, ard = 0.0 ald = 10.0, ard = 0.0 ald = 3.0, ard = − 10.0
au = 1.0, ad = 1.0 au = 1.0, ad = 1.0 au = 3.0, ad = 10.0 m

0.670 1.019 − 0.142 ∞
0.957 1.518 1.573

0.675 ± 0.440 1.042 ± 0.519 − 0.113 ± 0.459 50
1.051 ± 0.442 1.579 ± 0.460 1.672 ± 0.336

0.650 ± 0.351 1.018 ± 0.428 − 0.165 ± 0.367 100
0.964 ± 0.317 1.516 ± 0.343 1.602 ± 0.222

0.652 ± 0.249 0.997 ± 0.311 − 0.157 ± 0.266 200
0.981 ± 0.257 1.551 ± 0.278 1.605 ± 0.179

0.678 ± 0.192 1.014 ± 0.237 − 0.131 ± 0.210 500
0.963 ± 0.193 1.545 ± 0.200 1.586 ± 0.141

0.685 ± 0.141 1.024 ± 0.183 − 0.130 ± 0.151 1000
0.956 ± 0.146 1.540 ± 0.156 1.584 ± 0.104

0.677 ± 0.109 1.007 ± 0.149 − 0.139 ± 0.117 2000
0.958 ± 0.109 1.553 ± 0.124 1.581 ± 0.077

0.683 ± 0.074 1.008 ± 0.101 − 0.131 ± 0.082 5000
0.955 ± 0.074 1.553 ± 0.083 1.578 ± 0.052

0.675 ± 0.061 0.996 ± 0.085 − 0.137 ± 0.066 10,000
0.961 ± 0.059 1.562 ± 0.064 1.579 ± 0.038

In the third column, thanks to the next increase in the value of the coefficient al the above 
effect is intensified.

In interpreting the fourth column, where losses arising from over- and underestimation are now 
correlated, it is worth comparing with the basic first column. In the fourth column, the value of the
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Table 2. Results of simulations for w* = 1.

al = 1.0, ar = 1.0 al = 3.0, ar = 1.0 al = 10.0, ar = 1.0
alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0
ald = 0.0, ard = 0.0 ald = 0.0, ard = 0.0 ald = 0.0, ard = 0.0

m au = 1.0, ad = 1.0 au = 1.0, ad = 1.0 au = 1.0, ad = 1.0

∞ 0.760 1.738 2.512
−0.160 −0.160 −0.160

50 0.649 ± 0.537 1.657 ± 0.480 2.574 ± 0.451 
−0.091 ± 0.458 −0.091 ± 0.458 −0.091 ± 0.458

100 0.726 ± 0.348 1.718 ± 0.298 2.578 ± 0.267 
−0.171 ± 0.409 −0.171 ± 0.409 −0.171 ± 0.409 

200 0.751 ± 0.276 1.729 ± 0.243 2.560 ± 0.209 
−0.183 ± 0.324 −0.183 ± 0.324 −0.183 ± 0.324 

500 0.775 ± 0.229 1.745 ± 0.201 2.552 ± 0.169 
−0.171 ± 0.214 −0.171 ± 0.214 −0.171 ± 0.214

1000 0.756 ± 0.153 1.732 ± 0.128 2.532 ± 0.107 
−0.178 ± 0.166 −0.178 ± 0.166 −0.178 ± 0.166 

2000 0.766 ± 0.120 1.742 ± 0.099 2.535 ± 0.080 
−0.168 ± 0.122 −0.168 ± 0.122 −0.168 ± 0.122 

5000 0.765 ± 0.085 1.741 ± 0.070 2.529 ± 0.055 
−0.171 ± 0.077 −0.171 ± 0.077 −0.171 ± 0.077

10,000 0.766 ± 0.065 1.743 ± 0.055 2.527 ± 0.044 
−0.162 ± 0.052 −0.162 ± 0.052 −0.162 ± 0.052 

al = 1.0, ar = 1.0 al = 1.0, ar = 1.0 al = 3.0, ar = 3.0
alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0 alu = −1.0, aru = 3.0
ald = 3.0, ard = 0.0 ald = 10.0, ard = 0.0 ald = 3.0, ard = −10.0
au = 1.0, ad = 1.0 au = 1.0, ad = 1.0 au = 3.0, ad = 10.0 m

1.187 1.478 0.394 ∞
0.433 1.020 0.982

1.081 ± 0.590 1.401 ± 0.657 0.286 ± 0.629 50
0.460 ± 0.488 1.037 ± 0.503 1.077 ± 0.385

1.175 ± 0.394 1.498 ± 0.479 0.362 ± 0.417 100
0.378 ± 0.437 0.966 ± 0.469 1.006 ± 0.337

1.202 ± 0.320 1.529 ± 0.400 0.390 ± 0.330 200
0.368 ± 0.359 0.956 ± 0.367 0.986 ± 0.259

1.227 ± 0.266 1.540 ± 0.331 0.420 ± 0.276 500
0.387 ± 0.238 0.984 ± 0.252 0.990 ± 0.173

1.202 ± 0.179 1.502 ± 0.225 0.394 ± 0.189 1000
0.394 ± 0.177 1.006 ± 0.176 0.984 ± 0.137

1.207 ± 0.138 1.496 ± 0.169 0.405 ± 0.156 2000
0.408 ± 0.132 1.024 ± 0.127 0.987 ± 0.100

1.206 ± 0.100 1.495 ± 0.126 0.401 ± 0.109 5000
0.408 ± 0.088 1.022 ± 0.091 0.984 ± 0.058

1.202 ± 0.074 1.481 ± 0.089 0.403 ± 0.083 10,000
0.423 ± 0.059 1.038 ± 0.057 0.987 ± 0.038

coefficient ald grows, therefore – as results from formula (15) – simultaneous underestimation of 
both parameters is a disadvantage. To avoid this, the values of both coordinates of the estimators 
are greater than those from the first column.
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Table 3. Results of simulations for w∗ = 2.

al = 1.0, ar = 1.0 al = 3.0, ar = 1.0 al = 10.0, ar = 1.0
alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0
ald = 0.0, ard = 0.0 ald = 0.0, ard = 0.0 ald = 0.0, ard = 0.0

m au = 1.0, ad = 1.0 au = 1.0, ad = 1.0 au = 1.0, ad = 1.0

∞ 1.320 2.341 3.147
−0.720 −0.720 −0.720

50 1.026 ± 0.860 2.006 ± 0.834 2.937 ± 0.815 
−0.421 ± 0.775 −0.421 ± 0.775 −0.421 ± 0.775

100 1.063 ± 0.682 2.070 ± 0.641 3.012 ± 0.600 
−0.461 ± 0.613 −0.461 ± 0.613 −0.461 ± 0.613 

200 1.142 ± 0.427 2.146 ± 0.436 3.045 ± 0.450 
−0.542 ± 0.417 −0.542 ± 0.443 −0.542 ± 0.471 

500 1.209 ± 0.322 2.227 ± 0.305 3.105 ± 0.287 
−0.610 ± 0.350 −0.610 ± 0.350 −0.610 ± 0.350

1000 1.231 ± 0.226 2.252 ± 0.200 3.116 ± 0.176 
−0.604 ± 0.251 −0.604 ± 0.251 −0.604 ± 0.251 

2000 1.251 ± 0.171 2.271 ± 0.149 3.121 ± 0.130 
−0.605 ± 0.175 −0.605 ± 0.175 −0.605 ± 0.175 

5000 1.259 ± 0.131 2.282 ± 0.113 3.123 ± 0.098 
−0.666 ± 0.110 −0.666 ± 0.110 −0.666 ± 0.110

10,000 1.265 ± 0.094 2.288 ± 0.082 3.122 ± 0.071 
−0.687 ± 0.093 −0.687 ± 0.093 −0.687 ± 0.093 

al = 1.0, ar = 1.0 al = 1.0, ar = 1.0 al = 3.0, ar = 3.0
alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0 alu = −1.0, aru = 3.0
ald = 3.0, ard = 0.0 ald = 10.0, ard = 0.0 ald = 3.0, ard = −10.0
au = 1.0, ad = 1.0 au = 1.0, ad = 1.0 au = 3.0, ad = 10.0 m

1.718 1.997 0.926 ∞
−0.009 0.448 0.406

1.440 ± 0.937 1.756 ± 1.001 0.723 ± 0.909 50
0.083 ± 0.824 0.592 ± 0.886 0.666 ± 0.698

1.458 ± 0.758 1.751 ± 0.849 0.718 ± 0.766 100
0.068 ± 0.646 0.608 ± 0.655 0.634 ± 0.500

1.551 ± 0.563 1.855 ± 0.624 0.779 ± 0.591 200
0.003 ± 0.490 0.567 ± 0.489 0.573 ± 0.358

1.630 ± 0.368 1.938 ± 0.440 0.832 ± 0.381 500 
−0.034 ± 0.367 0.555 ± 0.346 0.529 ± 0.262

1.644 ± 0.256 1.940 ± 0.320 0.849 ± 0.272 1000 
−0.010 ± 0.265 0.581 ± 0.248 0.531 ± 0.193

1.659 ± 0.194 1.953 ± 0.243 0.868 ± 0.210 2000 
−0.002 ± 0.185 0.588 ± 0.177 0.526 ± 0.141

1.668 ± 0.147 1.952 ± 0.180 0.867 ± 0.165 5000 
−0.055 ± 0.118 0.547 ± 0.107 0.471 ± 0.088

1.674 ± 0.109 1.958 ± 0.141 0.871 ± 0.118 10,000 
−0.075 ± 0.097 0.529 ± 0.087 0.450 ± 0.073

In the fifth column, the coefficient ald value has been increased even more, which intensifies 
the above phenomenon.

And lastly, in the final sixth column, also with correlated losses, all coefficients have been 
modified with respect to the basic case from the first column, with ad and ard to the greatest
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degree. The former, ad , according to the form of loss function (15), indicates greater losses result-
ing from the underestimation of the second parameter, the latter ard those from the overestimation 
of the first parameter and – again – underestimation of the second. As a result, the value of the 
first coordinate of the estimator is less than that in the first column (the influence of the coefficient 
ad ), while due to the two factors (both coefficients ad and ard ) the value of its second coordinate 
grows even greater still.

The results in Tables 1–3 will now be collated, comparing the values obtained for the differ-
ent conditioning values w∗ = 0, w∗ = 1 and w∗ = 2, respectively. The results for w∗ = −1 and
w∗ = −2 have been omitted here as symmetrical with respect to w∗ = 1 and w∗ = 2. As can
be seen from formulas (44)–(48), the first coordinate of the describing variable Y1 is positively 
correlated to the conditioning variable W and the second Y2 negatively. Therefore, comparing 
any column from Tables 1–3, one can see that the estimators’ values for w∗ = 1 are greater in
the case of the first coordinate and smaller in that of the second than for w∗ = 0. For w∗ = 2
the differences become even more distinct. One may thus conclude that by entering the proper 
(e.g. current) values of conditioning variables, the values of the estimated parameters, and 
consequently the model used, can be made more precise in practical tasks.

In many applications, for given values of a conditioning factor, there may not be a suffi-
cient number of measurements in the database in possession for reliable statistical inference. For 
this reason, methods considering conditioning factors should be robust with respect to insuffi-
cient number or even lack of measurements in some areas of potential values of such factors. In 
Table 4, the results are shown for the case w∗ = 1 obtained only for those elements of random
sample (6), for which wi /∈ [0.9, 1.1]. Comparing them with the contents of Table 1, one may
note that, despite a complete lack of data in the ‘belt’ of width 0.2, or 10% of the value of the 
standard deviation of the conditioning variable, the results were not significantly worse. This fact 
shows well the robustness of the proposed algorithm with respect to a small amount, or even lack 
of data in certain areas of potential values of conditioning factors. This effect is fundamentally 
justified – it stems from averaging properties of kernel estimators.

When interpreting the results of Tables 1–4, one can see that the estimating procedure worked 
out in this paper for the case of correlated losses resulting from over- and underestimations (see 
lower columns 4–6) is obviously more difficult than for no such correlation (see auxiliary upper 
columns 1–3). It should also be added that, where there is no correlation of losses, even better 
effects can be obtained by applying the algorithm designated for a single parameter, presented in 
Section 2 of [8].

Comparing the fourth (where ald = 3) and fifth (where ald = 10) columns, it can be noted that
estimation is easier in the first case, with closer values of coefficients of the loss function (15). 
It is confirmed by the results in column six, where the values are admittedly overall greater but 
closer to one another. It is worth pointing out that the very form of loss function (15) shows 
that absolute values of the coefficients have no influence on the results but rather the relations 
(proportions) between them.

Finally, it is worth noting that in any case shown in Tables 1–4, as the sample size increased, 
the obtained parameter value converged to the theoretical, and the standard deviation to zero. 
Such asymptotical features are of fundamental significance from an applicational point of view, 
as they prove that it is possible to obtain any precision wished, although this requires the assur-
ance of a sufficient random sample size and computational capability of computer system used. 
In practice, therefore, the necessity of the right compromise between these quantities is called 
for.

The above corollaries have been successfully proved in numerous obtained results of simu-
lations, also for a multidimensional conditioning variable, and multimodal, asymmetrical and 
complex distributions of the variables Y and W , as well as those including additional aspects, 
e.g. a bounded support or data censored.
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Table 4. Results of simulations for w∗ = 1 when lacking data with conditioning
variable values from the interval [0.9, 1.1].

al = 1.0, ar = 1.0 al = 3.0, ar = 1.0 al = 10.0, ar = 1.0
alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0
ald = 0.0, ard = 0.0 ald = 0.0, ard = 0.0 ald = 0.0, ard = 0.0

m au = 1.0, ad = 1.0 au = 1.0, ad = 1.0 au = 1.0, ad = 1.0

∞ 0.760 1.738 2.512
−0.160 −0.160 −0.1600

50 0.588 ± 0.562 1.582 ± 0.500 2.500 ± 0.477 
−0.164 ± 0.541 −0.164 ± 0.541 −0.164 ± 0.541

100 0.713 ± 0.408 1.697 ± 0.347 2.564 ± 0.318 
−0.200 ± 0.409 −0.200 ± 0.409 −0.200 ± 0.409 

200 0.745 ± 0.320 1.727 ± 0.273 2.573 ± 0.249 
−0.174 ± 0.324 −0.174 ± 0.324 −0.174 ± 0.324 

500 0.758 ± 0.224 1.734 ± 0.189 2.553 ± 0.165 
−0.155 ± 0.215 −0.155 ± 0.215 −0.155 ± 0.215

1000 0.743 ± 0.170 1.722 ± 0.142 2.532 ± 0.125 
−0.172 ± 0.156 −0.172 ± 0.156 −0.172 ± 0.156 

2000 0.760 ± 0.121 1.737 ± 0.099 2.537 ± 0.089 
−0.171 ± 0.127 −0.171 ± 0.127 −0.171 ± 0.127 

5000 0.773 ± 0.104 1.747 ± 0.087 2.536 ± 0.076 
−0.174 ± 0.086 −0.174 ± 0.086 −0.174 ± 0.086

10,000 0.773 ± 0.078 1.748 ± 0.064 2.532 ± 0.051 
−0.158 ± 0.071 −0.158 ± 0.071 −0.158 ± 0.071 

al = 1.0, ar = 1.0 al = 1.0, ar = 1.0 al = 3.0, ar = 3.0
alu = 0.0, aru = 0.0 alu = 0.0, aru = 0.0 alu = −1.0, aru = 3.0
ald = 3.0, ard = 0.0 ald = 10.0, ard = 0.0 ald = 3.0, ard = −10.0
au = 1.0, ad = 1.0 au = 1.0, ad = 1.0 au = 3.0, ad = 10.0 m

1.187 1.478 0.394 ∞
0.433 1.020 0.982

1.033 ± 0.609 1.387 ± 0.693 0.220 ± 0.656 50
0.361 ± 0.566 0.860 ± 0.626 1.011 ± 0.462

1.166 ± 0.432 1.506 ± 0.545 0.350 ± 0.430 100
0.334 ± 0.426 0.843 ± 0.515 0.975 ± 0.328

1.194 ± 0.366 1.509 ± 0.433 0.386 ± 0.375 200
0.374 ± 0.365 0.907 ± 0.423 0.991 ± 0.255

1.202 ± 0.263 1.491 ± 0.365 0.404 ± 0.269 500
0.406 ± 0.240 0.984 ± 0.282 1.001 ± 0.167

1.186 ± 0.199 1.433 ± 0.253 0.381 ± 0.207 1000
0.400 ± 0.171 1.011 ± 0.182 0.988 ± 0.123

1.201 ± 0.146 1.453 ± 0.190 0.400 ± 0.151 2000
0.403 ± 0.141 1.012 ± 0.138 0.984 ± 0.103

1.214 ± 0.125 1.473 ± 0.144 0.412 ± 0.126 5000
0.402 ± 0.100 1.007 ± 0.104 0.979 ± 0.069

1.208 ± 0.092 1.479 ± 0.107 0.411 ± 0.097 10,000
0.424 ± 0.079 1.030 ± 0.067 0.988 ± 0.055
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6.  Additional comments

The procedure presented in this paper has been given in its basic form, easier to implement and 
computationally more convenient. A clear interpretation means it is possible to make individual 
modifications and generalizations, which may be useful in particular atypical tasks.

Above all this allows the inclusion of conditioning factors other than continuous (real). Sim-
ilarly to the kernel estimation definition (2) formulated for continuous random variables, one 
can construct kernel estimators for discrete, multivalued (in particular binary) and categorized 
(nominal and ordered) variables, as well as any of their compositions, especially with con-
tinuous variables. The literature concerning this subject is quite broad and varied. For the 
first case, it is worth quoting the articles [16,17] and for the second the classic monographs 
[11,Section 3.1.8;13,Section 6.1.4] as well as the paper [18]. Issues connected with categori-
cal variables can be found in the publications.[19–21] After introducing discrete, multivalued 
(also binary) and/or categorized variable to the algorithm worked out here, it undergoes prac-
tically no changes, apart from technical ones resulting from calculational differences. This 
property particularly should be underlined considering the modern data analysis tasks, which 
more and more often take advantage of the many different configurations for particular types 
of attributes.

Newton’s method ((36)–(40)) can also be applied in numerous mutations available in the 
literature, in particular those lessening the number of iterations as well as extending the 
convergence area. A broad review of concepts available on this subject can be found in 
the monographs.[22,23] It must, however, be underlined that in the research undertaken, 
the problem of no convergence for sizes of sample guaranteeing a satisfactory estimation 
quality (see Section 5) did not arise, largely due to the choice of the starting point in 
form (36)–(37).

The quadratic loss function (15) can be also generalized to a polynomial asymmetrical form

l

([
ŷ1
ŷ2

]
,

[
y1 
y2 

])
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

al|ŷ1 − y1|q + ald |ŷ1 − y1|q/2|ŷ2 − y2|q/2 + ad |ŷ2 − y2|q
if ŷ1 − y1 ≤ 0 and ŷ2 − y2 ≤ 0,

ar|ŷ1 − y1|q + ard |ŷ1 − y1|q/2|ŷ2 − y2|q/2 + ad |ŷ2 − y2|q
if ŷ1 − y1 ≥ 0 and ŷ2 − y2 ≤ 0,

al|ŷ1 − y1|q + alu|ŷ1 − y1|q/2|ŷ2 − y2|q/2 + au|ŷ2 − y2|q
if ŷ1 − y1 ≤ 0 and ŷ2 − y2 ≥ 0,

ar|ŷ1 − y1|q + aru|ŷ1 − y1|q/2|ŷ2 − y2|q/2 + au|ŷ2 − y2|q
if ŷ1 − y1 ≥ 0 and ŷ2 − y2 ≥ 0,

(52)

where al, ar, au, ad > 0 and ald , aru, alu, ard ≥ 0; an interpretation of these parameters remains the
same. The positive parameter q, introduced above, defines the degree of polynomial. Having pre-
viously investigated the quadratic case q = 2, consider now the related linear q = 1, cubic q = 3
and fourth order q = 4 (the formulas presented in this paper undergo the appropriate changes,
but the idea remains analogous to that described in Section 3). Thus, the greater the degree of the 
polynomial, the lower the sensitivity of the calculated estimator to asymmetry of loss function
(52), and so the resulting values converge to the means and medians of particular coordinates. 
This is due to the fact that, for a greater power q, big estimation errors have a significantly 
increased influence on the value of the loss function; therefore the optimal value of the estimator 
is defined so as to avoid just such huge elements, and consequently it is ‘safest’ to remain near the 
mean/median. In consequence, using asymmetric loss function (52) with degree q greater than 
four seems to be without sense in most applications. Generally, the polynomial degree should be
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fixed according to the conditions of the specific task, in particular based on the dependence of 
loss value on potential estimation errors. It is also worth paying attention to additional aspects, 
for example to the problem of the so-called censored data, i.e. the situation where values above 
and/or below a given margin are transposed to the appropriate – upper or lower – boundary 
value. This situation occurs – for example – with a limited range of measurements, where values 
exceeding this range must be reduced to the proper boundary. In this situation, it is advisable to 
use the lowest possible polynomial degree, which decreases the sensitivity of received results to 
the effects of reducing extreme values, forced by censoring.

An important question is the computational complexity of the investigated procedure. Above 
all, one should underline the advantage – from the practical point of view – of its having 
two stages. The first phase contains algorithms for calculating parameter values. The plug-in 
method, used to achieve the smoothing parameter h value for every nY + nW coordinates, and
the algorithm for its modification have computational complexity O(m2), but they are carried 
out once at the beginning of the procedure. The second phase consists of finding a solution for 
criterion (22)–(23), with the aid of Newton’s algorithm (36)–(40), with the calculation of the 
parameters di having the complexity O(nW ), while the functions L and L′ are of complexity
O(m), and so are linear. Newton’s algorithm in investigated cases most often required 10–15 
iterations. This implies a relatively short computation time for the second phase. It means that 
with the first phase having been carried out earlier, in most practical tasks it is possible to apply 
the worked-out procedure in real time. However, even without division into stages, computation 
time did not exceed 1 s for sample size (1) to m = 1000, and 1 min for m = 10,000, while com-
putations were carried out on rudimentary equipment, without particular efforts to shorten them. 
This was possible to a great extent, thanks to the proper choice of kernel shape, and thanks to 
that, analytical forms of the functions (24)–(27) used.

7.  Experimental research

The procedure worked out here also underwent verification in real applicational tasks both in an 
automatic control task by numerical simulation as well as by experiment in a problem from the 
field of medicine.

First, consider time-optimal control, consisting of bringing the state of a dynamic system to 
the assumed target in a minimal time.[24] The object considered here is given by the differential 
equation [

ẋ1(t)
ẋ2(t)

]
=

[
0 1 
0 0

] [
x1(t)
x2(t)

]
+

[
0

−b

]
sgn(x2(t)) +

[
0

1/m

]
u(t) (53)

describing the mass m > 0, submitted to the bounded control u(t) ∈ [−1, 1], with the discontin-
uous model of motion resistances −bsgn(x2(t)) with 0 < b < 1. Then x1(t) and x2(t) refer to the
position and the velocity of the mass, respectively.

The parameter b represents the whole array of factors of motion resistances, in particular 
friction with respect to surface and air, rolling, viscosity, etc., and due to the variety and 
complexity of each of these, one cannot speak of its ‘actual’ concrete value. In the case of 
underestimation, i.e. when b̂ < b, overregulations appear in the system, increasing the time for
reaching the target as the difference b − b̂ grows. On the other hand, for overestimation b < b̂
the system generates much more effective sliding trajectories, which become less effective the 
greater the difference b̂ − b. For details, see the paper [25]. The procure of fixing a value for the
estimator b̂ should therefore take into account losses arising from the estimation error value and
especially its sign, appropriate to the difference in effectiveness of the sliding trajectories and 
overregulations.
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In turn, the mass m represents a concrete physical parameter, although for most practical tasks 
impossible to directly measure in a real-time regime. The error in estimating its value implies 
similar (but inverse) phenomena to the above described for the parameter b: underestimation
m̂ < m results in overregulation increasing the time for reaching the target more so as m − m̂
increases, while overestimation m < m̂ gives more effective sliding trajectories with greater
efficiency as the difference m̂ − m decreases. For details, see the paper [26]. Finally, the estima-
tion of the parameter m should also account for the asymmetry of losses resulting in estimation 
error.

Joining the above considerations for the parameters b and m, it can be noted that these param-
eters represent completely different physical phenomena and are independent. The results of 
errors of their estimation are, however, correlated and lead to the same phenomena (overregu-
lations and sliding trajectories) and in effect – as should be particularly underlined – they can 
cumulate or be partially eliminated.

Let us illustrate, therefore, the interpretation of particular coefficients of loss function (15). Let

b be the first identified parameter, and m the second, i.e. 

[
y1
y2

]
=

[
b
m

]
. In the case of the parame-

ter b, overestimations are associated with more efficient sliding trajectories, and so the parameter 
al should be greater than ar. The opposite holds true for the parameter m: the sliding trajectories 
occur through underestimation; therefore au ought to be greater than ad . In the case of overes-
timation or underestimation of both parameters, the phenomena when the tendencies towards 
overregulations and sliding trajectories compensate each other are described by the parameters 
ald and aru, as opposed to the parameters ard and alu, which represent the sum of negative effects 
of cumulating overregulations and decreasing effectiveness of sliding trajectories.

A negative correlation was assumed between the values of the parameter b (characterizing 
among others friction) and wetness of a surface. The parameter m is not dependent on any 
other conditioning factors, which generally does not limit the usefulness of the method worked 
out, while due to the assumed (unconditional) independence of the parameters b and m assures 
conditional independence (see Appendix 2).

The simulation results show that the use of the method proposed here led to a reduction in 
time of reaching the target set of 3–10% with respect to the unconditional version using the 
mean value as an estimator, and 5–15% shorter than in the case of the classical (unconditional) 
sliding mode control,[27] where sliding trajectories had a notably larger number of switchings, 
which lowered their effectiveness.

Equally satisfying results have been obtained in initiated studies in medicine, for the case 
of hypotension, i.e. lowering cardiovascular pressure. Therapy consisting of taking one tablet 
of medicine containing two active ingredients appears to be significantly more effective than a 
traditional strategy of beginning treatment with monotherapy (prescribing one preparation) and 
next adding the second, then increasing the dosage of the latter until the desired cardiovascular 
pressure is obtained (see, e.g. the paper [28] also for rich subject literature). Furthermore, cer-
tain combinations of hypotensive preparations are more effective as far as prevention of organ 
complications is concerned, despite a similar performance in reducing pressure. The strength of 
the reaction to the medicine lowering pressure depends on many different personal and exter-
nal factors [29] (at times – due to the current state of the patient – the nature of the drug’s 
behaviour can even change). For this reason, it is also important to incorporate diverse condi-
tioning factors, including current systolic and diastolic pressure as well as pulse, time of day and 
atmospheric pressure (continuous variables), as well as physical exertion and emotional state 
(categorical ordered variables). A fundamental problem with deciding on the therapy here is 
the definition of optimal dosages of preparations of hypotensive medicine combining two ingre-
dients, on the basis of previously obtained measurements and current values for conditioning 
factors.
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For both separately considered estimated quantities – i.e. of particular preparations of the 
two-ingredient medicine – potential overestimation is preferred to underestimation (which con-
stitutes an asymmetric form of loss function with ar < al and au < ad ). The latter results in too 
small a dose of the medicine lowering pressure, and as a consequence, its insufficient reduction, 
in the extreme case a stroke. For the same reason, simultaneous underestimation of both these 
quantities is doubly dangerous, which implies a positive value of the parameter ald . Simultane-
ous overestimation, represented by the parameter aru is also unfavourable, although – thanks to 
the organism’s adaptive mechanisms – it does not present such a large risk (i.e. 0 < aru < ald ).
Overestimation of one preparation and underestimation of the second more or less compensate 
each other (ard

∼= 0 ∼= alu). Generally, the greater values of errors of estimation are adversely out
of proportion, which justifies the square form of the performance index, with the assumptions 
concerning the parameters a• and a•• formulated below formula (15). Thanks to the fixing of
the estimators for both ingredients – conditioned by the form of the loss function defined on 
the basis of the above circumstances and precised by current values for conditioning variables 
– it is possible to appropriately individualize amounts of the preparations for the two-ingredient 
hypotensive medicine, and especially suitably fit them to specific, actual, personal situations. 
The value of the resulting estimator is moved with respect to the mean of obtained measure-
ments, in the direction associated with the least losses, with proper influence of current values of 
conditioning factors.

8.  Summary

This paper presents the algorithm for calculating the conditioning value of a parameters’ vector, 
where losses resulting from under- and overestimation are asymmetrical and mutually correlated. 
The conditional approach allows in practice for refinement of the model by including the cur-
rent value of the conditioning factors. Use of the Bayes approach ensures a minimum expected 
value of losses, a statistical kernel estimators’ methodology frees the investigated procedure from 
forms of distributions of the describing and conditioning factors.

The investigated algorithm – together with the subject procedures from the quoted literature – 
is ready for direct use without any additional laborious research or calculations. The presented 
concept is universal in nature and can be applied in a wide range of tasks in science, engineering, 
economy and management, environmental and social issues, biomedicine and other related fields. 
The results have been verified positively based on generated and real data for practical problems 
from control engineering and medicine areas.

And finally, on a personal note. In a previous paper [8], we wrote that in the multidimensional 
case ‘both the analytical criteria for optimal parameter values as well as their later numerical 
implementation become too complicated for practical application, given today’s possibilities’. 
Fortunately, upon introducing the assumption concerning the conditional independence of iden-
tified parameters, while maintaining the correlation of losses resulting from estimation errors, 
the above statement turned out to be too pessimistic. Moreover, the simulations carried out 
show the proposed algorithm to be fairly robust to that assumption and that in practice it can 
be successfully applied, even if not absolutely fulfilled.
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Appendix 1 (sufficient condition for optimization)

As mentioned in Section 3, this appendix will show that the solution of Equations (22) and (23) exists, is unique and is a 
global minimum of the function lB.

The form of the function lB given by formula (19) implies that the derivatives ∂lB/∂ ŷ1 and ∂lB/∂ ŷ2 are continuous,
while thanks to assumptions (17) and (18), based on the equalities (20) and (21) we have

lim
ŷ1→−∞
ŷ2→−∞

∂lB(ŷ1, ŷ2)

∂ ŷ1
< 0 and lim

ŷ1→∞
ŷ2→∞

∂lB(ŷ1, ŷ2)

∂ ŷ1
> 0, (A1)
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lim
ŷ1→−∞
ŷ2→−∞

∂lB(ŷ1, ŷ2)

∂ ŷ2
< 0 and lim

ŷ1→∞
ŷ2→∞

∂lB(ŷ1, ŷ2)

∂ ŷ2
> 0, (A2)

therefore Equations (22) and (23) are fulfilled by at least one element

[
ŷ1
ŷ2

]
. It is denoted by 

[
ŷ∗

1
ŷ∗

2

]
.

In order to establish whether the solution of Equations (22) and (23) is unique and is a global minimum of the function 
lB, the sign of partial derivatives will now be examined. Due to the symmetry of Equations (22) and (23), analysis will 
be carried out for the former – in the case of the latter considerations are analogous.

When introducing the number � ∈ R, for any ŷ1 ∈ R one can express ŷ1 = ŷ∗
1 + �. Let ŷ2 be freely fixed. Equation

(22) may then be equivalently denoted as

∂lB
∂ ŷ1

([
ŷ1
ŷ2

])
=

(
ald

∫ ∞

ŷ∗
1+�

fY1|W=w∗ (y1) dy1 + ard

∫ ŷ∗
1+�

−∞
fY1|W=w∗ (y1) dy1

)

×
∫ ∞

ŷ2

(ŷ2 − y2)fY2|W=w∗ (y2) dy2 +
(

alu

∫ ∞

ŷ∗
1+�

fY1|W=w∗ (y1) dy1 + aru

∫ ŷ∗
1+�

−∞
fY1|W=w∗ (y1) dy1

)

×
∫ ŷ2

−∞
(ŷ2 − y2)fY2|W=w∗ (y2) dy2 + 2al

∫ ∞

ŷ∗
1+�

(ŷ∗
1 + � − y1)fY1|W=w∗ (y1) dy1

+ 2ar

∫ ŷ∗
1+�

−∞
(ŷ∗

1 + � − y1)fY1|W=w∗ (y1) dy1. (A3)

Let first � > 0. By applying additivity of the integral with respect to the integration set, the above formula yields

∂lB
∂ ŷ1

([
ŷ1
ŷ2

])
=

(
ald

∫ ∞

ŷ∗
1

fY1|W=w∗ (y1) dy1 − ald

∫ ŷ∗
1+�

ŷ∗
1

fY1|W=w∗ (y1) dy1

+ ard

∫ ŷ∗
1

−∞
fY1|W=w∗ (y1) dy1 + ard

∫ ŷ∗
1+�

ŷ∗
1

fY1|W=w∗ (y1) dy1

)

×
∫ ∞

ŷ2

(ŷ2 − y2)fY2 |W=w∗ (y2) dy2 +
(

alg

∫ ∞

ŷ∗
1

fY1|W=w∗ (y1) dy1

− alu

∫ ŷ∗
1+�

ŷ∗
1

fY1|W=w∗ (y1) dy1 + apu

∫ ŷ∗
1

−∞
fY1|W=w∗ (y1) dy1

+aru

∫ ŷ∗
1+�

ŷ∗
1

fY1|W=w∗ (y1) dy1

) ∫ ŷ2

−∞
(ŷ2 − y2)fY2|W=w∗ (y2) dy2

+ 2al

∫ ∞

ŷ∗
1

(ŷ∗
1 − y1)fY1|W=w∗ (y1) dy1 + 2al�

∫ ∞

ŷ∗
1

fY1|W=w∗ (y1) dy1

− 2al

∫ ŷ∗
1+�

ŷ∗
1

(ŷ∗
1 − y1)fY1|W=w∗ (y1) dy1 − 2al�

∫ ŷ∗
1+�

ŷ∗
1

fY1|W=w∗ (y1) dy1

+ 2ar

∫ ŷ∗
1

−∞
(ŷ∗

1 − y1)fY1|W=w∗ (y1) dy1 + 2ar�

∫ ŷ∗
1

−∞
fY1|W=w∗ (y1) dy1

+ 2ar

∫ ŷ∗
1+�

ŷ∗
1

(ŷ∗
1 − y1)fY1|W=w∗ (y1) dy1 + 2ar�

∫ ŷ∗
1+�

ŷ∗
1

fY1|W=w∗ (y1) dy1. (A4)

Because the value ŷ∗
1 is assumed to fulfil Equation (22), this formula is simplified to the form:

∂lB
∂ ŷ1

([
ŷ1
ŷ2

])
=

(
− ald

∫ ŷ∗
1+�

ŷ1

fY1|W=w∗ (y1) dy1 + ard

∫ ŷ∗
1+�

ŷ1

fY1|W=w∗ (y1) dy1

)

×
∫ ∞

ŷ2

(ŷ2 − y2)fY2|W=w∗ (y2) dy2 +
(

aru

∫ ŷ∗
1+�

x̂1

fY1|W=w∗ (y1) dy1

− alu

∫ ŷ∗
1+�

ŷ1

fY1|W=w∗ (y1) dy1

) ∫ ŷ2

−∞
(ŷ2 − y2)fY2|W=w∗ (y2) dy2



Journal of Statistical Computation and Simulation 1055

+ 2al�

∫ ∞

ŷ∗
1+�

fY1|W=w∗ (y1) dy1 − 2al

∫ ŷ∗
1+�

ŷ1

(ŷ∗
1 − y1)fY1|W=w∗ (y1) dy1

+ 2ar�

∫ ŷ∗
1

−∞
fY1|W=w∗ (y1) dy1 + 2ar

∫ ŷ∗
1+�

ŷ∗
1

(ŷ∗
1 + � − y1)fY1|W=w∗ (y1) dy1. (A5)

Due to the assumptions concerning coefficients of loss function (15), the expression inside the first parentheses is neg-
ative. Its multiplication by the subsequent integral, whose value is also negative, implies a resulting positive value. A 
similar analysis of the remaining expressions shows that the whole expression (A5) is positive for any � > 0. In the 
same way, one can prove that for any � < 0, this expression is negative.

Identical treatment can be carried out for Equation (23). This is final proof that the solution for conditions (22)–(23) 
exists and is unique with the Bayes loss function lB assuming here its global minimum.

Appendix 2 (comments on conditional independence)

In this section, the property of conditional independence will be briefly commented, as it goes slightly beyond intuition, 
by too impetuously transferring the ubiquitous classical unconditional version. Consider two random variables Y1 and
Y2; their (unconditional) independence means that knowledge of the realization of one of them does not provide any 
information concerning the value of the realization of the other. If however both are associated with the same conditioning 
random variable W , then additionally the knowledge of the realization value of one of the variables Y1 or Y2 allows 
inference of the realization value of the conditioning variable, and thereby of the realization value of the other. Perhaps 
the information obtained thus will not contribute much, but it will be something. Intuitively, the notion of an unconditional 
independence transfers to a conditional approach if:

(a) the variables Y1 and Y2 are dependent (unconditionally) in such a way that their direct mutual influence is 
compensated by information carried by the conditioning variable W ;

(b) one of the variables Y1 and Y2 is independent of W .

Let us illustrate the above, assuming that the composition X =
⎡
⎣Y1

Y2
W

⎤
⎦ is of Gauss distribution with the expectation

and covariance matrixes

EX =
⎡
⎣EY1

EY2
EW

⎤
⎦ , COVX =

⎡
⎣ varY1 covY1Y2 covY1W

covY2Y1 varY2 covY2W
covWY1 covWY2 varW

⎤
⎦ . (A6)

Density is therefore given as

fX (x) = f

⎛
⎝

⎡
⎣y1

y2
w

⎤
⎦

⎞
⎠ 1

(2π)3/2√det(COVX )
e(((x−EX )TCOV−1

X (x−EX ))/2). (A7)

The variables Y1 and Y2 become conditionally independent with respect to W , when the function f can be expressed as 
the product of the functions with the arguments y1 and w, as well as y2 and w; so if the expression in the exponent of 
formula (A7) will not contain the products y1y2. Therefore, in the matrix A = COV−1

X , the elements a12 and a21 should
be equal to zero, i.e.

a12 = a21 = 1 

det(COVX )

covY1Y2 covY1W
covWY2 varW

= 0; (A8)

and finally taking into account the symmetry of the matrix COVX

covY1Y2 varW = covY1W covY2W . (A9)

The above condition fulfils the covariance matrixes defined in formulas (44)–(48) and exemplifies the case (a) formu-
lated above. Meanwhile in system (52), independence from the conditioning factor – the mass m – results in the case (b), 
presented earlier, appearing in this example.

Further, detailed information regarding conditional independence can be found in the survey paper.[30]
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