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Abstract: - At present, statistical kernel estimators constitute the dominant – in practice – method of nonparametric 
estimation. It allows the useful characterization of probability distributions without arbitrary assumptions regarding 
their membership to a fixed class. In this paper their use to the basic tasks of data analysis and exploration,  
i.e. identification of outliers, clustering, and classification, will be considered. In every case the final result will be an 
algorithm ensuring that its practical implementation does not demand of the user detailed knowledge of the theoretical 
aspects, or laborious research and calculations. The above presented theory has been successfully applied to various 
practical problems of engineering and management. Two of these, the design of a fault detection and diagnosis system 
for automatic control purposes, and a marketing support strategy for a mobile phone operator, will be demonstrated in 
detail. Useful procedures for the reduction of dimensionality and size of a random sample, subordinated to the 
specificity of kernel estimators, will also be commented. 
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1   Introduction      
Thanks to the dynamic development in contemporary 
computer systems, the range for practical application of 
nonparametric methods for identification and estimation 
is constantly growing. While the classical parametrical 
procedures arbitrarily assume the form of the function 
under investigations and then specify its parameters, the 
nonparametric methods do not require any such kind of 
limiting assumption.  

The subject of this paper, currently dominant among 
nonparametric methods, is kernel estimators, mainly 
used to identify the most universal characteristic of a 
random variable – its distribution density. Here also is 
presented the application of this type of estimators in 
some basic tasks of data analysis and exploration – 
recognition of atypical elements (outliers), clustering, 
and classification – used next as examples in fault 
detection and diagnosis of industrial devices working in 
a real-time regime, and then to define a marketing 
support strategy for a mobile phone operator.  

The following text also contains results of research in 
the field of kernel estimators carried out together with 
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M. Charytanowicz, K. Daniel, P.A. Kowalski, S. Lukasik, 
A. Mazgaj, C. Prochot, J. Waglowski, and S. Zak. This 
material was presented more broadly in the survey works 
[7, 8, 10, 12].  

2   Kernel Estimators  
Let the n-dimensional random variable nX R→Ω: , 
with a distribution having the density f, be given. Its 

kernel estimator ),0[ :  ˆ ∞→nf R  is calculated on the 

basis of the m-elements simple random sample 1x , 

mxx  , ... ,2 , experimentally obtained from the variable X, 
and is defined in its basic form by the formula  
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where the measurable, symmetrical with respect to zero 
and having a weak global maximum in this point, 

function ),0[ : ∞→nK R  fulfils the condition 

∫ =n xxK
R

1d )(  and is called a kernel, whereas the 

positive coefficient h is referred to as a smoothing 
parameter. It is worth noting that a kernel estimator 
allows the identification of density for practically every 
distribution, without any assumptions concerning its 
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membership to a fixed class. Atypical, complex 
distributions, also multimodal, are regarded here as 
textbook unimodal. In the multidimensional case this 
enables, among others, the discovery of total 
dependences between particular coordinates of the 
random variable under investigation.  

Setting of the quantities introduced in definition (1), 
i.e. choice of the form of the kernel K as well as 
calculation of the value for the smoothing parameter h, is 
most often carried out according to the criterion of 
minimum of an integrated mean-square error. Broader 
discussion and practical algorithms are found in the 
books [8; 22, 23] 1. In particular, the choice of the kernel 
form has no practical meaning and thanks to this it is 
possible to take into account primarily properties of the 
estimator obtained (e.g. its class of regularity, boundary 
of a support, etc.) or aspects of calculations, 
advantageous from the point of view of the applicational 
problem under consideration. Practical applications may 
also use additional procedures, some generally 
improving the quality of the estimator, and others – 
optional – possibly fitting the model to an existing 
reality. For the first group one should recommend the 
modification of the smoothing parameter [8 – Section 
3.1.6; 22 – Section 5.3.1] and a linear transformation [8 
– Section 3.1.4; 22 – Section 4.2.1], while for the 
second, the boundaries of a support [8 – Section 3.1.8; 
22 – Section 2.10].  

Kernel estimators allow effective modeling of the 
distribution density – a basic functional characteristic of 
random variables. Consequently this is fundamental in 
obtaining other functional characteristics and parameters. 
For example, if in a one-dimensional case the kernel K is 

such chosen that its primitive ∫ ∞−
=

x
yyKxI d )()(  may be 

analytically obtained, then the estimator of the 
distribution function  
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can be easy calculated. Next, if the kernel K has (strictly) 
positive values, the solution for the equation  

rxF =)(ˆ  (3) 

constitutes the kernel estimator of quantile of the order 
)1,0(∈r . For details and proofs of strong consistencies 

see [18].  
                                                           
1  For calculating a smoothing parameter one can especially 
recommend the plug-in method in the one-dimensional case [8 
– Section 3.1.5; 22 – Section 3.6.1], as well as the cross-
validation method [8 – Section 3.1.5; 21 – Section 3.4.3] in the 
multidimensional. Comments for the choice of kernel may 
best be found in [8 – Section 3.1.3; 22 – Sections 2.7 and 4.5].  

It is worth mentioning also the possibility of applying 
data compensation and dimensionality reduction 
procedures – original and useful algorithms can be found 
in the book [21 – Sections 2.5 and 3.4]. A specialized 
algorithm, based on simulated annealing, and dedicated 
to data analysis and exploration procedures found in the 
next chapter, is being researched – preliminary results 
are presented in the work [19].  

3   Data Analysis and Exploration  
The application of kernel estimators for recognition of 
atypical elements, clustering, and classification will be 
subsequently investigated in further sections of this 
chapter. In all three cases the n-dimensional random 

variable nX R→Ω:  is considered.  
The text below also contains material from research 

carried out together with M. Charytanowicz, K. Daniel, 
and C. Prochot, published in the common works [14-17, 
20]. 

3.1 Recognition of Atypical Elements  
In many problems of data analysis, the task of 

recognizing atypical elements (outliers) – those which 
differ greatly from the general population – arises. This 
enables the elimination of such elements from the 
available set of data, which increases its homogeneity 
(uniformity), and facilitates analysis, especially in 
complex and unusual cases. In practice, the recognition 
process for outliers is most often carried out using 
procedures of statistical hypothesis testing [2]. The 
significance test based on the kernel estimators 
methodology will now be described.  

Let therefore the random sample 1x , mxx ,,2 K  
treated as representative, therefore including a set of 
elements as typical as possible, be given. Furthermore, 
let )1,0(∈r  denote an assumed significance level. The 

hypothesis that nx R∈~  is a typical element will be tested 
against the hypothesis that it is not, and therefore should 

be treated as an outlier. The statistic ),0[: ∞→nS R , 
used here, can be defined by  

)~(ˆ)~( xfxS =   , (4) 

where f̂  denotes a kernel estimator of density, obtained 

for the random sample 1x , mxx ,,2 K  mentioned above, 
while the critical set takes the left-sided form ],( a−∞ , 
when a constitutes the kernel estimator of quantile of the 
order r (see the text connected with formula (3) ), 

calculated for the sample )(ˆ
1xf , )(ˆ,),(ˆ

2 mxfxf K , 
with the assumption that random variable support is 
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bounded to nonnegative numbers.  

3.2 Clustering  
The aim of clustering is the division of a data set – 

for example given in the form of the random sample 1x , 

mxx ,,2 K  – into subgroups (clusters), with every one 
including elements “similar” to each other, but with 
significant differences between particular subgroups [5]. 
In practice this often allows the decomposition of a large 
data set with differing characteristics of elements into 
subsets containing elements of similar properties, which 
considerably facilitates further analysis, or even makes it 
possible at all. The following clustering procedure based 
on kernel estimators, taking advantage of the gradient 
methods concept [4] will be presented in this section.  

Here the natural assumption is made that clusters are 
associated to modes – local maximums of the density 

kernel estimator f̂ , calculated for the considered 

random sample 1x , mxx ,,2 K . Within this procedure, 
particular elements are moved in a direction defined by a 
gradient, according to the following iterative algorithm: 

jj xx =0      for  mj  , ... ,2 ,1=  (5) 
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where 0>b  and ∇  denotes a gradient. Thanks to the 
proper choice of form of the kernel K, a suitable 

analytical formula for the gradient f̂∇  becomes 
possible. As a result of the following iterative steps, the 
elements of the random sample move successively, 
focusing more and more clearly on a certain number of 

clusters. They can be defined after completing the *k -th 

step, where *k  means the smallest number k  such that 
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the distances between particular elements of the random 
sample under consideration before the beginning of 
algorithm (5)-(6) and having performed the (k–1)-th and 
k-th steps, respectively.  

Thus, after *k -th step, one should calculate the 
kernel estimator for mutual distances of the elements 

*

1
kx , 
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,,2
k
m

k xx K  (under the assumption of nonnegative 
support of the random variable), and next, the value can 

be found where this estimator takes on the local 
minimum for the smallest value of its argument, omitting 
a possible minimum in zero. Finally, particular clusters 
are assigned those elements, whose distance to at least 
one of the others, is not greater than the above value. 
Thanks to the possibility of change in the smoothing 
parameter value, it becomes possible to affect the range 
of a number of obtained clusters, albeit without arbitrary 
assumptions concerning the strict value of this number, 
which allows it to be suited to a true data structure. 
Moreover, possible changes in the intensity of the 
smoothing parameter modification procedure enable 
influence on the proportion of clusters located in dense 
areas of random sample elements to the number of 
clusters on the “tails” of the distribution.  

The detailed description of the above procedure can 
be found in the papers [14, 15]. 

3.3 Classification  
The application of kernel estimators in a 

classification task will be considered now. Let the 
number }1,0{\N∈J  be given. Assume also, that the 

possessed random sample 1x , mxx ,,2 K  has been 
divided into }1,0{\N∈J  nonempty and separate subsets  

1
1x , 11

2 1
,, mxx K  (7) 

2
1x , 22

2 2
,, mxx K  (8) 

               M  

Jx1 , J
m

J
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xx ,,2 K   , (9) 

while mm
J

j j =∑ =1
, representing J  classes with 

features as mutually different as possible. The 
classification task requires deciding into which of them 

the given element nx R∈~  should be reckoned [5]. 
The kernel estimators methodology provides a natural 

mathematical tool for solving the above problem in the 
optimal – in the sense of minimum for expectation of 

losses – Bayes approach. Let thus 1f̂ , Jff ˆ , ... ,ˆ
2  denote 

kernel estimators of density calculated for subsets  
(7)-(9), respectively, treated here as samples. If sizes 

1m , Jmm ,,2 K  are proportional to the “frequency” of 
appearance of elements from particular classes, the 
considered element x~  should be reckoned into the class 
for which the value  

)~(1̂1 xfm , )~(ˆ , ... ),~(ˆ
22 xfmxfm JJ  (10) 

is the greatest.  
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4   Fault Detection  
The fault detection and diagnosis problem has lately 
become one of the most important challenges in modern 
control engineering. Early discovery of anomalies 
appearing in the operation of a controlled system, from 
an industrial robot to a nuclear reactor, most often allows 
serious incidents and even catastrophes to be avoided, 
which could save material damage, or loss of human life. 
Secondly, confirmation of kind and location of these 
anomalies is of fundamental meaning, especially when 
supervising large systems like complex chemical 
installations, as well as modern ships and airplanes. The 
importance of the above actions is multiplied by a 
psychological factor expressed by an increased feeling of 
safety, as well as – for the producer – prestige and 
commercial reputation. Finally, economic reasons often 
translate into a significant decrease in running costs, 
above all by ensuring the proper technological 
conditions as well as rationalizing overhauls and 
reducing repairs. Among the many different procedures 
used with this aim, the most universal are statistical 
methods. This paper presents the concept of a fault 
detection system, based on the kernel estimators 
methodology, covering:  
. detection, so discovery of the existence of potential 

anomalies in the technical state of a device under 
supervision;  

. diagnosis, that is identification of these anomalies;  

. prognosis, i.e. warning of the threat of their 
occurrence in the near future, together with 
anticipated classification.  
The procedures presented in Chapter 3 provide a 

complete and methodologically consistent mathematical 
tool to design an effective fault detection system for 
dynamical systems, covering detection, diagnosis, and 
also prognosis associated with them.  

Assume that the technical state of a device under 
supervision may be characterized by a finite number of 
quantities measurable in real-time. These will be denoted 

in the form of the vector nx R∈ , called a symptom 
vector. One can interpret this name noting that 
symptoms of any occurring anomalies should find the 
appropriate reflection in the features of a such-defined 
vector. More strictly, it is required that both correct 
functioning conditions and any type of diagnosed fault 
are connected with the most different sets of values 
and/or dissimilar relations between coordinates of the 
above vector as possible.  

Assume also the availability of a fixed set of values 
of the symptom vector, representative for correct 
functioning conditions of a supervised device:  

1x , 
0

 , ... ,2 mxx   , (11) 

as well as the set  

1x , Mxx  , ... ,2   , (12) 

characteristic in the case of occurrence of anomalies. 
From the point of view of transparency of the designed 
fault detection system, in particular its function of 
diagnosis, it is worth dividing set (12) into }1,0{\N∈J  
the most possibly different – in the sense of the values of 
particular coordinates of the symptom vector and/or 
relations between them – subsets assigned to the 
previously assumed types of diagnosed faults:  

1
1x , 11

2 1
,, mxx K  (13) 

2
1x , 22

2 2
,, mxx K  (14) 

               M  
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m
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while Mm
J

j j =∑ =1
. Where there is no such division, 

one can automatically divide set (12) into subsets  
(13)-(15) using the clustering algorithm presented in 
Section 3.2, although this then often requires laborious 
interpretation concerning each of them.  

Fault detection will first be considered. With this aim 
the procedure for the recognition of atypical elements, 
described in Section 3.1, can be applied. Assume 
therefore that the random sample considered there, 
including elements treated as typical, constitutes set (11) 
representing the correct functioning conditions for a 
supervised device, while x~  denotes its current state. 
Applying the above mentioned procedure for the 
recognition of atypical elements, one can confirm if the 
present conditions should be regarded as typical or rather 
not, thus showing the appearance of anomalies.  

For fault diagnosis, if one already is in possession of 
samples (13)-(15) characterizing particular types of 
faults being diagnosed, then after the above described 
detection of anomalies, one can – applying directly the 
procedure for Bayes classification presented in Section 
3.3 – infer which of them is being dealt with. Note that 
the range of faults which can be discovered by detection 
may significantly exceed all types of faults assumed to 
be diagnosed.  

Finally, if subsequent values of the symptom vector, 
obtained successively during the supervising process, are 
available, then it is possible to realize fault prognosis. It 
can be carried out by separate forecasts of values of the 

function f̂  given by dependence (4) and 11 f̂m , 

JJ fmfm ˆ , ... ,ˆ
22  to be seen in formula (10), and 

inferences based on these forecasts for detection and 
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diagnosis, according to guidelines presented in the 
previous two paragraphs. To calculate the values of 

forecasts of the functions f̂ , 1̂f , Jff ˆ,...,ˆ
2  it is 

recommended to use the classical linear regression 
method separately, though in a version enabling easy 
updating of a model during successive collection of 
subsequent current values of the symptom vector. 
Appropriate formulas are found in the book [1 – Chapter 
3 and additionally Chapter 4].  

The proper operation of the fault detection system 
investigated in this section was verified experimentally 
for a robust control applied to the task from a field of 
robotics [9]. Thus, in cases where the symptoms 
appeared abruptly, the anomalies of the device were 
promptly discovered and correctly recognized within the 
scope of detection and diagnosis. If, on the other hand, 
the fault was accompanied by a slow progression of 
symptoms, it was forecast with a correct indication of 
the type of fault about to occur (scope of prognosis), and 
later it was also discovered and identified in detection 
and diagnosis. One should underline that fault prognosis, 
still rare in practical applications, proved to be highly 
effective in the case of slowly progressing symptoms, 
discovering and identifying anomalies before the 
object’s characteristics transgressed the range for correct 
conditions for a system’s functioning, thanks to the 
proper recognition of the change in the trend of values of 
the symptom vector, which indicates an unfortunate 
direction of its evolution.  

More details can be found in the paper [13].  

5   Marketing Strategy  
The highly dynamic growth prevalent on the mobile 
phone network market, naturally necessitates a company 
to permanently direct its strategy towards satisfying the 
differing needs of its clients, while at the same time 
maximizing it income. The uncontrollable nature of this 
kind of activity, however, can lead to a loss of coherence 
in treating particular clients, and their subsequent 
defection to competitors. To avoid this a formal solution 
of global nature must be found. Below are presented 
results of research obtained using statistical kernel 
estimators, carried out in the procedures discussed in 
Chapter 3. This procedure, prepared for a Polish mobile 
phone network operator, concerns long term business 
clients, i.e. those with more than 30 SIM cards and an 
account history of at least 2 years.  

In practice there is a vast spectrum of quantities 
characterizing particular subscribers. Following detailed 
analysis of the economic aspects of the task under 
investigation here, it was taken that basic traits of clients 
would be shown by three quantities : average monthly 
income per SIM card, length of subscription and number 

of active SIM cards. Thus each of m-elements of a 
database 1x , mxx  , ... ,2  is characterized by the 

following 3-dimensional vector:  


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where 1,ix  denotes the average monthly income per SIM 

card of the i-th client, 2,ix  – its length of subscription, 

and 3,ix  – the number of active SIM cards.  

In the initial phase, atypical elements of the set 1x , 

mxx  , ... ,2  (outliers) are eliminated, according to the 

procedure presented in Section 3.1. The uniformity of 
the data structure is so increased, and it is worth 
underling, this effect is obtained by canceling only those 
elements which would not be of importance further in 
the procedure investigated.  

Next clustering of the data set is performed, using the 
algorithm as shown in Section 3.2. This results in a 
division of the data set representing specific clients, into 
groups of similar nature. This should be followed by 
another, albeit slightly different, elimination of atypical 
elements, achieved by removing clusters with small 
numbers of elements. As well as omitting information of 
little significance, it is also in order to improve 
conditions for the classification algorithm applied at a 
further stage of the procedure worked out – kernel 
estimators calculated on the basis of an insufficient 
number of samples (7)-(9) may not be representative.  

Next for each of the above defined clusters, an 
optimal – from the point of view of expected profit of 
the operator – strategy is created for treating subscribers 
belonging to it. With regard to the imprecise evaluation 
of experts used here, elements of fuzzy logic [6] and 
preference theory [3] have been used – details are 
however beyond the scope of this paper.  

It is worth pointing out that none of the above 
calculations must be carried out at the same time as 
negotiating with the client, but merely updated (in 
practice once every 1-6 months).  

The client being negotiated with is described with the 
aid of three quantities, in reference to formula (16) given 
here as:  


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where 1
~x  denotes its average monthly income per SIM 

card, 2
~x  – length of subscription, and 3

~x  is the number 
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of active SIM cards of that client. This data can relate to 
the subscriber history to date in a given network, when 
renegotiating contract terms, or in a rival network if 
attempting to take them over. Classification to the proper 
subscriber group, from those obtained as a result of 
clustering, is achieved with the procedure presented in 
Section 3.3. To this purpose, first kernel estimators are 
calculated separately for each cluster. In classification 
element (17) is mapped to the class (cluster), for which 

the value )~(1̂1 xfm , )~(ˆ , ... ),~(ˆ
22 xfmxfm JJ  to be seen in 

formula (10), is greatest. Due to the fact that the 
marketing strategies for particular clusters have already 
been defined, this finally completes the procedure for the 
algorithm to support the marketing strategy for a 
business client, investigated here.  

The above method was successfully implemented for 
the needs of a Polish network operator. In relation to the 
comment at the end of Section 3.2, the intensity of the 
smoothing parameter modification procedure was 
somewhat lessened with respect to the optimal in the 
mean-square sense, with the aim of dividing the largest 
cluster and decreasing the number of peripheral clusters. 
Finally, two large clusters containing 27% and 23% of 
elements, two medium of 14% and 7%, and 22 small 
each including less than 3% – the most uncommon 
firms, were obtained.  

More details can be found in the papers [16, 17]. 
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