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One of the main problems in control engineering practice results

from unavoidable errors in specifying parameters existing in the

object model and the necessity to deal with the unwanted phenom-

ena arising as a result. In this article, a Bayes methodology consider-

ing both asymmetrical and conditional aspects is applied for this

purpose, with the application of kernel estimators methodology.

Use of the Bayes rule enables minimum potential losses to be

assumed, while the asymmetry of the occurring loss function also

enables the inclusion of different results for under- and overestima-

tion. A conditional approach allows researchers to obtain a more

precise result thanks to using information entered as the fixed

(e.g., current) values of conditioning factors of continuous and=or
binary (also categorical) type. The nonparametric methodology of

statistical kernel estimators frees the procedure from arbitrary

assumptions concerning the forms of distributions characterizing

both the parameter under investigation and conditioning factors.

The generalizations introduced here also allow different relevance

of particular random sample elements to be taken into account.
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INTRODUCTION

In contemporary control engineering, the model of a controlling object

constitutes one of the two most important—after the controlling algo-

rithm itself—elements in deciding the efficiency of a designed device

(Morrison 1991; Nusse and Yorke 1997; Soderstrom and Stoica 1994).

Despite it seeming that the development of innovative methods, based

on knowledge engineering and data exploratory analysis, will slowly

lessen the importance of the models, first, the above methods are actually

hope for the future rather than the present, and second, procedures

based on models will always remain at least valuable assistance in the

preliminary analysis of problems.

Regardless of precision of the identification method used, it is of

course impossible to obtain an exact model. This concerns its structure

as well as the parameters occurring within. In the first case, it is mainly

due to the enormous amount of phenomena influencing the considered

object, the description of which would result in the model being too

complex and consequently of no use for the needs of control algorithm

design. In the second, it is not only because of natural metrological limita-

tions but also the fact that one parameter often represents an entire spec-

trum of phenomena impossible to precisely represent as a single number.

In order to overcome the above limitations in the precision of

models, two basic concepts are used in developing control algorithms.

The first consists of designing control procedures with imprecision of

models already assumed in their nature and consequently robust to

resulting errors—in practice they are robust only to some of them in a

bounded range, and moreover are sometimes so complicated that they

are of theoretical significance only. The second concept dictates that

the identification of a model is subject to a higher goal, which is the con-

trol algorithm itself, and consequently models are worked out minimizing

errors relative to their malevolence regarding quality of the control

algorithm. This article offers a contribution to the latter concept.

The subject of the investigations presented here is the specification of

parameters existing in the models of a controlled object. The typical pro-

cedures for parameter identification generally available in literature do

not take into account different—in sign as well as size—results of their

under- and overestimation. The method worked out in this article, based

on the Bayes decision rule, allows for the consideration of this aspect,

while the result obtained minimizes potential losses. Furthermore, the
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proposed algorithm enables the influence of various conditioning

factors—of continuous and binary (also categorical) type—to be taken

into account, for example, temperature or other external conditioning

factors of an environmental, technical, and economic nature. The mathe-

matical apparatus relies on the statistical kernel estimators, which frees

the method from the types of distributions of imprecise information as

well as conditioning factors, and furthermore the introduction of

generalizations allows to take into account various relevance of parti-

cular elements of a random sample. Although the problem is presented

with reference to control problems, the concept is universal in nature

and can be applied in a wide range of tasks in contemporary engineering,

economy and management, environmental and social issues, biomedi-

cine, and other related fields.

PRELIMINARIES: STATISTICAL KERNEL ESTIMATORS

Presented below is the concept of statistical kernel estimators of

the distribution density of the n-dimensional random variable Z, whose

nc coordinates are continuous, whereas the remaining nb are binary.

Variables of both these types will be considered first separately and then

together in one approach.

Let therefore ðX;R;PÞ be a probability space. Let also the nc-dimen-

sional continuous random variable X : X ! R
nc be given, with a distri-

bution characterized by the density fX. The corresponding kernel

estimator f̂f X: R
nc ! ½0;1Þ, calculated using experimentally obtained

values for the m-element random sample x1, x2, . . . , xm, in its basic form

is defined as

f̂f X ðxÞ ¼
1

mhnc

X

m

i¼1

Kc

x ÿ xi

h

� �

; ð1Þ

where m 2 Nnf0g, the coefficient h > 0 is called a smoothing parameter,

while the measurable function Kc : R
nc ! ½0;1Þ of unit integral

R

Rnc f̂f X ðxÞdx ¼ 1, symmetrical with respect to zero and having a weak

global maximum in this place, takes the name of a kernel. Thanks to

such a formulated concept, kernel estimators enable the density of practi-

cally any distribution to be found, without prior knowledge concerning its

membership to a fixed class, as occurs in classical parametrical methods.
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Let then the nb-dimensional binary random variable Y : X ! B
nb,

when B ¼ f0; 1g, be given. Its distribution density kernel estimator

f̂f Y : B
nb ! ½0; 1�, calculated on the basis of experimentally obtained

values of the random sample y1, y2, . . . , ym, takes the form

f̂f Y ðyÞ ¼
1

m

X

m

i¼1

Kbðy; yiÞ; ð2Þ

where m 2 Nnf0g, and the kernel Kb : B
nb ! ½0; 1� is defined by

Kbðy; yiÞ ¼ k
nbÿdðy;yiÞð1ÿ kÞdðy;yiÞ; ð3Þ

while k 2 ½0; 5; 1� fulfills the role of a smoothing parameter for the

binary component, whereas the function d : B
nb � B

nb ! N, expressed

as dð y1; y2Þ ¼ ð y1 ÿ y2Þ
Tð y1 ÿ y2Þ, refers to a number of coordinates of

the vectors y1 and y2, which are different.

Taking the above all together, consider the ðnc þ nbÞ-dimensional

random variable Z�
�

X
Y

�

, being a composition of the nc-dimensional

random variable X and nb-dimensional binary variable Y. The kernel K

used for the estimation of distribution density of the random variable

Z takes the form

Kðz; ziÞ ¼ Kc

x ÿ xi

h

� �

Kb y; yið Þ; ð4Þ

where z�
�

x
y

�

and zi �
�

xi
yi

�

for i ¼ 1; 2; . . . ;m. Finally, the kernel estimator

f̂f Z of the density of distribution of the random variable Z, calculated on

the basis of values of the m-element random sample z1, z2, . . . , zm, can be

defined as

f̂f ZðzÞ ¼
1

mhnc

X

m

i¼1

Kðz; ziÞ; ð5Þ

where the kernel K is given by Eq. (4).

Dependences (1), (2), and (5) constitute a fundamental form of

the kernel estimator for the random variables: continuous X, binary Y,

and their composition Z, respectively. The tasks concerning the

choice of form of the kernel Kc, as well as the smoothing parameters h

and k, are found in the books (Kulczycki 2005, Silverman 1986; Wand
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and Jones 1995).1 In particular, the choice of the kernel form has no

practical meaning, and thanks to this it is possible to take into account

primarily properties of the estimator obtained (e.g., its class of regularity,

boundary of a support) or aspects of calculations, advantageous from the

point of view of the applicational problem under consideration.

Practical applications may also use additional procedures, some gen-

erally improving the quality of the estimator, and others—optional—

fitting the model to an existing reality. In light of the subject considered

here, one can—in fact should—recommend for the first group the modi-

fication of the smoothing parameter (Kulczycki 2005, section 3.1.6;

Silverman 1986, section 5.3.1) and a linear transformation (Kulczycki,

section 3.1.4; Silverman, section 4.2.1), whereas for the second, the

boundaries of a support of continuous variable X (Kulczycki, section

3.1.8; Silverman, section 2.10).

Exemplary applications of these procedures are described in the

publications (Kulczycki 2002a, b; 2007; 2008).

The unconditional probabilistic approach of the concept presented

here was shown in the article (Kulczycki 2001a). Many aspects of appli-

cations to the sharpening of imprecise information in medical problems,

are also found in the publication (Kulczycki and Charytanowicz 2005).

The preliminary version of this article was presented as the paper

(Kulczycki and Charytanowicz 2007).

FORMULATION OF A PROBLEM UNDER INVESTIGATION

As a simple illustrated example, which serves as an introduction to the

problem worked out in this article, consider the following dynamic

system (see e.g. Athans and Falb 1966, section 7.2):

_xx1ðtÞ
_xx2ðtÞ

� �

¼
0 1

0 0

� �

x1ðtÞ
x2ðtÞ

� �

þ
0
1
m

� �

uðtÞ xð0Þ ¼ x0 ¼
x01

x02

� �

ð6Þ

describing among others the mass m > 0 (here often called the ‘‘load’’

because of its practical interpretation) submitted to the force u. The first

state variable, x1, denotes the position of the mass and the second, x2, its

1For calculating a smoothing parameter, one can especially recommend the plug-in

method in the one-dimensional case (Kulczycki 2005, section 3.1.5; Wand and Jones

1995, section 3.6.1), as well as the cross-validation method (Kulczycki section 3.1.5;

Silverman 1986, section 3.4.3) in the multidimensional. For a binary variable, see

(Kulczycki section 3.1.8; Silverman section 6.1.4). Comments for choice of the kernel

may best be found in Kulczycki (section 3.1.3) and Wand and Jones (sections 2.7 and 4.5).
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velocity; the parameters x01 and x02 represent their initial values, respectively.

Such a system provides the basis for most research in a wide range of

robotics tasks. Let a time-optimal control with the target xT ¼
�

0
0

�

be con-

sidered; therefore, its goal is to reach the origin of coordinates from the initial

value x0, in a minimal and finite time, using a control with bounded values.

Detailed analysis of the sensitivity of such a created system provides the

following conclusions. Let the value of the parameter m occurring in the

object be still denoted as m; however the value used in feedback controller

equations be marked hereinafter by M. If M ¼ m, the control is regular,

typical for classical time-optimal control theory (Athans and Falb 1966, sec-

tion 7.2), that is, the state of the system is brought to the switching curve,

and being permanently included in this curve hereafter, it reaches the target

in a minimal and finite time. In the case M < m, as a result of the oscilla-

tions around the target, overregulations occur in the system; the target is

reached in a finite time. And finally, whenM > m, after the switching curve

is crossed, sliding trajectories appear in the system. Here, too, the target is

reached in a finite time. In both of the last two cases (i.e., withM 6¼ m), the

time to reach the target state increases from the optimal more or less pro-

portionally to the difference between the values M and m but with signifi-

cantly differing coefficients—the ratio of which being about 5, while the

greater refers to the case M < m, when less effective oscillations occur.

Similar results also appear for many other control systems, although the

above example—basic for robotics—provides satisfactory illustration with

this commonly known task.

More details can be found in the publication (Kulczycki 2001b).

Results of further research were published in the article (Kulczycki

and Wisniewski 2002).

The value of many parameters existing in the models of real

objects is influenced by external quantities such as temperature, humidity,

expenditure of material gradually used in the technological process, and

other factors, mostly of a technical nature, but also economic and environ-

mental. Thesemay be quantities of a continuous or binary character,2multi-

dimensional in both cases. Implementation in an online controlling

2It is worth noting here that binary variables may refer in practice not only to variables

with two possible states in their character but also to variables of a different nature but of

less importance to a considered problem, which can be reduced to a binary form to simplify

the model. Also, so-called categorical variables (i.e., multi-states with undefined order

between states, e.g., representing colors or particular manufacturers of a given product)

can be denoted with the use of multidimensional binary variables.
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algorithm currently measuring their values in many cases allows the model

to be made more precise by the information included in them.

In the practice of parametrical identification, one often has the random

sample v1, v2, . . . , vm containing experimentally obtained measurements

of the parameter under investigation, achieved when conditional

factors have assumed the values z1, z2, . . . , zm, respectively. Moreover,

the information included in particular measurements may not be of equal

relevance (i.e., in many problems, the more current a particular measure-

ment, the greater its relevance). In order to take the above into account,

the nonnegative coefficients w1,w2, . . . ,wm, such that
Pm

i¼1 wi ¼ m, are

introduced, with values reflecting the relevance of particular elements

of a random sample (if wi � 1, then the relevance of these elements

remains the same).

Finally, let the parameter under investigation be treated as a random

variable denoted hereinafter as V : X ! R. Let also the n-dimensional

random variable Z : X ! R
n representing conditioning factors be given

and U ¼ R
nþ1 mean a (nþ 1)-dimensional random variable, whose first

coordinate represents the investigated parameter, and the remaining n

denote further coordinates of the random variable, continuous and

binary, that is, U¼
�

V
Z

�

. Assume also that the distribution of its probability

measure has the density f : R
nþ1 ! ½0;1Þ. When this density is specified

on the basis of concrete values of the investigated parameter obtained

successively for different values of the conditioning factors, one can

use, for this purpose, the kernel estimators methodology, described in

the section ‘‘Preliminaries: Statistical Kernel Estimators.’’ The random

sample required there constitutes ðnþ 1Þ-dimensional vectors of the

form

vi ;fwig

zi ;1

zi;2
..
.

zi;n

2

6

6

4

3

7

7

5

for i ¼ 1; 2; . . . ;m. The first coordinate vi; fwig represents

the value of the investigated parameter (the above notation vi; fwigmeans

that the relevance of the element vi is described by the coefficient wi),

whereas the further n coordinates zi;1; zi;2; . . . ; zi;n denote the next compo-

nents of realizations of the conditioning variable Z, for which the above

value was obtained.

In concrete practical situations, during control in real time, the

realization ZðxÞ of the conditioning random variable becomes fixed. It

is worth noting that in the set of obtained conditioning values

zi;1
zi;2
..
.

zi;n

2

4

3

5,

there may not be a value equal to the realization ZðxÞ, or their low
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number may not be enough for responsible inference. On the other

hand, the kernel estimator allows for proper averaging of data

collected.

In practice, when—according to the conditions assumed earlier—

underestimation has a significantly different influence than overestimation,

the applied procedure should take asymmetry of errors into account. The

procedure worked out in later parts of this article fulfills the above

demands, providing such an algorithm that the use of its final form does

not require the user to have a deeper knowledge of the theoretical

aspects.

BAYES ESTIMATION ALGORITHM

The formula for the optimal value of the parameter under investigation

will be worked out below based on the Bayes decision rule (Berger

1980). Let the following be given: the sets of states of nature S ¼ R

and allowable decisions D ¼ R, as well as the loss function

lðv̂v; vÞ ¼
ÿpðv̂v ÿ vÞ for v̂v ÿ v � 0

qðv̂v ÿ vÞ for v̂v ÿ v � 0

�

; ð7Þ

where v 2 S and v̂v 2 D, while the coefficients p and q are positive and—it

should be stressed—not necessarily equal. Assume that the value of the

random variable ZðxÞ is fixed; then, for loss function (7), the Bayes loss

function lb : D ! R takes the form

lbðv̂vÞ ¼

Z v̂v

ÿ1

qðv̂v ÿ vÞfjZðxÞðvÞdvÿ

Z 1

v̂v

pðv̂v ÿ vÞfjZðxÞðvÞdv; ð8Þ

where fjZðxÞ denotes the distribution density of states of nature with the

fixed random factor ZðxÞ. It is readily shown that the function lb
assumes a minimum for the value of the argument v̂v fulfilling the follow-

ing criterion:

Z v̂v

ÿ1

fjZðxÞðvÞdv ¼
p

pþ q

Z 1

ÿ1

fjZðxÞðvÞdv: ð9Þ

Because the coefficients p and q are positive, 0 < p=ðpþ qÞ < 1. There-

fore, it is easy to see that if the function fjZðxÞ has a connected support,

then the solution of Eq. (9) exists and is unique. Finally, the value of the

solution of Eq. (9) constitutes the optimal—in the Bayes sense, i.e.,
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assuming a minimal expectation value of losses—value of the parameter

under investigation with the fixed random factor ZðxÞ.

It is also worth underlining that, with respect to the equation

p

pþ q
¼

p
q

p
q
þ 1

; ð10Þ

there is no need to define the value of the coefficients p and q separately,

rather only the ratio p=q.

In the algorithm proposed here, the density f will be specified using

statistical kernel estimators. There is applied below the main kernel esti-

mators formula (5) assuming therefore the following form:

f̂f
x

y

� �� �

¼
1

mhncþ1

X

m

i¼1

Kc

x ÿ xi

h

� �

Kbðy; yiÞ: ð11Þ

What is more, for the needs of further considerations, this dependence is

generalized to

f̂f
x

y

� �� �

¼
1

mhncþ1

X

m

i¼1

wiKc

x ÿ xi

h

� �

Kbðy; yiÞ; ð12Þ

while the coefficients wi for i ¼ 1; 2; . . . ;m are nonnegative and such that
Pm

i¼1 wi ¼ m. For the simplified forms of kernel estimators (1) and (2),

the above formulas are subject to obvious reductions.

Let therefore the (nþ 1)-dimensional random variable U¼
�

V
Z

�

be

given, whose first coordinate V represents the parameter under

investigation, while the remaining n coordinates constitute further

components of the conditioning random variable Z¼
�

X
Y

�

, where X is

an nc-dimensional continuous variable and Y – an nb-dimensional

binary variable. Introducing the natural notations u¼
�

v
z

�

as well as

z¼
�

x
y

�

, one can write

u ¼
v

z

� �

¼
v

x

y

2

4

3

5: ð13Þ
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The density f is characterized using the kernel estimator calculated on

the basis of m elements

ui ¼
vi; fwig

zi

� �

¼
vi; fwig

xi
yi

2

4

3

5 for i ¼ 1; 2; . . . ;m; ð14Þ

on which are composed the particular values of the investigated para-

meter vi (together with their relevancies wi), obtained experimentally

for different values of the conditioning variable zi¼
�

xi
yi

�

. According to

Eq. (12), the function f̂f : R
ncþ1 � B

nb ! ½0;1Þ given as

f̂f
v

z

� �� �

¼ f̂f

v

x

y

2

4

3

5

0

@

1

A ¼
1

mhncþ1

X

m

i¼1

wiKc

v

x

� �

ÿ
vi
xi

� �

h

0

B

B

@

1

C

C

A

Kbðy; yiÞ ð15Þ

is the kernel estimator of the density f . The measurable function

Kc : R
ncþ1 ! ½0;1Þ fulfills the condition

R

Rncþ1
Kc

s
x

h i� �

ds dx¼1, which

for any fixed x 2 R
nc guarantees the existence of its primitive

Ic : R ! ½0;1Þ with respect to the first coordinate, that is,

Ic
v

x

� �� �

¼

Z v

ÿ1

Kc
s

x

� �� �

ds: ð16Þ

Following the application of the kernel estimators to find the den-

sity fjZðxÞ, Eq. (9) then takes the form

X

m

i¼1

wiKb Y ðxÞ; yið ÞIc

v̂v

X ðxÞ

� �

ÿ
vi

xi

� �

h

0

B

B

@

1

C

C

A

¼
p

pþ q

1

hncþ1

X

m

i¼1

wiKbðY ðxÞ; yiÞ

Z 1

ÿ1

Kc

v

X ðxÞ

� �

ÿ
vi

xi

� �

h

0

B

B

@

1

C

C

A

dv: ð17Þ

The solution of the above equation constitutes at last the optimal value

of the parameter under investigation with the fixed random factor

ZðxÞ¼

h

X ðxÞ

Y ðxÞ

i

. If a kernel assuming positive values is used to construct

the estimator, then the left side is a function of the argument

v̂v, continuous and strictly increasing from zero to a positive value,

which—thanks to the dependence 0 < p=ðpþ qÞ < 1—is higher than
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the value of the right side. The solution of Eq. (17) therefore exists and

is unique.

In practice, this solution can be calculated effectively based on

Newton’s numerical method (Kincaid and Cheney 2002). The desired

value is given then as a limit of the sequence v̂vkf g1k¼0 defined by formulas

v̂v0 ¼
1

Pm
i¼1 wi

X

m

i¼1

wivi ð18Þ

v̂vkþ1 ¼ v̂vk þ

p

pþ q

1

hncþ1

Xm

i¼1
wiKbðY ðxÞ;yiÞ

Z 1

ÿ1

Kc

v
X ðxÞ

� �

ÿ
vi
xi

� �

h

0

B

B

@

1

C

C

A

dv

1

hncþ1

Xm

i¼1
wiKbðY ðxÞ;yiÞKc

v̂vk

X ðxÞ

� �

ÿ
vi

xi

� �

h

0

B

B

@

1

C

C

A

ÿ

Xm

i¼1
wiKbðY ðxÞ;yiÞIc

v̂vk
X ðxÞ

� �

ÿ
vi
xi

� �

h

0

B

B

@

1

C

C

A

1

hncþ1

Xm

i¼1
wiKbðY ðxÞ;yiÞKc

v̂vk

X ðxÞ

" #

ÿ
vi

xi

" #

h

0

B

B

B

B

@

1

C

C

C

C

A

for k¼ 0;1 . . .;

ð19Þ

with the stop condition jv̂vk ÿ v̂vkÿ1j � 0;01r̂rV , where r̂rV denotes an

estimator of the standard deviation obtained for the sample

v1; v2; . . . ;vm.

As mentioned in the section ‘‘Preliminaries: Statistical Kernel Esti-

mators,’’ the assumed form of the kernel Kc has no practical meaning

from the statistical point of view, and thanks to this, in applications a

suitable choice for the needs of a concrete applicational task is possible.

In the procedure worked out above, it was demanded that the kernel Kc

assumes positive values, and its primitive with respect to the first coordi-

nate is expressed by a convenient analytic formula. These properties
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ensure the Cauchy kernel defined as

Kc
v

x

� �� �

¼ Kc

v

x1
x2

..

.

xnc

2

6

6

6

6

6

4

3

7

7

7

7

7

5

0

B

B

B

B

B

@

1

C

C

C

C

C

A

¼
1

A

1

ð1þ v2 þ x21 þ x22 þ . . .þ x2nc Þ
a ; ð20Þ

while a ¼ ½ðnc þ 3Þ=2� and A ¼ ðnc þ 1ÞVncþ1

R1
0

rnc=ð1þ r2Þadr, where

[b] means the integer part of the number b 2 R, while Vn denotes the

volume of an n-dimensional unit ball in the space R
n and amounts to

Vn ¼
ð2pÞn=2

2�4�...�n for n even

2ð2pÞðnÿ1Þ=2

1�3�...�n for n odd

(

ð21Þ

In turn, for the fixed dimension nc, the expression
R1
0

unc=ð1þ u2Þadu

can be easily calculated based on recurrence formulas, which are found

in typical integral tables.

EXPERIMENTAL VERIFICATION

The correct functioning of the algorithm presented in this article has

been at first confirmed with detailed numerical simulation. In any case

under research, as the sample size increased, the obtained parameter

value converged to the theoretical, and the standard deviation to zero.

The above asymptotic features are of fundamental significance from an

applicational point of view, as they prove that it is possible to obtain

any precision wished, although this requires the assurance of a sufficient

random sample size. In practice, therefore, the necessity of the right

compromise between these quantities is called for.

The convergence speed increased as the value p=ðpþ qÞ was closer

to 0,5, although even for extreme cases (i.e., when it neared 0 or 1),

satisfactory results were achieved. The convergence speed also increased

as the value of the conditioning variable came within the range of its

modal values; however, even for far-away areas, the results also were fair.

It is worth noting that the cases where r ¼ 0; 1 or r ¼ 0; 9 and when the

value of the conditioning variable appears in the neighborhood of its

second standard deviation generally become very difficult problems,

which are naturally associated with greater demands, and for some

classical methods actually impossible to carry out in practice at all.
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The above corollaries have been successfully proven in numerous

obtained results of numerical simulation, including those for multimodal

and asymmetrical distributions, taking into account binary conditioning

factors, inference for lack of data from the neighborhood of a fixed value

of a conditioning variable, as well as an additional procedure for boundaries

of a support; for many details, see the work of Charytanowicz (2005).

To demonstrate the influence of the conditioning factor, assume—

for simplicity and transparency of the example—that nc ¼ 1 and

nb ¼ 0, while the distribution of the random variable U¼
�

V
Z

�

is normal

with the expectation value
�

0
0

�

and the covariance matrix
�

1 0;7

0;7 1

�

. In

Table 1, the asymptotic (i.e., with m ! 1) values of the parameter under

investigation, obtained for the different ratios p=q and values of the

conditioning random variable ZðxÞ, are shown. Comparing particular

columns, one can note that the value of the conditioning variable signifi-

cantly influences the achieved value of the investigated parameter, offer-

ing notable possibilities for making a model more accurate thanks to the

influence of information provided in a properly precise (e.g., current)

value of this variable, even if in practical problems the correlation coef-

ficient is significantly less than 0,7 assumed in the case described above.

Returning to the example presented at the beginning of the section

‘‘Formulation of a Problem Under Investigation,’’ from the time-optimal

control field, extensive simulation and experimental research was carried

out and confirmed the concept described. In particular assuming the

coefficients p and q such that p=q ¼ 0; 2, sliding trajectories clearly

outnumbered overregulations in the system, giving a time of about

10% less than that for results obtained using the mean value, and about

5% shorter than in the case of the classical sliding mode control (Utkin

1992), where sliding trajectories had a notably larger number of

switchings, which lowered their effectiveness. The algorithm worked

out here was also applied in the identification of other parameters

Table 1. Asymptotic value of the parameter under investigation in relation to

the conditioning factor value

p=q

ZðxÞ 0,1 0,3 0,5 0,7 0,9

0 ÿ0,92 ÿ0,37 0,00 0,37 0,92

1 ÿ0,22 0,33 0,70 1,07 1,62

2 0,48 1,03 1,40 1,77 2,32
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existing in the following related systems: inertia coefficient of a drive and

value of motion resistance (Kulczycki 2000). The application of the con-

cept presented in this article simultaneously in different causes of uncer-

tainty—e.g., mass (load), inertia of a drive, motion resistance—did not

hinder the operation of the system; on the contrary, under- and overes-

timations of different parameters showed a tendency to mutual compen-

sation. In this situation, the increase in the time to reach the target set

was less than the simple sum of such increases resulting from the uncer-

tainty of particular factors.

Finally, it is worth stressing that in every case researched, precision

of the characteristics describing the parameter under investigation by

providing the proper value for conditioning factors improved the result

in proportion to the degree of differentiation of object features with

respect to those factors. This occurred in the case of random changes

in values for these factors, as well as regular object nonstationarity

resulting for example from daily temperature fluctuations. In today’s

age of ever more available current measurement data and the possibility

of instant inclusion in digital control algorithms used, this should be

particularly underlined, providing real advantages from the procedure

presented in this article.
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