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In many scientific and practical tasks, the classical concepts for parameter identification
are satisfactory and generally applied with success, although many specialized problems
necessitate the use of methods created with specifically defined assumptions and condi-
tions. This paper investigates the method of parameter identification for the case where
losses resulting from estimation errors can be described in polynomial form with addi-
tional asymmetry representing different results of under- and overestimation. Most impor-
tantly, the method presented here considers the conditionality of this parameter, which in
practice means its significant dependence on other quantities whose values can be
obtained metrologically. To solve a problem in this form the Bayes approach was used,
allowing a minimum expected value of losses to be achieved. The methodology was based
on the nonparametric technique of statistical kernel estimators, which freed the investi-
gated procedure from forms of probability distributions characterizing both the parameter
under investigation and conditioning quantities. As a result an algorithm is presented,
ready for direct use without further intensive research and calculations.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Parameter identification [1], i.e. assigning a concrete value to a parameter present in a model, despite its very traditional
nature, has still great significance in modern scientific and applicational problems. Moreover, its importance continuously
increases together with the dominance of model-based methods and the growing, often specific, demands made on models
used in science and practice. At the same time, the increasing complexity and novelty of current methods is accompanied by
a decrease in the classical understanding of parameter identification as a task of fixing a concrete value of a parameter which
exists objectively in reality but is unknown. Here, through investigating, the researcher attempts to get as close as possible to
this ‘‘true’’ value. In fact more frequently in contemporary models, their particular parameters describe an entire range of
complex phenomena, simplified in a model to one parameter, existing only formally – without concrete physical form. In
this situation the quality of parameter identification cannot be evaluated by classical means, obtaining a value as near as
possible to an imagined ‘‘true’’ parameter value (since it does not exist), but rather by accounting for the influence of par-
ticular parameter values on a considered system, whose part is the investigated model. This moves the mathematical appa-
ratus applied here – present within point estimation – from classical mathematical statistics [2], towards the currently
intensively-studied data analysis [3]. Fortunately, the development of modern sophisticated and often specific methods of
. All rights reserved.
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parameter identification is facilitated by the dynamic expansion of contemporary computer technology, supported on the
theoretical side by the procedures of advanced information technology [4].

The subject of this paper is an algorithm for parameter identification, i.e. estimation of the value of a parameter occurring
in a model, based on four premises:

1. minimization of expected value of losses arising from estimation errors, unavoidable in practice;
2. asymmetry of those losses, i.e. allowing for situations where losses occurring through underestimation are substantially

different from losses resulting from overestimation;
3. arbitrariness of probability distributions appearing in the problem;
4. and finally–worth particularly highlighting–conditionality of an identified parameter, that is its significant dependence

on a factor (or factors), with values that can be in practice obtained metrologically.

The realization of the first will be through application of the Bayes approach [5].
The second by assuming the loss function resulting from estimation errors, in the asymmetrical form
lðŷ; yÞ ¼ ð�1Þkal ðŷ� yÞk for ŷ� y 6 0;

ar ðŷ� yÞk for ŷ� y P 0;

(
ð1Þ
with the given degree k 2 N n f0g , where the coefficients al and ar are positive, while y and ŷ denote the values of the param-
eter under consideration and its estimator, respectively. The fact that the coefficients al and ar may differ causes an asym-
metry of the above function and enables the inclusion of different losses implied by over- and underestimation of the
examined parameter. Limiting the form of function (1) to a polynomial seems not to decrease the generality of consider-
ations in practical applications, offering an effective compromise between precision and complexity of results obtained.
Moreover the possibility of change of the polynomial degree k – with respect to that resulting from fundamental research
– allows a differing scale of protection against large estimation errors.

The third aspect is realized by applying nonparametric methodology of statistical kernel estimators [6–8] for calculating
probability characteristics.

Lastly – and worth highlighting once more – this paper is aimed at the conditional approach, i.e. where the value of the
estimated parameter is strongly dependent on a conditional factor, for example in engineering practice it is often a current
temperature. If the value of such a factor is metrologically available, then its inclusion can make the used model significantly
more precise.

The goal of this paper is the provision of an algorithm for calculating a conditional parameter value, optimal in the sense
of minimum expectation value of losses, in particular those different for under- and overestimation. The above value is
determined for a fixed (most often current) value of a conditional factor, based on measurements of this parameter obtained
earlier for different conditioning values. The algorithm is comprehensive and can be applied directly without detailed knowl-
edge of theoretical aspects, laborious research or analytical calculations. It is sufficient data to take only the measurements of
pairs of the model parameter value, and the conditional factor value for which this parameter value was obtained, as well as
the quantities introduced in formula (1): the degree k and the ratio of coefficients al=ar .

Thus, Section 2 outlines the statistical kernel estimators method. The algorithm worked out is described in Sections 3 and
4, with the asymmetrical linear case in Section 3.1, the asymmetrical quadratic in Section 3.2, and the asymmetrical poly-
nomial (in particular cubic) in Section 3.3. Finally, Section 5 presents the results of experimental verification of the investi-
gated procedure. Section 6 provides a summary of the presented method.

The preliminary version of this paper was presented as [9].
2. Preliminaries: statistical kernel estimators

Let the n-dimensional random variable X be given, with a distribution characterized by the density f . Its kernel estimator
f̂ : Rn ! ½0;1Þ, calculated using experimentally obtained values for the m-element random sample
x1; x2; . . . ; xm; ð2Þ
in its basic form is defined as
f̂ ðxÞ ¼ 1
mhn

Xm

i¼1

K
x� xi

h

� �
; ð3Þ
where m 2 N n f0g, the coefficient h > 0 is called a smoothing parameter, while the measurable function K : Rn ? [0,1) of
unit integral

R
Rn KðxÞdx ¼ 1, symmetrical with respect to zero and having a weak global maximum in this place, takes the

name of a kernel. The interpretation of the above definition is illustrated in Fig. 1 for a one-dimensional random variable.
In the case of the single realization xi, the function K (transposed along the vector xi and scaled by the coefficient h) repre-
sents the approximation of distribution of the random variable X having obtained the value xi. For m independent realiza-



Fig. 1. Kernel estimator (3) for one-dimensional random variable (n ¼ 1) and 9-element sample (m ¼ 9).
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tions x1, x2; . . . ; xm, this approximation takes the form of a sum of these single approximations. The constant 1=mhn enables
the condition

R
Rn f̂ ðxÞdx ¼ 1, required of the density of a probability distribution.

The choice of a form of the kernel K and the calculation of the smoothing parameter h is made most often with the cri-
terion of the mean integrated square error.

The results obtained with this criterion point to the form of the kernel having – from a statistical point of view – no prac-
tical meaning. Thanks to this, when assuming the function K it becomes possible to take into account primarily properties of
the estimator f̂ obtained (e.g. its continuity or differentiability) or calculational aspects (e.g. the possibility of analytically cal-
culating an integral), advantageous from the point of view of the applicational problem under investigation. For broader dis-
cussion see [6] – Section 3.1.3, [8] – Sections 2.7 and 4.5. In practice, for the one-dimensional case (i.e. when n ¼ 1), the
function K is assumed most often to be the density of a common probability distribution. In the multidimensional case,
two natural generalizations of the above concept are used: radial and product kernels. However, the former is somewhat more
effective, although from an applicational point of view, the difference is immaterial and the product kernel – significantly
more convenient in analysis – is often favored in practical problems. The n-dimensional product kernel K can be expressed as
KðxÞ ¼ K

x1

x2

..

.

xn

2
66664

3
77775

0
BBBB@

1
CCCCA ¼ K1ðx1ÞK2ðx2Þ � � �KnðxnÞ; ð4Þ
where Ki for i ¼ 1;2; . . . ;n denotes the previously-mentioned one-dimensional kernels, while the expression hn appearing in
the basic formula (3) should be replaced by h1 � h2 � . . . � hn, the product of the smoothing parameters for particular
coordinates.

The fixing of the smoothing parameter h has significant meaning for quality of estimation. Fortunately – from the appli-
cational point of view – many suitable procedures for calculating the value of the parameter h on the basis of random sample
(2) have been worked out. For broader discussion of the above tasks see [6–8]. In particular, for the one-dimensional case, the
simple and effective plug-in method ([6] – Section 3.1.5, [8] – Section 3.6.1) is especially recommended. Of course this meth-
od can also be applied in the n-dimensional case when product kernel (4) is used, separately for each coordinate.

Practical applications may also use additional procedures generally improving the quality of estimator (3). For the method
presented in this paper, the modification of the smoothing parameter ([6] – Section 3.1.6, [7] – Section 5.3.1) is strongly
recommended.

The above concept will now be generalized for the conditional case. Here, besides the basic (sometimes termed the
describing) nY -dimensional random variable Y , let also be given the nW -dimensional random variable W , called hereinafter

the conditioning random variable. Their composition X ¼ Y
W

� �
is a random variable of dimension nY þ nW . Assume that dis-

tributions of the variables X and, in consequence, W have densities, denoted below as fX : RnYþnW ! ½0;1Þ and
fW : RnW ! ½0;1Þ, respectively. Let also be given the so-called conditioning value, that is the fixed value of conditioning ran-
dom variable w� 2 RnW , such that
fWðw�Þ > 0: ð5Þ
Then the function fYjW¼w� : RnY ! ½0;1Þ given by
fY jW¼w� ðyÞ ¼
fXðy;w�Þ
fWðw�Þ

for every y 2 RnY ð6Þ
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constitutes a conditional density of probability distribution of the random variable Y for the conditioning value w�. The con-
ditional density fY jW¼w� can so be treated as a ‘‘classic’’ density, whose form has been made more accurate in practical appli-
cations with w� – a concrete value taken by the conditioning variable W in a given situation.

Let therefore the random sample
y1

w1

� �
;

y2

w2

� �
; � � � ;

ym

wm

� �
; ð7Þ
obtained from the variable X ¼ Y
W

� �
, be given. The particular elements of this sample are interpreted as the values yi taken

in measurements from the random variable Y , when the conditioning variable W assumes the respective values wi. Using the

methodology presented in the first part of the section below, on the basis of sample (7) one can calculate f̂ X , i.e. the kernel
estimator of density of the random variable X probability distribution, while the sample
w1;w2; . . . ;wm ð8Þ
gives f̂ W – the kernel density estimator for the conditioning variable W . The kernel estimator of conditional density of the
random variable Y probability distribution for the conditioning value w�, is defined then – a natural consequence of formula
(6) – as the function f̂ YjW¼w� : RnY ! ½0;1Þ given by
f̂ YjW¼w� ðyÞ ¼
f̂ Xðy;w�Þ
f̂ Wðw�Þ

: ð9Þ
If for the estimator f̂ W one uses a kernel with positive values, then the inequality f̂ Wðw�Þ > 0 implied by condition (5) is ful-
filled for any w� 2 RnW .

In the case when for the estimators f̂ X and f̂ W the product kernel (4) is used, applying in pairs the same positive kernels to
the estimator f̂ X for coordinates which correspond to the vector W and to the estimator f̂ W , then the expression for the kernel
estimator of conditional density becomes particularly helpful for practical applications. Formula (9) can then be specified to
the form
f̂ YjW¼w� ðyÞ ¼ f̂ YjW¼w�

y1

y2

..

.

ynY

2
66664

3
77775

0
BBBB@

1
CCCCA ¼

1
h1 h2 ...hnY

Pm

i¼1
K1

y1�yi;1
h1

� �
K2

y2�yi;2
h2

� �
...KnY

ynY
�yi;nY

hnY

� �
KnYþ1

w�
1
�wi;1

hnYþ1

� �
KnYþ2

w�
2
�wi;2

hnYþ2

� �
...KnYþnW

w�nW
�wi;nW

hnYþnW

� �
Pm

i¼1
KnYþ1

w�
1
�wi;1

hnYþ1

� �
KnYþ2

w�
2
�wi;2

hnYþ2

� �
...KnYþnW

w�nW
�wi;nW

hnYþnW

� � ;

ð10Þ
where h1, h2; . . . ; hnYþnW represent – respectively – smoothing parameters mapped to particular coordinates of the random
variable X, while the coordinates of the vectors w�, xi and wi are denoted as
w� ¼

w�1
w�2

..

.

wnW

2
66664

3
77775 and yi ¼

yi;1

yi;2

..

.

yi;nY

2
666664

3
777775; wi ¼

wi;1

wi;2

..

.

wi;nW

2
66664

3
77775 for i ¼ 1;2; . . . ;m: ð11Þ
Define the so-called conditioning parameters di for i ¼ 1;2; . . . ;m by the following formula:
di ¼ KnYþ1
w�1 �wi;1

hnYþ1

� �
KnYþ2

w�2 �wi;2

hnYþ2

� �
. . . KnYþnW

w�nW
�wi;nW

hnYþnW

� �
: ð12Þ
Thanks to the assumption of positive values for the kernels KnYþ1, KnYþ2; . . . ;KnYþnW , these parameters are also positive. So the
kernel estimator of conditional density (10) can be presented in the form
f̂ YjW¼w� ðyÞ ¼ f̂ YjW¼w�

y1

y2

..

.

ynY

2
66664

3
77775

0
BBBB@

1
CCCCA ¼ 1

h1 h2 ... hnY

Xm

i¼1

di

Xm

i¼1

diK1
y1�yi;1

h1

� �
K2

y2�yi;2
h2

� �
. . . KnY

ynY
�yi;nY

hnY

� �
: ð13Þ
The value of the parameter di characterizes the ‘‘distance’’ of the given conditioning value w� from wi – that of the condition-
ing variable for which the i-th element of the random sample was obtained. Then estimator (13) can be interpreted as the
linear combination of kernels mapped to particular elements of a random sample obtained for the variable Y , when the coef-
ficients of this combination characterize how representative these elements are for the given value w�. The factor

Pm
i¼1di

norms the value of the estimator with the aim of ensuring a unit integral, i.e. the condition
R

RnY f̂ YjW¼w� ðyÞdy ¼ 1 for any
w� 2 RnW .
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Returning to the subject of this article, described in the Introduction, in the case of estimation of a single parameter, the
random variable Y is one-dimensional (nY ¼ 1). This will be investigated further in the presented paper. However when one
estimates a number of conditionally correlated parameters, then nY becomes equal to their number – this case will be com-
mented upon at the end of Section 6.

More details concerning kernel estimators can be found in the books [6–8]. See also [10] to find classic bibliography.
Exemplary applications are presented in the publications [11–17].

3. Main results

3.1. Linear case

Let the parameter under investigation, whose value is to be estimated, denoted by y 2 R, be treated as the value of the
random variable Y . Let also the nW -dimensional conditional random variable W be given. The availability is assumed of
the metrologically achieved measurements of the parameter y; i.e. y1, y2; . . . ; ym, obtained for the values w1, w2; . . . ;wm of
the conditional variable, respectively. Finally, let w� 2 RnW denote any fixed conditioning value. The goal is to calculate
the estimator of this parameter, denoted by ŷw� , optimal in the sense of minimum expected value of losses arising from errors
of estimation, for conditioning value w�. The case considered in this subsection is such that loss function (1) can be specified
to the following asymmetrical linear form:
lðŷw� ; yÞ ¼
�al ðŷw� � yÞ for ŷw� � y 6 0;
ar ðŷw� � yÞ for ŷw� � y P 0;

�
ð14Þ
while the coefficients al and ar are positive and not necessarily equal to each other.
In order to solve such a task, the Bayes decision rule will be used [5]. The minimum expected value of losses arising from

estimation errors occurs when the value is a solution of the following equation with the argument ŷw� :
Z ŷw�

�1
fYjW¼w� ðyÞ dy� al

al þ ar
¼ 0; ð15Þ
where fY jW¼w� denotes the density of distribution of the random variable Y representing the uncertainty of the parameter in
question, for conditioning value w�. Since 0 < al=ðal þ arÞ < 1, a solution for the above equation exists, and if the function
fY jW¼w� has connected support, this solution is unique. Moreover, thanks to equality al

alþar
¼ al=ar

al=arþ1, it is not necessary to identify
the parameters al and ar separately, rather only their ratio.

The identification of the density fY jW¼w� will be carried out using statistical kernel estimators, presented in Section 2, with
the – convenient here – form (13). Then as K1 (note that nY ¼ 1) one should choose a continuous kernel of positive values,
and also so that the function I:R ? R such that IðxÞ ¼

R x
�1 K1ðyÞdy can be expressed by a relatively simple analytical formula.

In consequence, this results in a similar property regarding the function Ui : R ? R for any fixed i ¼ 1;2; . . . ;m defined as
Uiðŷw� Þ ¼
1
h1

Z ŷw�

�1
K1

y� xi

h1

� �
dy: ð16Þ
Criterion (15) can be expressed then equivalently in the form of
Xm

i¼1

diUiðŷw� Þ �
al

ðal þ arÞ
Xm

i¼1

di ¼ 0: ð17Þ
If the left side of the above equation is denoted by Lðŷw� Þ, then limŷw�!�1Lðŷw� Þ < 0, limŷw�!1Lðŷw� Þ > 0, the function L is
(strictly) increasing and its derivative may be simply expressed by
L0ðŷw� Þ ¼
Xm

i¼1

di K1
ŷw� � xi

h1

� �
: ð18Þ
In this situation, the solution of criterion (15) can be effectively calculated on the basis of Newton’s algorithm [18] as the
limit of the sequence fŷw� ;jg1j¼0 defined by
ŷw� ;0 ¼
Pm

i¼1di yiPm
i¼1di

; ð19Þ

ŷw� ;jþ1 ¼ ŷw� ;j �
Lðŷw� ;jÞ
L0ðŷw� ;jÞ

for j ¼ 0;1; . . . ; ð20Þ
with the functions L and L0 being given by dependencies (17) and (18), whereas a stop criterion takes on the form
jŷw� ;j � ŷw� ;j�1j 6 0:01r̂Y ; ð21Þ
while r̂Y denotes the estimator of the standard deviation of the random variable Y .
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3.2. Quadratic case

The conditionings of the problem investigated in this subsection are similar to the previous one, although asymmetric
linear form of the loss function (14) is substituted by the asymmetric quadratic:
lðŷw� ; yÞ ¼
al ðŷw� � yÞ2 for ŷw� � y 6 0;

ar ðŷw� � yÞ2 for ŷw� � y P 0;

(
ð22Þ
while the coefficients al and ar are positive and not necessarily equal to each other. The minimum expected value of losses
arising from estimation errors can in this case be calculated for the value ŷw� being a solution of the equation
ðal � arÞ
Z ŷw�

�1
ðŷw� � yÞfY jW¼w� ðyÞ dy� al

Z 1

�1
ðŷw� � yÞfYjW¼w� ðyÞ dy ¼ 0: ð23Þ
This solution exists and is unique. As in the linear case, dividing the above equation by ar , note that it is necessary to identify
only the ratio of the parameters al and ar .

Using kernel estimators in form (13) to identify the density fYjW¼w� , one can design an effective numerical algorithm to this
end. Let, therefore, a continuous kernel K1 of positive values, fulfilling the condition
Z 1

�1
y K1ðyÞ dy <1 ð24Þ
be given. Besides the functions Ui introduced by the dependence (16), let for any fixed i ¼ 1;2; . . . ;m the functions Vi : R ? R
be defined as
Viðŷw� Þ ¼
1
h1

Z ŷw�

�1
yK1

y� yi

h1

� �
dy: ð25Þ
The kernel K1 should be chosen so that – apart from the requirements formulated above – the function J : R ? R such that
JðxÞ ¼

R x
�1 yK1ðyÞdy be expressed by a convenient analytical formula.

Criterion (23) can then be described equivalently as
Xm

i¼1

di½ðal � arÞðŷw� Uiðŷw� Þ � Viðŷw� ÞÞ þ alyi� �malŷw�
Xm

i¼1

di ¼ 0: ð26Þ
If the left side of the above formula is denoted by Lðŷw� Þ, then – using the equality V0iðŷw� Þ ¼ ŷw� U0iðŷw� Þ directly resulting from
dependencies (16) and (25) – one can express the value of its derivative as
L0ðŷw� Þ ¼
Xm

i¼1

di½ðal � arÞUiðŷw� Þ� �mal

Xm

i¼1

di: ð27Þ
In this situation, the solution of criterion (23) can be calculated numerically on the basis of Newton’s algorithm (19)–(21)
with the functions L and L0 defined by dependencies (26) and (27).

3.3. Higher degree polynomial case

In this subsection, the linear and quadratic approaches presented earlier will be supplemented with the polynomial case,
that is where the loss function is an asymmetrical monomial of the order k P 3, i.e.
lðŷw� ; yÞ ¼
ð�1Þkal ðŷw� � yÞk for ŷw� � y 6 0;

ar ðŷw� � yÞk for ŷw� � y P 0;

(
ð28Þ
while the coefficients al and ar are positive, and may differ. Criterion for the optimal estimator takes on here the form of the
following equation with the argument ŷw� :
ð�1Þkal

Z 1

ŷw�
ðŷw� � yÞk�1fY jW¼w� ðyÞ dyþ ar

Z ŷw�

�1
ðŷw� � yÞk�1fY jW¼w� ðyÞ dy ¼ 0: ð29Þ
The solution of the above equation exists and is unique. When the statistical kernel estimators are used with respect to the
density fYjW¼w� , it is possible again to create an efficient numerical algorithm enabling equation (29) to be solved. The kernel
K1 should here be continuous, of positive values and fulfilling the following condition:
Z 1

�1
yk�1K1ðyÞ dy <1: ð30Þ
For clarity of presentation, the cubic case k ¼ 3 is presented below in detail. Thus, formula (29) is equivalent to
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ðal þ arÞ ŷ2
w�

Z ŷw�

�1
fY jW¼w� ðyÞ dy� 2ŷw�

Z ŷw�

�1
yf ðyÞ dyþ

Z ŷw�

�1
y2fYjW¼w� ðyÞ dy

 !
� al ŷ2

w� � 2ŷw�

Z 1

�1
yfY jW¼w� ðyÞ dy

�

þ
Z 1

�1
y2fY jW¼w� ðyÞ dy

�
¼ 0: ð31Þ
Now, with any fixed i ¼ 1;2; . . . ;m, let the functions Ui and Vi defined by dependencies (16) and (25) be given, and further-
more Wi : R ? R be introduced as
Wiðŷw� Þ ¼
1
h1

Z ŷw�

�1
y2K1

y� yi

h1

� �
dy; ð32Þ
while the kernel K1 should be chosen so as to guarantee their useful analytic form. Making use of the above notations, con-
dition (31) can be expressed in the following form:
Xm

i¼1

di½ðal þ arÞðŷ2
w�Uiðŷw� Þ � 2ŷw� Viðŷw� Þ þWiðŷw� ÞÞ þ 2alŷw�yi� � ðalmŷ2

w� �W1Þ
Xm

i¼1

di ¼ 0; ð33Þ
where
W1 ¼
Z 1

�1
y2K1ðyÞ dy ð34Þ
is finite, on the basis of assumption (30). If the left-hand side of formula (33) is denoted as Lðŷw� Þ, then – also taking into
account the equalities V0iðŷw� Þ ¼ ŷw�U

0
iðŷw� Þ and W0

iðŷw� Þ ¼ ŷw�V
0
iðw� Þ resulting from dependencies (16), (25), and (32) – the

derivative of the function L is
L0ðŷw� Þ ¼
Xm

i¼1

di½2ðal þ arÞðŷw� Uiðŷw� Þ � Viðŷw� ÞÞ þ 2alyi� � 2almŷw�
Xm

i¼1

di: ð35Þ
Finally, the desired estimator can be calculated numerically through Newton’s algorithm (19)–(21), while the functions L and
L0 are given by dependencies (33)–(35).

The above investigations can be similarly transposed to a higher order of asymmetrical polynomial loss function (28),
although on account of their extreme nature, they seem to be useful only for especially atypical applicational tasks.

4. Kernel used

In the linear case, presented in Section 3.1, the kernel K1 can be assumed in the Cauchy form
K1ðxÞ ¼
2
p

1

ð1þ x2Þ2
: ð36Þ
Then
Uiðŷw� Þ ¼
ŷw� �yi

h1

p 1þ ŷw� �yi
h1

� �2
� �þ 1

p
arctg

ŷw� � yi

h1

� �
þ 1

2
; ð37Þ
while if one applies the plug-in method recommended here, the constants there amount to
R

R x2K1ðxÞ dx ¼ 1 andR
R K1ðxÞ2 dx ¼ 5=4p.

In the quadratic case (Section 3.2) also Cauchy kernel (36) is proposed; then formula (37) remains true and additionally
Vi ŷw�ð Þ ¼ yi

ŷw� �yi
h1

p 1þ ŷw� �yi
h1

� �2
� �þ 1

p
arctg

ŷw� � yi

h1

� �
þ 1

2

0
BB@

1
CCA� h1

p 1þ ŷw� �yi
h1

� �2
� � : ð38Þ
In the cubic case considered in Section 3.3, Cauchy kernel (36) must by modified here to the form
K1ðxÞ ¼
8

3p
1

ð1þ x2Þ3
: ð39Þ
An increase of the power in the denominator has been implied with the necessity of ensuring the fulfillment of condition
(30). Here



Table 1
Values

P. Kulczycki, M. Charytanowicz / Applied Mathematical Modelling 37 (2013) 2166–2177 2173
Uiðŷw� Þ ¼
ŷw� �yi

h1

� �3

p 1þ ŷw� �yi
h1

� �2
� �2 þ

5 ŷw� �yi
h1

3p 1þ ŷw� �yi
h1

� �2
� �2 þ

1
p

arctg
ŷw� � yi

h1

� �
þ 1

2
; ð40Þ

Viðŷw� Þ ¼ �
2h1

3p 1þ ŷw� �yi
h1

� �2
� �2 þ yi

ŷw� �yi
h1

� �3

p 1þ ŷw� �yi
h1

� �2
� �2 þ

5 ŷw� �yi
h1

3p 1þ ðŷw� �yi
h1
Þ2

h i2 þ
1
p

arctg
ŷw� � yi

h1

� �
þ 1

2

0
BBB@

1
CCCA; ð41Þ

Wiðŷw� Þ ¼ �
4h1yi

3p 1þ ŷw� �yi
h1

� �2
� �2 þ y2

i

ŷw� �yi
h1

� �3

p 1þ ŷw� �yi
h1

� �2
� �2 þ

5 ŷw� �yi
h1

3p 1þ ŷw� �yi
h1

� �2
� �2 þ

1
p

arctg
ŷw� � yi

h1

� �
þ 1

2

0
BBB@

1
CCCA

þ h2
1

ŷw� �yi
h1

� �3

3p 1þ ŷw� �yi
h1

� �2
� �2 �

ŷw� �yi
h1

3p 1þ ŷw� �yi
h1

� �2
� �2 þ

1
3p

arctg
ŷw� � yi

h1

� �
þ 1

6

0
BBB@

1
CCCA: ð42Þ
For kernel (39), the constants used within the plug-in method are
R

R x2K1ðxÞ dx ¼ 1=3 and
R

R K1ðxÞ2 dx ¼ 7=4p.
The kernels for coordinates corresponding to the conditioning variable W can be assumed freely, as they are not used in

any further analytical calculations. In particular they can be in the aforementioned Cauchy form, i.e.
K2 � K3 � . . . � KnWþ1 � K1, where K1 is given by formula (36) or (39), respectively.

5. Experimental verification

The correct functioning and positive attributes of the algorithm presented in this paper were confirmed with detailed
numerical and experimental verification.

Assume for transparency of the results interpretation that nY ¼ nW ¼ 1, and let the tested random variable X ¼ Y
W

� �
have

distribution being the sum of three Gauss factors with expected values, covariance matrixes and shares, respectively,
of estimator for the asymmetrical linear case (Section 3.1).
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Values of estimator for the asymmetrical quadratic case (Subsection 3.2).
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E1 ¼
�2
0

� �
; Cov1 ¼

1 0:7
0:7 4

� �
; 50%; ð43Þ

E2 ¼
0
0

� �
; Cov2 ¼

4 0
0 4

� �
; 20%; ð44Þ

E3 ¼
2
0

� �
; Cov3 ¼

l1 0:7
0:7 4

� �
; 30%: ð45Þ
In the case of factors (43) and (45), the describing variable Y and conditioning W are positively correlated. Factor (44), with
uncorrelated coordinates, acts as an additional – apart from the natural uncertainty of the variables Y and W – disturbance.
The expected values of variables Y and W as well as their standard deviations are
EY ¼ �0:4;
ffiffiffiffiffiffi
VY

p
¼ rY ffi 2:2; ð46Þ

EW ¼ 0;
ffiffiffiffiffiffiffi
VW

p
¼ rW ¼ 2: ð47Þ
The results acquired for asymmetrical linear (Section 3.1), asymmetrical quadratic (Section 3.2) and asymmetrical cubic
(Section 3.3) cases, are presented in Tables 1–3 respectively. Each of their cells shows the obtained values of the estimator,
calculated on the basis of 100 tests and recorded in the classic formula: ‘‘mean value ± standard deviation’’. The symbol 1
denotes there the analytically achieved theoretical value.

In Tables 1–3 the results have been shaded, where the mean estimation error is greater than 10% of the standard deviation
of describing value rY , i.e. 0.22 (see formula (46)), or where the standard deviation of the estimation error is greater than 20%
of rY , i.e. 0.44. One can note that the remaining (unshaded) results are for samples of sizes from 50 or 100. Taking into ac-
count that the distribution of the describing random variable X is trimodal, the need for such size seems reasonable in
practice.

Analysis of particular columns of Tables 1–3 will now be discussed. In the symmetric case al=ar ¼ 1 presented – for com-
parison – in the middle column, the losses arising from under- and overestimation are the same.1 The ratio al=ar ¼ 1=3 results
in losses due to overestimation being 3 times greater than those from underestimation, which means that the estimator values
decrease to reduce the probability of overestimation. For the case al=ar ¼ 1=10, where losses from overestimation are 10 times
greater than those due to underestimation, this process is even more distinct, the values of the resulting estimator are even
the symmetrical linear case, the Bayes estimator is simply a median, and for the symmetrical quadratic – an expected value.
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Values of estimator for the asymmetrical cubic case (Section 3.3).
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smaller. The opposite effect takes place for al=ar ¼ 3, and to an even greater degree when al=ar ¼ 10 – the values of the estimator
increase. It is worth adding that for extreme values of the ratio al=ar , i.e. less than 1=10 and greater than 10, there may arise a
natural necessity to enlarge the sample sizes – these cases, however, seem not to have any practical significance, as in such sit-
uations it is worth substituting the Bayes approach with the minimax [2].

Particular sections of rows, related to the subsequent conditioning values w� ¼ 0, w� ¼ 1, w� ¼ 2, will now be analyzed.
The first of them corresponds to the modal value of the conditioning variable W (see formulas (43)–(45). Because the vari-
ables Y and W are correlated positively, for w� ¼ 1 the estimator values become bigger than for w� ¼ 0. When w� ¼ 2 these
values increase even more. In the latter case the necessity of a larger sample size is evident, which seems to be justified as the
conditioning value w� ¼ 2 lies on the second standard deviation of the variable W from its modal value. In the cases w� ¼ �1,
w� ¼ �2 the estimator values are respectively smaller than for w� ¼ 0, which because of symmetry have been omitted from
Tables 1–3. It should be underlined that the dependence of the estimator value on the given conditioning value w�, consid-
ered in this paragraph, constitutes the essence of the conditional approach investigated in this paper.

The results in Tables 1–3 will now be collated, comparing the values obtained for the linear, quadratic and cubic cases,
defined by loss functions (14), (22), and (28) with k ¼ 3, respectively. Quadratic form (22) means that large estimation errors
cause here significantly greater values of loss function than for the linear (14). The desired minimization of the expected va-
lue of losses requires the quadratic estimator to assume values which better ‘‘protect’’ against large errors, i.e. somewhat
closer to an average value (median or expected value). The above becomes more distinct for the cubic case. A comparison
of the results shown in Tables 1–3 confirms these suggestions for any ratio al=ar and the conditioning value w�. The property
considered in this paragraph represents the quintessential possibilities arising from potential changes – in relation to a form
obtained through fundamental research – the degree of polynomial in the preliminary form of the loss function (1).

Finally, it is worth noting that in any case shown in Tables 1–3, as the sample size increased, the obtained parameter va-
lue converged to the theoretical, and the standard deviation to zero. The above asymptotical features are of fundamental sig-
nificance from an applicational point of view, as they prove that it is possible to obtain any precision wished, although this
requires the assurance of a sufficient random sample size and calculational capability of computer system used. In practice,
therefore, the necessity of the right compromise between these quantities is called for.

The above corollaries have been successfully proven in numerous obtained results of simulations, also for a multidimen-
sional conditioning variable and multimodal, asymmetrical and complex distributions of the variables Y and W , as well as
those including additional aspects, e.g. bounded supports, lack of data from the neighborhood of a given conditioning var-
iable x�, as well as the occurrence of discrete, binary and categorized coordinates of the conditioning variable W .2
2 From the formal point of view this consists only of the introduction to the definition of kernel estimator (3) of additional factors related to coordinates of
these types; for details see [19], [6]–Section 3.1.8 and/or [7]–Section 6.1.4), [20], respectively.



2176 P. Kulczycki, M. Charytanowicz / Applied Mathematical Modelling 37 (2013) 2166–2177
The concept presented in this paper was also verified experimentally by applying it to identification of a model of dy-
namic systems [21] submitted to robust control [22], based on the time-optimal control theory [23]. The idea of time-opti-
mal control itself, ensuring a minimum of operating time, seems very attractive. In practice though this control, being
extreme in nature (i.e. assuming maximal allowed values), proved to be highly sensitive to identification errors which were
unavoidable in practice. It did however become a suitable basis for creating suboptimal structures, where such sensitivity
would be eliminated. The task of parameter identification arising in this way remains in practice a problem of fundamental
importance.

Consider a mechanical system with dynamics modeled by the differential inclusion
€yðtÞ 2 Hð _yðtÞÞ þ uðtÞ; ð48Þ
where y expresses the position of the object, u is a control with values limited to the interval ½u�; u�� and the function H, char-
acterizing resistance to motion, is piecewise continuous and additionally multivalued at the points of discontinuity (partic-
ularly at zero it can represent phenomena connected with static friction). In the event of no resistance to motion, i.e. when
H � 0, inclusion (48) can be reduced to a differential equation €yðtÞ ¼ muðtÞ expressing the mass m submitted to the action of
a force according to Newton’s second law of dynamics. The above task constitutes therefore a problem of fundamental
importance in the control of manipulators and robots. Object (48) was subjected to a robust control, which took on the val-
ues u� or u�, depending on where among the distinguished sets the system state was located; for details see the papers
[24,25]. This concept was the basis for creating a complex algorithm for controlling a laboratory robot arm. Proper fixing
of parameter values is of fundamental importance here, as in many cases underestimation results in sliding trajectories, with
overestimation giving ineffective convergent cycles (or vice-versa), while both in the case of sliding trajectories as well as
convergent cycles, their effectiveness depends on the assumed values of parameters. Some of these were conditioning in
character: the parameters u� and u� (defining the maximum power of an actuator) depended on the interim power supply
value and motion resistance value (described by the function H) to a large degree depended on current velocity. In particular
cases the motion resistance value could additionally depend on position, and the mass m on the time passed since the last
replenishment of substances consumed during the production cycle.

The use of the conditional approach of the Bayes parameter identification enabled a further reduction in operating time of
about 5% with respect to the unconditional version, giving a time of about 10% less than that for results obtained using the
mean value as an estimator, and about 5% shorter than in the case of the classical sliding mode control [26], where sliding
trajectories had a notably larger number of switchings, which lowered their effectiveness.

Similar practical research was also carried out with success in medical applications, in establishing optimal dosages of
anesthetic considering patients’ body mass and general condition, as well as strategic sales in selecting policy for a mobile
phone operator when negotiating with a business client characterized by many vastly different factors.

Generally it is worth stressing that in every case investigated, precision of the characteristics describing the parameter
under investigation by providing the proper value for conditioning factors improved the result in proportion to the degree
of differentiation of object features with respect to those factors. This occurred in the case of circumstantial changes in values
for these factors, as well as structural object nonstationarity. In today’s age of ever more available current measurement data
and the possibility of instant inclusion in computer algorithms, this should be particularly underlined, providing real advan-
tages from the procedure described in this paper.
6. Final remarks and summary

This paper presents the algorithm for calculating the conditional value of a parameter, ensuring a minimum expected va-
lue of losses with their asymmetrical form representing different results of over- and underestimation. The conditional ap-
proach allows in practice for refinement of the model by including the current value of the conditioning factors.

The investigated algorithm – together with the subject procedures from the quoted literature – is ready for direct use
without any additional laborious research or calculations. The presented concept is universal in nature and can be applied
in a wide range of tasks in science, engineering, economy and management, environmental and social issues, biomedicine,
and other related fields. The results have been verified positively based on numerical simulation as well as practical prob-
lems from control engineering, medicine and marketing.

An important question is the calculational complexity of the investigated procedure. Above all one should underline the
advantage – from the practical point of view – of its having two stages. The first phase contains algorithms for calculating
parameter values. The plug in method, used to achieve the smoothing parameter h value, and the algorithm for its modifi-
cation – recommended in Section 2 – have for every nW þ 1 coordinates of the variable X calculational complexity Oðm2Þ, but
they are carried out once at the beginning of the procedure. The second phase consists of finding solutions of criterions (15),
(23), (31) or more generally (29), with the aid of Newton’s algorithm (19)–(21), with the calculation of the parameters di

having the complexity OðnW Þ, while the functions L and L0 are of complexity OðmÞ, and so are linear in type. Newton’s algo-
rithm in investigated cases most often required 6–10 iterations. This implies a relatively short calculation time for the second
phase which means, with the first phase having been carried out earlier, in most practical tasks it is possible to apply the
worked out procedure in real time.
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Finally, it is worth adding that the concept developed here can be generalized to a multidimensional case, i.e. where the
vector of conditionally correlated parameters is identified. However, in this case, both the analytical criteria for optimal
parameter values as well as their later numerical implementation, become too complicated for practical application given
today’s possibilities; (for the unconditional case see [27]). Similarly it is possible to assume loss function (1) in an asymmet-
rical form of different degree of polynomial for negative and positive estimation errors. However such a case seems to have
only theoretical significance, with no applicational connotations.
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