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Abstract: - The subject of this paper is the application of nonparametric estimation methods – in particular statistical 
kernel estimators – for control engineering. Such methods allow the useful characterization of probability distributions 
without arbitrary assumptions regarding their membership to a fixed class. A detailed description of the Bayes 
parameter estimation with asymmetrical polynomial loss function will be given, as will one for fault detection in 
dynamical systems as objects of automatic control, in the scope of detection, diagnosis and prognosis of malfunctions. 
To this aim the basics of data analysis and exploration tasks – identification of outliers, clustering, and classification – 
solved using uniform mathematical apparatus based on the kernel estimators methodology will also be considered. In 
every case the final result will be an algorithm ensuring that its practical implementation does not demand of the user 
detailed knowledge of the theoretical aspects, or laborious research and calculations.  
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1   Introduction  
The specification, based on experimental data, of 
functions which characterize an object under 
investigation, constitutes one of the main tasks in 
modern science and technological problems. A typical 
example here is the estimation of density function of 
random variable distribution from any given sample. The 
classical procedures rely here on arbitrary assumption of 
the form of this function, and then in specification of its 
parameters. These are called parametric methods. A 
valuable advantage is their theoretical and calculational 
simplicity, as well as their being commonly known and 
present in subject literature. Nowadays – along with the 
dynamic development of computer systems – 
nonparametric methods, whose main feature constitutes 
a lack of arbitrary assumptions of the form of a density 
function, are used more and more often. In a 
probabilistic approach, kernel estimators are becoming 
the principal method in this subject. Although their 
concept is relatively simple and their interpretation 
transparent, the applications are impossible without a 
high class of computer which, even until recently, 
significantly hindered theoretical, and especially 
practical research.   

In this paper, first – in Section 2 – the basics of kernel 
estimators methodology are briefly presented. Thanks to 
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availability and the possibilities of contemporary 
computer systems as well as the automation of 
metrological and data gathering processes, the universal 
character of kernel estimators allows for their broad 
application in various problems of modern science and 
technology. In Sections 3 and 4 the possibilities of 
applications of the kernel estimators methodology are 
shown using as examples the following subjects from 
control engineering:  
. parametric identification illustrated in automatic 

control applications;  
. data analysis and exploration – recognition of 

atypical elements (outliers), clustering, and 
classification – applied to the detection and diagnosis 
of devices working in real-time.  
The following text also contains results of research in 

the field of kernel estimators carried out together with 
M. Charytanowicz, K. Daniel, P.A. Kowalski, S. Lukasik, 
A. Mazgaj, C. Prochot, and J. Waglowski. It also 
contains material presented in the works [9, 10]. An 
extended version of this paper will be published as [12].  

2   Kernel Estimators  
Let the n-dimensional random variable nX R→Ω: , 
with a distribution having the density f, be given. Its 

kernel estimator ),0[ :  ˆ ∞→nf R  is calculated on the 

basis of the m-elements simple random sample 1x , 

mxx  , ... ,2 , experimentally obtained from the variable X, 
and is defined in its basic form by the formula  
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where the measurable, symmetrical with respect to zero 
and having a weak global maximum in this point, 

function ),0[ : ∞→nK R  fulfils the condition 

∫ =n xxK
R

1d )(  and is called a kernel, whereas the 

positive coefficient h is referred to as a smoothing 
parameter (for interpretation see Fig. 1). It is worth 
noting that a kernel estimator allows the identification of 
density for practically every distribution, without any 
assumptions concerning its membership to a fixed class. 
Atypical, complex distributions, also multimodal, are 
regarded here as textbook unimodal. In the 
multidimensional case this enables, among others, the 
discovery of total dependences between particular 
coordinates of the random variable under investigation.  

 
Fig. 1. Kernel density estimator (1) of one-dimensional 
random variable distribution.  

Setting of the quantities introduced in definition (1), 
i.e. choice of the form of the kernel K as well as 
calculation of the value for the smoothing parameter h, is 
most often carried out according to the criterion of 
minimum of an integrated mean-square error. Broader 
discussion and practical algorithms are found in the 
books [8; 19, 20] 1. In particular, the choice of the kernel 
form has no practical meaning and thanks to this it is 
possible to take into account primarily properties of the 
estimator obtained (e.g. its class of regularity, boundary 
of a support, etc.) or aspects of calculations, 
advantageous from the point of view of the applicational 
problem under consideration. Practical applications may 

                                                           
1  For calculating a smoothing parameter one can especially 
recommend the plug-in method in the one-dimensional case [8 
– Section 3.1.5; 19 – Section 3.6.1], as well as the cross-
validation method [8 – Section 3.1.5; 18 – Section 3.4.3] in the 
multidimensional. Comments for the choice of kernel may 
best be found in [8 – Section 3.1.3; 19 – Sections 2.7 and 4.5].  

also use additional procedures, some generally 
improving the quality of the estimator, and others – 
optional – possibly fitting the model to an existing 
reality. For the first group one should recommend the 
modification of the smoothing parameter [8 – Section 
3.1.6; 19 – Section 5.3.1] and a linear transformation [8 
– Section 3.1.4; 19 – Section 4.2.1], while for the 
second, the boundaries of a support [8 – Section 3.1.8; 
19 – Section 2.10]. It is worth mentioning also the 
possibility of applying data compensation and 
dimensionality reduction procedures – original and 
useful algorithms can be found in the book [18 – 
Sections 2.5 and 3.4].  

Kernel estimators allow modeling of the distribution 
density – a basic functional characteristic of random 
variables. Consequently this is fundamental in obtaining 
other functional characteristics and parameters. For 
example, if in a one-dimensional case the kernel K is 

such chosen that its primitive ∫ ∞−
=

x
yyKxI d )()(  may be 

analytically obtained, then the estimator of the 
distribution function  
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can be easy calculated. Next, if the kernel K has (strictly) 
positive values, the solution for the equation  

rxF =)(ˆ  (3) 

constitutes the kernel estimator of quantile of the order 
)1,0(∈r . For details and proofs of strong consistencies 

see [15].  
Later in this paper, examples of applications of the 

kernel estimators methodology to control engineering 
tasks will be presented. First, Section 3 shows its use in 
calculate optimal – in the Bayes sense – values of 
parameters of automatic control objects, as an example of 
a subordinate factor with respect to the control algorithm. 
Next, Section 4 describes a fault detection system, after 
considerations regarding the basic procedures for data 
analysis and exploration, as an example of superior – 
with respect to such an algorithm – factor.  

3   Parameter Identification  
One of the main problems of control engineering is 
parameter identification – the specification of values of 
parameters existing in the model of an investigated 
object. In a typical practical task, m independent 
measurements of the parameter, although suffering from 
errors of different origin, are available. On this basis one 
should define the value which, from an overall point of 
view of the problem to be worked out, would best 
represent phenomena described by this parameter. Usual 
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estimation procedures, based on minimum integrated 
mean-square error or maximum likelihood methods, are 
applied mostly because of their popularity and 
availability in subject literature, however they do not 
allow differing causes of estimation errors to be taken 
into account.  

This problem will be illustrated for the example of 
optimal control. The performance index, fundamental for 
the above task, may be used for testing not only the 
quality of a control, but also the procedure of identifying 
model parameters. As an example let the system, whose 
dynamic is described by the following differential equation  
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while }0{\R∈v , be given. If the optimal feedback 
controller with quadratic performance index has been 
constructed with the value }0{\R∈V  not necessarily 
equal to the parameter v  existing in object (4), then the 
obtained graph for this index can be approximated with 
reasonable precision by a quadratic function where 
coefficients differ for negative and positive errors (Fig. 
2). Treating obtained values of an examined parameter as 
realizations of a random variable with the distribution 
density f , one can calculate the value of the optimal – in 
the sense of minimum expectation value of performance 
index for the control – estimator using Bayes’ decision 
rule [3]. If the distribution of the above random variable 
is obtained with the aid of kernel estimators, the 
algorithm worked out is suitable for calculational 
procedures and in consequence for practical use.  
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Fig. 2. Performance index value as a function of the 
parameter V ; ( 1=v ).  

First, a basic case will be investigated, considering 
the single parameter v. As sets of possible decisions as 
well as states of nature, the set of real numbers R  can be 
assumed, while the loss function is given in the 
asymmetrical quadratic form:  
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where 0, >qp  (note that these coefficients can be 

different) and v̂  denotes the desired value of the Bayes 
decision which here fulfills the role of optimal estimator. 
This value is then given as the solution of the following 
equation with the argument v̂ :  

∫∫
∞

∞−∞−

−=−− vvfvvpvvfvvqp
v

d)()ˆ(d)()ˆ()(
ˆ

 . (6) 

Solving the above criterion is generally no easy task. 
If, however, the kernel estimators methodology is used 
in specifying the density f , then, thanks to the proper 
choice of the kernel form, the effective numerical 
algorithm can be obtained. Let therefore m 
measurements for the examined parameter be given, 
treated as random sample 1x , mxx  , ... ,2 . For the chosen 
kernel K one may define the following real mappings 
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x
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Then, criterion (6) takes the form of the equation  
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Its solution exists and is unique. Denoting the left and 
right sides of the above equation as follows  
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and calculating the derivative of function (10):  

pvJqpvL −−=′ )ˆ()()ˆ(   , (12) 

one can then – using Newton’s iterative method – 
effectively obtain a solution for criterion (5) as a limit of 

the sequence ∞
=0

)( }{ k
kv  given by the formulas  
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The properties of kernel estimators allow 
generalizations of the above concept to be made for the 
multidimensional (parameters’ vector), polynomial (loss 
function to a power greater than two), and conditional 
(dependence on conditional factors) cases.  

Thus, in the multidimensional case, i.e. the task of a 
parameters’ vector estimation, it is possible to carry out 
the above-proposed procedure with respect to a 
multidimensional random variable. As an example, if for 

the two-dimensional parameters’ vector T
21 ],[ vvv=  

one assumes the loss function in the following 
asymmetrical quadratic form:  
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where 0 ,, , >dgpl cccc , 0 , ≥pgld cc  and 0 , ≤lgpd cc , 

then here criterion (6) takes on the form of two 
equations, defining Bayes’ decisions 1v̂  and 2v̂  of 
similar, albeit slightly more complex form.  

The form of the asymmetrical quadratic loss function 
(5) may be generalized to a polynomial case: 
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while 0>p,q  and ,...,k 32=  . For instance when 3=k , 
a criterion analogical to equation (6) becomes  

vvfvvvvfvvqp
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Similar investigations concerning an asymmetrical 
linear loss function, i.e. in the case when formula (5) is 
replaced with the following dependence:  





≥−−
≤−−−

=
0ˆfor    )ˆ(    

0ˆfor   )ˆ(
),ˆ(

vvvvq

vvvvp
vvl   , (18) 

with 0, >qp , were presented in the paper [7].  
In the case where the examined parameter depends 

heavily on a conditioning factor, the proposed procedures 

can be generalized with the purpose of including its 
influence. Let therefore the conditioning factor be given 
in the form of the random variable Z, whose distribution 
has a density. Statistical kernel estimators can be used to 
estimate the density of total distribution of the random 

variable T],[ ZX  being the comparison of the variables 
X  and Z . During application of the procedure, after 
fixing the concrete value of the conditional factor )ω(Z , 
calculation can be applied to a “cross-section” defined by 
this value. When significant conditioning for factors 
represented by variable Z occurs to an object under 
consideration, such an approach can considerably 
improve the quality of received results. For the linear 
case see the paper [11]; the results for the quadratic and 
polynomial cases will be published soon.  

The presented method was verified experimentally 
for various optimal control systems. In particular in the 
case of the task presented at the beginning of this 
section, the values of the performance index was even 
43% less than obtained with traditional use of the mean 
value of a random sample as the estimator v̂ .  

The above text also contains material from research 
carried out together with M. Charytanowicz and A. 
Mazgaj, published in the common papers [11, 16].  

4   Fault Detection  
The fault detection and diagnosis problem has lately 
become one of the most important challenges in modern 
control engineering. Early discovery of anomalies 
appearing in the operation of a controlled system, from 
an industrial robot to a nuclear reactor, most often allows 
serious incidents and even catastrophes to be avoided, 
which could save material damage, or loss of human life. 
Secondly, confirmation of kind and location of these 
anomalies is of fundamental meaning, especially when 
supervising large systems like complex chemical 
installations, as well as modern ships and airplanes. The 
importance of the above actions is multiplied by a 
psychological factor expressed by an increased feeling of 
safety, as well as – for the producer – prestige and 
commercial reputation. Finally, economic reasons often 
translate into a significant decrease in running costs, 
above all by ensuring the proper technological conditions 
as well as rationalizing overhauls and reducing repairs. 
Among the many different procedures used with this aim, 
the most universal are statistical methods. This paper 
presents the concept of a fault detection system, based on 
the kernel estimators methodology, covering:  
. detection, so discovery of the existence of potential 

anomalies in the technical state of a device under 
supervision;  

. diagnosis, that is identification of these anomalies;  
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. prognosis, i.e. warning of the threat of their 
occurrence in the near future, together with 
anticipated classification.  

First, Section 4.1 presents possible applications of kernel 
estimators to the fundamental problems of data analysis 
and exploration: recognition of atypical elements 
(outliers), clustering and classification. It is worth noting 
that use of a single methodology for all investigated tasks 
significantly simplifies the process of synthesis of a fault 
detection system being worked upon. Consequently, 
Section 4.2, where the fault detection system designed 
here is described, will consist mainly of references to 
earlier material, and integrate them into one coherent idea.  

4.1 Data Analysis and Exploration  
The application of kernel estimators for recognition of 
atypical elements, clustering, and classification will be 
subsequently investigated below. In all three cases the  

n-dimensional random variable nX R→Ω:  is considered.  
First, in many problems of data analysis the task of 

recognizing atypical elements (outliers) – those which 
differ greatly from the general population – arises. This 
enables the elimination of such elements from the 
available set of data, which increases its homogeneity 
(uniformity), and facilitates analysis, especially in 
complex and unusual cases. In practice, the recognition 
process for outliers is most often carried out using 
procedures of statistical hypotheses testing [2]. The 
significance test based on the kernel estimators 
methodology will now be described.  

Let therefore the random sample 1x , mxx ,,2 K  
treated as representative, therefore including a set of 
elements as typical as possible, be given. Furthermore, 
let )1,0(∈r  denote an assumed significance level. The 

hypothesis that nx R∈~  is a typical element will be tested 
against the hypothesis that it is not, and therefore should 

be treated as an outlier. The statistic ),0[: ∞→nS R , 
used here, can be defined by  

)~(ˆ)~( xfxS =   , (19) 

where f̂  denotes a kernel estimator of density, obtained 

for the random sample 1x , mxx ,,2 K  mentioned above, 
while the critical set takes the left-sided form 

],( aA −∞= , when a constitutes the kernel estimator of 
quantile of the order r (see the end of Section 2), 

calculated for the sample )(ˆ
1xf , )(ˆ,),(ˆ

2 mxfxf K , 
with the assumption that random variable support is 
bounded to nonnegative numbers.  

Secondly, the aim of clustering is the division of a 
data set – for example given in the form of the random 

sample 1x , mxx ,,2 K  – into subgroups (clusters), with 
every one including elements “similar” to each other, but 
with significant differences between particular 
subgroups [5]. In practice this often allows the 
decomposition of a large data set with differing 
characteristics of elements into subsets containing 
elements of similar properties, which considerably 
facilitates further analysis, or even makes it possible at 
all. The following clustering procedure based on kernel 
estimators, taking advantage of the gradient methods 
concept [4] will be presented now.  

Here the natural assumption is made that clusters are 
associated to modes – local maximums of the density 

kernel estimator f̂ , calculated for the considered 

random sample 1x , mxx ,,2 K . Within this procedure, 
particular elements are moved in a direction defined by a 
gradient, according to the following iterative algorithm: 

jj xx =0      for  mj  , ... ,2 ,1=  (20) 
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where 0>b  and ∇  denotes a gradient. Thanks to the 
proper choice of form of the kernel K, a suitable 
analytical formula for the gradient ∇  becomes possible. 

In practice the value )2(2 += nhb  may be used. As a 
result of the following iterative steps, the elements of the 
random sample move successively, focusing more and 
more clearly on a certain number of clusters. They can 

be defined after completing the *k -th step, where *k  
means the smallest number k  such that 
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),( , i.e. they are the sums of 

the distances between particular elements of the random 
sample under consideration before the beginning of 
algorithm (20)-(21) and having performed the (k–1)-th 
and k-th steps, respectively. For practical purposes 

001.0=c  may be used. Thus, after *k -th step, one 
should calculate the kernel estimator for mutual 

distances of the elements 
*

1
kx , 

**

,,2
k
m

k xx K  (under the 
assumption of nonnegative support of the random 
variable), and next, the value can be found where this 
estimator takes on the local minimum for the smallest 
value of its argument, omitting a possible minimum in 
zero. Finally, particular clusters are assigned those 
elements, whose distance to at least one of the others, is 
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not greater than the above value. Thanks to the 
possibility of change in the smoothing parameter value, 
it becomes possible to affect the range of a number of 
obtained clusters, albeit without arbitrary assumptions 
concerning the strict value of this number, which allows 
it to be suited to a true data structure. Moreover, possible 
changes in intensity of the smoothing parameter 
modification procedure enable influence on the 
proportion of clusters located in dense areas of random 
sample elements to the number of clusters on the “tails” 
of the distribution. The detailed description of the above 
procedure can be found in the paper [13]. 

Thirdly, the application of kernel estimators in a 
classification task is considered. Let the number 

}1,0{\N∈J  be given. Assume also, that the possessed 

random sample 1x , mxx ,,2 K  has been divided into 

}1,0{\N∈J  nonempty and separate subsets {1x , 

1
,,2 mxx K }, { 1x , 

2
,,2 mxx K }, ... , { 1x , 

Jmxx ,,2 K }, 

while mm
J

j j =∑ =1
, representing classes with features 

as mutually different as possible. The classification task 
requires deciding into which of them the given element 

nx R∈~  should be reckoned [5]. 
The kernel estimators methodology provides a natural 

mathematical tool for solving the above problem in the 
optimal – in the sense of minimum for expectation of 

losses – Bayes approach. Let thus 1f̂ , Jff ˆ , ... ,ˆ
2  denote 

kernel estimators of density calculated for subsets {1x , 

1
,,2 mxx K }, { 1x , 

2
,,2 mxx K }, ... , { 1x , 

Jmxx ,,2 K }, 

respectively, treated here as samples. If sizes 1m , 

Jmm ,,2 K  are proportional to the “frequency” of 
appearance of elements from particular classes, the 
considered element x~  should be reckoned into the class 
for which the value  

)~(1̂1 xfm , )~(ˆ , ... ),~(ˆ
22 xfmxfm JJ  (22) 

is the greatest.  
The above text also contains material from research 

carried out together with M. Charytanowicz, K. Daniel, 
and C. Prochot, published in the common papers [13, 14, 
17]. 

4.2 Fault Detection System  
The procedures presented in the previous section provide 
a complete and methodologically consistent 
mathematical tool to design an effective fault detection 
system for dynamical systems, covering detection, 
diagnosis, and also prognosis associated with them.  

Assume that the technical state of a device under 
supervision may be characterized by a finite number of 
quantities measurable in real-time. These will be denoted 

in the form of the vector nx R∈ , called a symptom 
vector. One can interpret this name noting that 
symptoms of any occurring anomalies should find the 
appropriate reflection in the features of a such-defined 
vector. More strictly, it is required that both correct 
functioning conditions and any type of diagnosed fault 
are connected with the most different sets of values 
and/or dissimilar relations between coordinates of the 
above vector as possible.  

Assume also the availability of a fixed set of values 
of the symptom vector, representative for correct 
functioning conditions of a supervised device:  

1x , 
0

 , ... ,2 mxx   , (23) 

as well as the set  

1x , Mxx  , ... ,2   , (24) 

characteristic in the case of occurrence of anomalies. 
From the point of view of transparency of the designed 
fault detection system, in particular its function of 
diagnosis, it is worth dividing set (24) into }1,0{\N∈J  
the most possibly different – in the sense of the values of 
particular coordinates of the symptom vector and/or 
relations between them – subsets assigned to the 
previously assumed types of diagnosed faults:  

1x , 
1

 , ... ,2 mxx  (25) 

1x , 
2

 , ... ,2 mxx  (26) 

               M  

1x , 
Jmxx  , ... ,2   , (27) 

while Mm
J

j j =∑ =1
. Where there is no such division, 

one can automatically divide set (24) into subsets (25)-
(29) using the clustering algorithm presented in Section 
4.1, although this then often requires laborious 
interpretation concerning each of them.  

Fault detection will first be considered. With this aim 
the procedure for the recognition of atypical elements, 
described at the beginning of Section 4.1, can be applied. 
Assume therefore that the random sample considered 
there, including elements treated as typical, constitutes 
set (23) representing the correct functioning conditions 
for a supervised device, while x~  denotes its current 
state. Applying the above mentioned procedure for the 
recognition of atypical elements, one can confirm if the 
present conditions should be regarded as typical or rather 
not, thus showing the appearance of anomalies.  

For fault diagnosis, if one already is in possession of 
samples (25)-(27) characterizing particular types of 
faults being diagnosed, then after the above described 
detection of anomalies, one can – applying directly the 
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procedure for Bayes classification presented at the end of 
Section 4.1 – infer which of them is being dealt with. 
Note that the range of faults which can be discovered by 
detection may significantly exceed all types of faults 
assumed to be diagnosed.  

Finally, if subsequent values of the symptom vector, 
obtained successively during the supervising process, are 
available, then it is possible to realize fault prognosis. It 
can be carried out by separate forecasts of values of the 

function f̂  given by dependence (19) and 11 f̂m , 

JJ fmfm ˆ , ... ,ˆ
22  to be seen in formula (22), and 

inferences based on these forecasts for detection and 
diagnosis, according to guidelines presented in the 
previous two paragraphs. To calculate the values of 

forecasts of the functions f̂ , 1̂f , Jff ˆ,...,1̂  it is 
recommended to use the classical linear regression 
method separately, though in a version enabling easy 
updating of a model during successive collection of 
subsequent current values of the symptom vector. 
Appropriate formulas are found in the book [1 – Chapter 
3 and additionally Chapter 4].  

The proper operation of the fault detection system 
investigated in this section was verified experimentally 
for a robust control applied to the task from a field of 
robotics [6]. Thus, in cases where the symptoms 
appeared abruptly, the anomalies of the device were 
promptly discovered and correctly recognized within the 
scope of detection and diagnosis. If, on the other hand, 
the fault was accompanied by a slow progression of 
symptoms, it was forecast with a correct indication of 
the type of fault about to occur (scope of prognosis), and 
later it was also discovered and identified in detection 
and diagnosis. One should underline that fault prognosis, 
still rare in practical applications, proved to be highly 
effective in the case of slowly progressing symptoms, 
discovering and identifying anomalies before the 
object’s characteristics transgressed the range for correct 
conditions for a system’s functioning, thanks to the 
proper recognition of the change in the trend of values of 
the symptom vector, which indicates an unfortunate 
direction of its evolution.  
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