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1   Introduction  

The specification, based on experimental data, of functions which characterize an ob-
ject under investigation, constitutes one of the main tasks in modern science and tech-
nological problems. A typical example here is the estimation of density function of 
random variable distribution from any given sample. The classical procedures rely 
here on arbitrary assumption of the form of this function, and then in specification of 
its parameters. These are called parametric methods. A valuable advantage is their 
theoretical and calculational simplicity, as well as their being commonly known and 
present in subject literature. Nowadays – along with the dynamic development of 
computer systems – nonparametric methods, whose main feature constitutes a lack of 
arbitrary assumptions of the form of a density function, are used more and more often. 
In a probabilistic approach, kernel estimators are becoming the principal method in 
this subject. Although their concept is relatively simple and interpretation transparent, 
the applications are impossible without a high class of computer which, even until re-
cently, significantly hindered theoretical, and especially practical research.  

In this chapter, first – in Section 2 – the basics of kernel estimators methodology 
are presented in a form suitable for researchers without thorough knowledge in the 
area of advanced statistical methods. So, the fundamental definitions of a kernel esti-
mator are described, as are one-dimensional, and also radial and product kernels for 
the multidimensional case, suboptimal – in a mean-square sense – methods for calcu-
lation of functions and parameters occurring there, as well as procedures of smoothing 
parameter modification and linear transformation. Thanks to today’s availability and 
the possibilities of contemporary computer systems as well as the automation of met-
rological and data gathering processes, the universal character of kernel estimators  
allows for their broad application in various problems of modern science and technol-
ogy, particularly those of an industrial nature. In Section 3 of this chapter, uses of 
kernel estimators are described for the following subjects:  

• data analysis and exploration – recognition of atypical elements (outliers), clus-
tering, and classification – applied to the detection and diagnosis of devices work-
ing in real-time, and planning of strategy for mobile phone operators;  

• parametric identification illustrated in automatic control applications and by tasks 
of sharpening of imprecise information;  
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• definition of spatial distribution of demand based on fuzzy data for the needs of a 
problem from the telecommunications field.  

In addition, the tasks of data compression and dimensionality reduction, based on 
artificial neural networks and evolutionary algorithms are also commented upon. 
These among others efficiently reduce calculation time in the above presented 
tasks.  

The detailed description of the basics of kernel estimators methodology can be 
found in the monographs (Kulczycki 2005, Silverman 1986, Wand and Jones 1994). 
Many applicational aspects are also found in the papers (Kulczycki 2000-2002; 
Kulczycki and Charytanowicz 2005, Kulczycki and Daniel 2006, Kulczycki and 
Mazgaj 2005; Kulczycki and Waglowski 2005, Kulczycki and Wisniewski 2002). The 
preliminary version of this text was presented as (Kulczycki 2007).  

2   Methodology of Kernel Estimators  

Let the n-dimensional random variable X, with a distribution having the density f, be 

given. Its kernel estimator ),0[ :  ˆ ∞→nf R  is calculated on the basis of the  

m-elements random sample  

mxxx  , ... , , 21   , (1)

experimentally obtained from the variable X, and is defined in its basic form by the 
formula  
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where the measurable, symmetrical with respect to zero and having a weak global 

maximum in this point, function ),0[ : ∞→nK R  fulfils the condition 

∫ =n xxK
R

1d )(  and is called a kernel, whereas the positive coefficient h is referred 

to as a smoothing parameter.  
The interpretation of the above definition is illustrated in Fig. 1, taking a  

one-dimensional random variable (i.e. when 1=n ) as an example, for a 9-element 

sample (i.e. 9=m ). In the case of the single realization ix , the function K (transposed 

along the vector ix  and scaled by the coefficient h) represents the approximation of dis-

tribution of the random variable X having obtained the value ix . For m independent re-

alizations 1x , mxx  , ... , 2 , this approximation takes the form of a sum of these single 

approximations. The constant nmh1 enables the condition 1d )(ˆ =∫ n xxf
R

, required 

of the density of a probability distribution.  
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Fig. 1. Kernel density estimator (2) of one-dimensional random variable distribution 

It is worth noting that a kernel estimator allows the identification of density for 
practically every distribution, without any assumptions concerning its membership to 
a fixed class. Atypical, complex distributions, also multimodal, are regarded here as 
textbook unimodal. In the multidimensional case, i.e. where 1>n , this enables, 
among others, the discovery of complete dependences between particular coordinates 
of the random variable under investigation.  

Setting the quantities introduced in definition (2), i.e. choice of the form of the 
kernel K as well as calculation of the value for the smoothing parameter h, is most of-
ten carried out according to the criterion of minimum of an integrated mean-square er-
ror. These problems will be discussed in Sections 2.1 and 2.2.  

2.1   Choosing the Kernel Form  

From the statistical point of view, the form of the kernel appears to have no signifi-
cance, and so it becomes possible for the choice of the function K to be arbitrary, tak-
ing into account above all the desired properties of an obtained estimator, for example 
its class of regularity, assuming (strictly) positive values or other features important in 
a considered problem, including calculational suitability. This is of particular impor-
tance in the case of complicated problems of modern industrial challenges, where the 
kernel estimator constitutes the most common basis for further comprehensive and 
complex investigations. Its obtained properties can then not only simplify further pro-
cedures, but often actually allow a concrete result, suitable for application, to be 
reached.  

In the one-dimensional case, the function K assumes the classic forms of densities 
of probability distributions, normal, Cauchy, and triangular among others, as well as – 
in specific tasks – their linear combinations. In the sense of the integrated mean-
square error criterion, the so-called Epanechnikov kernel  
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is the most effective. In the multidimensional case, two natural generalizations for the 
above concept are used: the radial kernel  

)()( T xxCxK K=  (4)

and the product kernel  

)(...)()()], ... ,,([)( 21
T

21 nnKxK xKxKxKxxx ⋅⋅⋅== , (5)

where K  denotes the aforementioned one-dimensional kernel, while C is a positive 

constant, calculated so that ∫ =n xxK
R

1d )( . For any assumed one-dimensional ker-

nel K , radial kernel (4) appears to be more effective than product kernel (5), al-
though the difference – from an applicational point of view – seems to be negligible. 
Due to this fact, the product kernel is often preferred in practical problems. Apart 
from specific statistical tasks, it proves to be significantly more suitable in further 
analysis – for example procedures of integration and differentiation of a product ker-
nel are not much different from the one-dimensional case. Among radial kernels the 
most effective is the radial Epanechnikov kernel, i.e. defined by dependence (4) when 
K  is given by formula (3). Likewise in the family of product kernels, the most ef-

fective proves to be the product Epanechnikov kernel, described by equalities (5) and 
(3).  

To summarize: the possibility of significant flexibility in choosing the form of the 
kernel K constitutes a great practical advantage which becomes more obvious as the 
specific problem under investigation is more complex.  

2.2   Calculation of Smoothing Parameter Value  

Unlike the kernel’s form, the value of the smoothing parameter has a strong influence 
on the quality of the kernel estimator obtained. Thankfully, suitable algorithms have 
been developed, allowing the calculation of the value h based on random sample (1), 
which is close to optimal in a mean-square sense.  

So, an approximation can be made – in the primary phase of the analysis – for the 
value obtained for the normal distribution  
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where σ  denotes the geometric mean of standard deviations for particular  

coordinates of the variable X, while ∫= n yyKKV
R

d )()( 2  and 
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∫= n yyKyyKU
R

d )( )( T . The cross-validation method is universal, whereby one 

calculates the value minimizing the real function R→∞),0(: g  defined as  
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when )(2)()(
~ 2 xKxKxK −= ∗ , where 2∗K  denotes the convolution square of the 

function K. Applying iterative procedures to find the minimum, the initial value can 
be taken from formula (6).  

For particular cases a number of appropriate algorithms have been worked out, 
such as the simple and effective plug-in method, used in the one-dimensional  
case.  

2.3   Additional Procedures  

The basic form of kernel estimator (2) can be generalized for overall improvement of 
its features as well as possibly extended to include additional aspects adapting the 
model to reality. As examples of such generalizations, the following procedures will 
be described:  

• modification of the smoothing parameter (Section 2.4),  
• linear transformation (Section 2.5),  

while sample extensions will be presented in  

• support boundary (Section 2.6),  
• binary coordinates (Section 2.7).  

2.4   Modification of Smoothing Parameter  

The value for the smoothing parameter h introduced in definition (2) is the same for 
all kernels related to particular values of the random sample (1). Generally, a small 
value for this parameter causes a “thinning” of the kernel, whereas a large one, its 
“flattening”. If therefore it is possible to individualize the influence of the smoothing 
parameter on specific kernels, then for areas “denser” with elements of a random 
sample, this value should be decreased (thereby better showing specific features of a 
distribution), as opposed to “sparser” areas, where it should be increased (which re-
sults in additional flattening of “tails”). With this aim modification of the smoothing 
parameter realizes the above according to the following algorithm.  

Firstly one calculates the basic form of kernel estimator (2), then its values for par-

ticular elements of the random sample, i.e. )(ˆ
1xf , )(ˆ , ... ),(ˆ

2 mxfxf , as well as 

their geometrical mean s . The modifying parameters 0>is  ),...,2,1( mi =  are 

given by  
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while 0≥c , and finally, the kernel estimator with modified smoothing parameter is 
defined as  
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This formula constitutes the generalization of definition (2). If 0=c , then 1≡is  

and consequently these dependences are equivalent. The parameter c refers to inten-
sity of the modification procedure. Corollaries arising from the integrated mean-
square error criterion show the value 5,0=c .  

Apart from an obvious improvement in quality of estimation, kernel estimators 
with a modified smoothing parameter maintain a number of additional advantages in 
practical applications. Above all they are more robust with respect to imprecise calcu-
lation of a smoothing parameter value. What is more, application of this procedure 
decreases the difference in effectiveness of particular kernel types with respect to op-
timal Epanechnikov kernel (3), as well as lowering the difference in effectiveness be-
tween product kernel (5) with respect to radial kernel (5) in the multidimensional 
case. These features are especially valuable in practice, since additionally, they in-
crease the possibility of selecting more suitable kernels for further analysis in con-
crete applicational tasks.  

2.5   Linear Transformation  

In the multidimensional case, when the radial kernel is used, one can apply a simple 
procedure fitting a kernel shape to the form of distribution of a random variable under 
investigation, based on the idea of linear transformation. The definition of radial ker-
nel (4) then generalizes to the equality  

) (
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)( 1T xRx
R

C
xK −= K   , (10)

where R is a positively defined matrix, while the meaning and value of the constant C 
remain unchanged. If R is a unique matrix, then the above formula is equivalent to 
dependence (4). Particularly useful results can be obtained by taking  

vôC=R   , (11)

where vôC  denotes an estimator of covariance of the random variable X.  

2.6   Support Boundary  

In practical problems, particular coordinates of the random variable X may represent 
various quantities. Many of these, including those dealing with distance or time, if 
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they are to be correctly and strictly interpreted, should belong to bounded subsets ex-
clusively, for example the set of nonnegative numbers. In order to avoid calculational 
errors and misinterpretations arising from this, one can apply a simple procedure 
bounding a kernel estimator’s support.  

First, the case of a one-dimensional random variable and its left boundary – i.e. when 

the condition 0)(ˆ =xf  for *xx < , with R∈*x  fixed, is required – will be presented 

below. A part of any i-th kernel which finds itself beyond the interval ),[ * ∞x  becomes 

symmetrically “reflected” with respect to the boundary *x , and is treated as a part of 

the kernel “grounded” in the symmetrical “reflection” of the element ix  with respect 

to the boundary *x , so in the point ixx −*2 . Therefore if one defines the function 
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then the basic form of kernel estimator (2) takes the shape  
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Parts of particular kernels “cut” beyond an assumed support are thus “filled in” inside 
the support directly beside its boundary, therefore within the most commonly ac-
cepted – in practice – margin of error.  

The case of a right boundary for a kernel estimator’s support can be considered 
similarly. In the multidimensional instance, the above concept can be applied sepa-
rately for each particular coordinate of the random variable under investigation.  

2.7   Binary Coordinates  

In many problems of contemporary engineering binary quantities appear, that is tak-
ing only two values, denoted symbolically hereinafter by 0 and 1. Besides quantities 
which are binary in nature, simplifications can often be applied to this form of de-
scription of even complicated phenomena, which however are of little influence to the 
final result. The methodology of kernel estimators enables binary coordinates to be 
taken into account.  

Consider first the k-dimensional binary random variable kY }1,0{: →Ω . Its distri-

bution is characterized by k2  probabilities of the appearance of each possible  
k-dimensional vector of binary values. In many practical tasks, one can also infer with 
respect to values for the probability of the appearance of a given vector with the help 
of observations of vectors “similar” to it. The greater the “similarity”, the likelier the 

inference becomes. Let therefore the function ]1,0[{0,1} : →kp  be given, mapping 

to every k-dimensional vector of binary values the probability of its appearance. The 
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kernel estimator of this function ]1,0[{0,1} :ˆ →kp  is calculated based on values of 

the m-elements random sample  

myyy  , ... , , 21  (14)

obtained from the variable Y, and is given as  
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while the function ]1,0[{0,1}{0,1}: →× kkL  defines the dependence  

),(),( )1(),( ii yydyydk
iyyL δ−δ= −   , (16)

where 15,0 ≤δ≤  and 100 =  can be assumed, whereas the function 

N→× kkd {0,1}{0,1}:  is given by )()(),( T
iii yyyyyyd −−= . The value 

),( iyydk −  shows the number of coordinates, to which the vectors y and iy  are 

equal, and represents the aforementioned “similarity” of binary vectors. The function 
L takes the role filled in definition (2) by the kernel K, and is called a binary kernel, 
while the parameter δ  is termed a binary smoothing parameter. In practice its value 
can be calculated by minimizing the function R→]1;5,0[:g  given by formula  
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where ip−ˆ  denotes estimator (15) obtained using the random sample 

mii yyyyy  , ... , , ... , , 1,121 +− , therefore, omitting the i-th element of sample (14).  

And finally, the (n+k)-dimensional random variable T],[ YXZ ≡  will be consid-

ered, being a composition of the n-dimensional continuous variable X investigated so 
far and the above defined k-dimensional binary variable Y. If the kernel estimator 

),0[}1,0{:ˆ ∞→× knf R  for the variable Z is calculated using the m-elements ran-

dom sample  
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then the basic form of kernel estimator (2) becomes  
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2.8   Sample Size  

The last parameter requiring discussion is the crucial sample size, especially its de-
pendence on the dimension of the random variable under investigation. The sample 
size ∗m  necessary to ensure a 10% accuracy at point zero for the n-dimensional stan-

dard normal distribution can be more or less taken as nm 4=∗ . Because of the excep-
tional regularity of the above distribution, and the significant looseness of the above 
criterion, such values seem to constitute an absolute minimum (suggested by e.g. 

4=∗m  for 1=n ). In the presence of binary coordinates these values should be mul-

tiplied by k)23( . Next, the obtained result is multiplied by heuristically determined 
coefficients arising from the necessity to improve the quality of estimation, multimo-
dality and asymmetry of the distribution, and also the correlation of random sample 
elements – in practice the product of these coefficients is most often equal to 3-10, in 
extreme cases even 100. For the one-dimensional random variable, the desired sample 
size in reality amounts to 20-50, increasing accordingly with the growth of a variable 
dimension. However, thanks to modern computer technology, even where multidi-
mensional and complex tasks with adverse distribution features appear, this does not 
necessarily prove to be a significant applicational obstacle nowadays. One must al-
ways take into account the considerable advantages resulting from the application of 
kernel estimators, as they enable the identification of practically any distribution ap-
pearing in applicational problems, although they require a sample size adequate for 
immensity and universality of the information contained within.  

2.9   Notes and Comments  

In Section 2 a compendium of a kernel estimators methodology has been described. 
The basic form of definition of this type of estimator found in equality (2) was formu-
lated, as were procedures for fixing quantities appearing therein. This form was  
generalized by the concept of smoothing parameter modification (9) and linear trans-
formation (10), improving the properties of the estimator obtained. Additional proce-
dures enabling the boundary of its support (13) and including binary coordinates (19) 
were presented, which allows the obtained model to be better fitted to the examined 
reality many times over. The above generalizations and supplementations were for-
mulated with respect to the basic form of the kernel estimator, which makes it possi-
ble to combine them according to the demands of the concrete applicational problem. 
Because of clear interpretation, the introduction for additional generalizations is also 
possible. As an example – for the needs of further investigations in Section 3 – basic 
form (2) can be enhanced by nonnegative coefficients iw  with mi ,...,2,1= , and not 
all equal zero, which can be interpreted as the “meaning” of particular elements of 
random sample (1). Then  
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If 1≡iw , the above formula is equivalent to definition (2).  
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Kernel estimators allow modeling of the distribution density – a basic functional 
characteristic of one- and multidimensional random variables – practically independ-
ent of its form and features. Consequently this is fundamental to obtain other func-
tional characteristics and parameters. For example, if in a one-dimensional case one 

chooses the kernel K, such that its primitive ∫ ∞−
=

x
xyKxI d )()(  may be analytically 

obtained, then the estimator of the distribution function  
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can be defined. Next, if the kernel K has positive values, the solution for the equation  

rxF =)(ˆ  (22)

constitutes the kernel estimator of quantile of order )1,0(∈r .  

Similar to the estimator of density of random variable distribution, the concept of the 
kernel estimator of spectral density can be formulated, as can be a particularly interest-
ing notion – from an applicational point of view – the kernel estimator of regression 
function. According to the general nature of kernel estimators, this function is obtained 
without arbitrary assumptions fixing its shape, for example as linear or logarithmical.  

3   Sample Industrial Applications  

The universal character of kernel estimators allows their broad application in a variety 
of contemporary problems in science and practice. This process is possible thanks to to-
day’s modern computer systems, ubiquitous and ever more powerful, as well as the 
automation of procedures for both measuring and data gathering. Below are shown 
sample applications of kernel estimators in the following contemporary industrial tasks:  

• data analysis and exploration – recognition of atypical elements (outliers), cluster-
ing, and classification – applied to the detection and diagnosis of devices working 
in real time, and planning of strategy for mobile phone operators (Section 3.1);  

• parametric identification illustrated in automatic control applications and by tasks 
of sharpening of imprecise information (Section 3.2);  

• definition of spatial distribution of demand based on fuzzy data for the needs of a 
problem from the telecommunications field (Section 3.3).  

3.1   Data Analysis and Exploration  

Here, the application of kernel estimators in basic tasks of data analysis and explora-
tion will be considered, as will the recognition of atypical elements (outliers), cluster-
ing, and classification, and also the action of these procedures in the fault detection 
and diagnosis of devices working in real-time, and planning of strategy for mobile 
phone operators.  
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First, in many problems of data analysis the task of recognizing atypical elements 
(outliers) – those which differ greatly from the general population – arises. This en-
ables the elimination of such elements from the available set of data, which increases 
its homogeneity (uniformity), and facilitates analysis, especially in complex and un-
usual cases. In practice, the recognition process for outliers is most often carried out 
using procedures of testing for statistical hypotheses (Barnett and Lewis 1994). The 
significance test based on the kernel estimators methodology will now be described.  

Let therefore the random sample 1x , mxx ,,2 K  treated as representative, there-

fore including a set of elements as typical as possible, be given. Furthermore, let 

)1,0(∈r  denote an assumed significance level. The hypothesis that nx R∈~  is a 

typical element will be tested against the hypothesis that it is not, i.e. one should de-

note it as an outlier. The statistic ),0[: ∞→nS R , used here, can be defined as  

)~(ˆ)~( xfxS =   , (23)

where f̂  denotes a kernel estimator of density, obtained for the random sample 1x , 

mxx ,,2 K  mentioned above, while the critical set takes the left-sided form  

],( aA −∞=   , (24)

when a constitutes the kernel estimator of quantile of order r, calculated for the sam-

ple )(ˆ
1xf , )(ˆ,),(ˆ

2 mxfxf K , with the assumption that random variable support is 

bounded to nonnegative numbers.  
Secondly, the aim of clustering is the division of a data set – for example given in 

the form of the random sample 1x , mxx ,,2 K  – into subgroups (clusters), with every 

one including elements “similar” to each other, but with significant differences be-
tween particular subgroups (Hand et al. 2001, Larose 2005). In practice this often al-
lows the decomposition of large data sets with differing characteristics of elements, 
into subsets containing elements of similar properties, which considerably facilitates 
further analysis, or even makes it possible at all. The following clustering procedure 
based on kernel estimators, taking advantage of the gradient methods concept (Fuku-
naga and Hostetler 1975) will be presented now.  

Here the natural assumption is made, that clusters are prescribed to modes (local 

maximums) of the density kernel estimator f̂ , calculated for the considered random 

sample 1x , mxx ,,2 K . Within this procedure, particular elements are moved in a di-

rection defined by a gradient, according to the following iterative algorithm:  
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where 0>b  and ∇  denotes a gradient. Thanks to the proper choice of form of the 
kernel K, a suitable analytical formula for the gradient ∇  becomes possible. In prac-

tice the value )2(2 += nhb  can be recommended.  

As a result of the following iterative steps, the elements of the random sample 
move successively, focusing more and more clearly on a certain number of clusters. 

Their final shape can be defined after completing the *k -th step. To this end one may 

calculate the kernel estimator for mutual distances of the elements 
*

1
kx , 

**

,,2
k
m

k xx K  

(under the assumption of nonnegative support of the random variable), after which the 
value is found where this estimator takes on the lowest local minimum, omitting a 
possible minimum in zero point. Particular clusters are assigned those elements whose 
distance is not greater than the above value. Thanks to the possibility of change in the 
smoothing parameter value, it becomes possible to affect the range of a number of ob-
tained clusters, albeit without arbitrary assumptions concerning the strict value of this 
number, which allows it to be suited to a true data structure. Moreover, possible 
changes in intensity of the smoothing parameter modification – defined in formula (8) 
by the constant c – allows influence on the proportion of clusters located in dense ar-
eas of random sample elements to the number of clusters on the “tails” of the distribu-
tion under investigation.  

Thirdly, the application of kernel estimators in a classification task is considered. 
Let the number }1,0{\N∈J  be given. Assume also, that the sample 1x , mxx ,,2 K  

obtained from the n-dimensional random variable has been divided into J separate 
subsets  

1x , 
1

,,2 mxx K  (27)

1x , 
2

,,2 mxx K  (28)

M  

   1x , 
Jmxx ,,2 K   , (29)

while }0{\,, , 21 N∈Jmmm K  and mm
J

j j =∑ =1
, representing classes with fea-

tures as mutually different as possible. The classification task requires deciding into 

which of them the given element nx R∈~  should be reckoned (Hand et al. 2001, 
Larose 2005).  

The kernel estimators methodology provides a natural mathematical tool for solv-

ing the above problem in the optimal Bayes approach. Let thus 1̂f , Jff ˆ , ... ,ˆ
2  de-

note kernel estimators of density calculated for samples (27)-(29), respectively. If 
sizes 1m , Jmm ,,2 K  are proportional to the “frequency” of appearance of elements 
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from particular classes, the considered element x~  should be reckoned into the class 

for which the value )~(1̂1 xfm , )~(ˆ , ... ),~(ˆ
22 xfmxfm JJ  is the greatest.  

The applicational possibilities of the above-presented procedures will now be illus-
trated in examples from the areas of fault detection and diagnosis for devices working 
in real-time, and a mobile phone operator’s strategy.  

Thus, the fault detection and diagnosis problem has lately become one of the most 
important challenges in modern control engineering. Early discovery of anomalies 
appearing in the operation of a controlled system, from an industrial robot to a nuclear 
reactor (i.e. detection), most often allows serious incidents and even catastrophes to 
be avoided, which could save material damage, or loss of human life. Secondly, con-
firmation of kind and location of these anomalies (i.e. diagnosis) is of fundamental 
meaning, especially when supervising large systems like complex chemical installa-
tions, as well as modern ships and airplanes. The importance of the above actions is 
multiplied by a psychological factor expressed by an increased feeling of safety, as 
well as – for the producer – prestige and commercial reputation. Finally, economic 
reasons often translate into a significant decrease in running costs, above all by ensur-
ing the proper technological conditions as well as rationalizing overhauls and reduc-
ing repairs. Among the many different procedures used with this aim, the most  
universal are statistical methods. These very often consist in generating a certain 
group of variables that characterize the state of technical performance of the device, 
and then making a statistical inference, on the basis of their current values, as to 
whether or not the device is working properly, and in the event of a negative response, 
on the nature of the anomalies.  

The procedures presented in this section, of recognition of atypical elements (out-
liers), clustering, and classification provides an appropriate tool for constructing an 
effective and suitable algorithm for use. If therefore a random sample represents con-
ditions regarded as typical, signifying the correct operation of a device, and x~  its cur-
rent state, then, using the procedure of recognizing outliers it can be confirmed 
whether this state also should be considered as typical, or rather showing the appear-
ance of anomalies (detection). In this case then, with random samples (27)-(29) char-
acterizing particular kinds of typical faults, applying the classification procedure, one 
can tell which of them is being dealt with. If the partition of elements describing dif-
ferent kinds of anomalies is ambiguous, the appropriate division into classes can be 
obtained by clustering.  

The next example of a direct application of data analysis and exploration procedures 
using kernel estimators is the planning of the strategy for mobile phone operators.  

So, the continuously high rate of growth on the global mobile phone market forces 
the development of analytical methods, which serve to precisely specify the needs of 
an ever increasing group of users of this service. All mobile phone operators now 
have offers which differ less and less, both in services provided to clients and their 
obligatory tariffs. The market is consequently dividing with the aim of considering the 
various customer requirements. This forces effective realization of a company’s strat-
egy for satisfying these needs, while at the same time maximizing profits. However, 
continuation of such a process could lead to excessive segmentation through charac-
terizing subscriber groups, which results in a loss of coherence in strategy with re-
spect to clients. To avoid this one should find applications for new solutions of a  
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systematic form. These allow a given group of mobile phone users to be divided in 
such a way that specifying a strategy with respect to the newly-formed subgroups 
does not require the whole procedure to be carried out again, yet uniquely defines the 
type of action for a given subgroup which maximizes an operator’s profits, while on 
the other hand satisfying the client. In summary, among many factors which charac-
terize every client one should select a set of such quantities which exclusively assign 
a subscriber to a specific, previously defined group of mobile service users, and spec-
ify a coherent strategy for each of them.  

The above tasks, to which the methodology presented above will be applied, con-
cern the business market of a particular mobile phone operator. The aim of the re-
search is to define the appropriate strategy for a given client, taking into account such 
factors as – for example – mean monthly income from each SIM-card, length of sub-
scription, and number of active SIM-cards. Based on the model constructed with the 
statistical kernel estimators methodology, the selected group of firms undergoes divi-
sion into subgroups (clusters) characterized by the above factors. Both before and af-
ter clustering, those elements which are noted to be atypical (outliers) are excluded 
from the sample. The obtained division of clusters will result in the possibility of de-
fining a concrete, preferred strategy with respect to each of them. Next, the algorithm 
enables the classification of any one firm involved in negotiations into the closest 
cluster with respect to its given characteristics, while also allowing the specification 
of an appropriate strategy. This will consist of the proper use of discounts which the 
operator can apply with regard to the client, all the while monitoring the costs in-
curred. Depending on which solution is applied concerning the subscriber, the risk of 
their leaving the given operator changes. On the other hand, it is important to find the 
threshold, where it is still profitable to continue providing a discount with the goal of 
keeping the client. In the conditions of fierce competition on the mobile phone mar-
ket, the proper analysis and exploration of information contained in a client database 
not only allows for it to be effectively maintained, with the appropriate steering of the 
operator’s development, but also becomes a source of information and solutions cru-
cial to the acquisition of new clients.  

It is worth mentioning the possibility of applying data compensation and dimen-
sionality reduction procedures for the methodology described in this section. These 
among others efficiently lower calculation time in the above presented tasks.  

In practice some elements of samples representing particular classes may be of lit-
tle importance – from the point of view of propriety of statistical inference – or even 
contribute to mistakes. Their removal should therefore result in a reduction in the 
number of inappropriate decisions and also an increase in calculation speed. In order 
to realize this task one can apply the sensitivity method, patterned on the artificial 
neural networks theory.  

For similar reasons the suggestion arises to reduce the dimensionality of the con-
sidered random variable X  by the linear transformation  

AXX =*  (30)

mapping the space nR  onto the space 
*nR  with significantly smaller dimension 

nn <* . The elements of the matrix A  should be selected such that the distances of 
particular random sample elements in both spaces are as mutually close as possible. 
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Since the number of these elements amounts to *nn ⋅ , which in practice makes using 
classical optimization methods impossible, then evolutionary algorithms can be pro-
posed for the above task.  

The above section contains results presented in the book (Kulczycki 1998), as well as 
material from research carried out together with Cyprian Prochot and Karina Daniel, 
published in the common papers (Kulczycki and Prochot 2004) and (Kulczycki and 
Daniel 2006), and also recently commenced works with Piotr Andrzej Kowalski and 
Szymon Lukasik.  

3.2   Parameter Identification  

One of the main problems of systems engineering is parameter identification – the 
specification of values of parameters existing in an investigated model. In a typical 
practical task, m independent measurements of the parameter, although suffering from 
errors of different origin, are available. On this basis one should define the value 
which, from an overall point of view of the problem to be worked out, would best rep-
resent phenomena described by this parameter. Usual estimation procedures, based on 
minimum integrated mean-square error or maximum likelihood methods, are applied 
mostly because of their popularity and availability in subject literature, however they 
do not allow differing causes of estimation errors to be taken into account.  

This problem will be illustrated for the example of optimal control. The performance 
index, fundamental for the above task, may be used for testing not only the  
quality of a control, but also the procedure of identifying model parameters. As an ex-
ample let the system, whose dynamic is described by the following differential equation  
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while }0{\R∈v , be given. If the optimal feedback controller with quadratic per-

formance index has been constructed with the value }0{\R∈V  not necessarily 

equal to the parameter v  existing in object (31), then the obtained graph for this in-
dex can be approximated with reasonable precision by a quadratic function where co-
efficients differ for negative and positive errors (Fig. 2). Treating obtained values of 
an examined parameter as realizations of a random variable with the distribution den-
sity f , one can calculate the value of the optimal – in the sense of minimum expecta-

tion value of performance index for the control – estimator using Bayes’ decision rule 
(Berger 1980). If the distribution of the above random variable is obtained with the 
aid of kernel estimators, the algorithm worked out is suitable for calculational proce-
dures and in consequence for practical use.  

First, a basic case will be investigated, considering the single parameter v. As a set 
of possible decisions R=D  can be assumed, while the loss function is given as the 
asymmetrical quadratic form:  
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Fig. 2. Performance index value as a function of the parameter V ; ( 1=v ) 

where 0, >qp  (note that these coefficients can be different), and v̂  denotes the de-

sired value of the Bayes decision which here fulfills the role of optimal estimator. 
This value is then given as the solution of the following equation with the argument 
v̂ :  
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Solving the above criterion is generally no easy task. If, however, the kernel esti-
mators methodology is used in specifying the density f, then, thanks to the proper 
choice of the kernel form, the effective numerical algorithm can be obtained. Let 
therefore m measurements for the examined parameter be given, treated as random 
sample (1). For the chosen kernel K one may define the following real mappings:  
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and (for the basic form of kernel estimator (2) ):  
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Then, criterion (32) takes the form of the equation  
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If the kernel K assumes (strictly) positive values, the above solution exists and is 
unique. Denoting the left and right sides of the above equation as follows  
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and calculating the derivative of function (39):  

pvJqpvL −−=′ )ˆ()()ˆ(   , (41)

one can then – using Newton’s iterative method – effectively obtain a solution for cri-

terion (32) as a limit of the sequence ∞
=1

)( }{ i
iv  given by the formulas  
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The properties of kernel estimators allow generalizations of the above concept to 
be made for the multidimensional (parameters’ vector), conditional (dependence on 
conditional factors), and polynomial (loss function to a power greater than two) cases.  

Thus, in the multidimensional case, i.e. the task of a parameters’ vector estimation, it 
is possible to carry out the above-proposed procedure with respect to a multidimensional 
random variable. As an example, if for the two-dimensional parameters’ vector 

T
21 ],[ vvv =  one assumes the loss function in the following asymmetrical quadratic 

form:  
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where 0 ,, , >dgpl cccc , 0 , ≥pgld cc  and 0 , ≤lgpd cc , then here criterion (32) 

takes on the form of two equations, defining Bayes’ decisions 1v̂  and 2v̂  of similar, 

albeit slightly more complex form.  
In the case where the examined parameter depends heavily on a conditioning factor, 

the proposed procedures can be generalized with the purpose of including its influence. 
Let therefore the conditioning factor be given in the form of the random variable Z, tak-
ing the form of the composition of an n-dimensional continuous variable, whose distri-
bution has a density, and a k-dimensional binary variable. Statistical kernel estimators 
can be used to estimate the density of total distribution. During application of the proce-
dure, after fixing the concrete value of the conditional factor )ω(Z , criterion (33) can 

be applied to a “cross-section” defined by this value. When significant conditioning for 
factors represented by variable Z occurs to an object under consideration, such an  
approach can considerably improve the quality of received results.  

The form of the asymmetrical quadratic loss function (32) may be generalized to a 
polynomial case:  
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while 0>p,q  and ,...,k 32=  . For instance when 3=k , a criterion analogical to 

equation (33) becomes  
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The above text contains material from research carried out together with Aleksan-
der Mazgaj, published in the common paper (Kulczycki and Mazgaj 2005).  

Similar investigations concerning an asymmetrical linear loss function, i.e. in the 
case when formula (32) is replaced with the following dependence  

⎩
⎨
⎧

≥−−
≤−−−

=
0ˆfor    )ˆ(    

0ˆfor   )ˆ(
),ˆ(

vvvvq

vvvvp
vvl   , (47)

where 0, >qp  (while these coefficients can differ) were used to sharpen imprecise 

information in research carried out together with Malgorzata Charytanowicz, and pub-
lished in the common paper (Kulczycki and Charytanowicz 2005).  

3.3   Definition of Spatial Distribution of Demand  

The Local Multipoint Distribution System (LMDS) is applied by telecommunications 
operators for wireless broadband data transmission purposes, which to a large degree re-
sults from a radical rise in the demand for Internet access. This system allows to connect 
the operator’s network node to the buildings in which customers are located, without the 
necessity of constructing an expensive cable infrastructure. Thus, data is transmitted be-
tween base-stations, distributed across a metropolitan area, and providing regular  
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connections with subscriber-stations located within the effective coverage of trans-
ceivers belonging to base-stations. Subscriber-stations installed on building roofs or 
facades then transmit data to customers through local (e.g. cable) networks. An essen-
tial factor which often decides about the economic justification of the LMDS system 
implementation is to determine base-station locations so that the highest profit can be 
achieved within the available investment funds. In this section an algorithm for de-
signing an optimal system of LMDS base-stations will be presented.  

The distribution of the spatial demand for data transmission services in the area 
under consideration has strict point structure regarding particular potential customers. 
Such a model has, however, limited applicational significance, since it is practically 
unidentifiable in a metropolitan area. Here, statistical kernel estimators will be applied 
for this purpose. The variable X existing in their definition is therefore two-
dimensional, with its particular coordinates representing latitude and longitude. Thus, 
once in possession of a data base composed of m potential locations of subscriber 
buildings, with each of them characterized by its geographical position 

T
21 ],[ iii xxx =  and the coefficient iw  representing potential demand for data 

transmission services corresponding to this location (see formula (20) ), one can calcu-
late the kernel estimator describing the density spatial distribution of demand in a 
given area. Such identified distribution becomes continuous due to the properties of 
statistical kernel estimators. Moreover, thanks to the averaging aspects of such esti-
mators, it is possible to use a simplified data base, including only the locations of 
main subscriber buildings, and also taking smaller objects in their neighborhood into 
account in the corresponding coefficients iw . This considerably facilities the most 

difficult and expensive phase of the procedure of planning optimal locations of 
LMDS base-stations.  

In practice, it is not difficult to point out a limited number of k sites for installing 
base-stations, including e.g. tall buildings and telecommunications towers. When one 

possesses the kernel estimator f̂  characterizing the spatial distribution of demand in 

the area under investigation, for any such location jx  ( kj ,...,2,1= ) the perform-

ance index can be defined as  

xxfE

jC
j d )(ˆ∫=   , 

(48)

where jC  denotes a circle with the center at jx  and the positive radius jr  represent-

ing maximum range of the transceiver mapped to this location. Thanks to the proper 
form of the kernel it is possible to describe this value with an analytical formula. It 
should be underlined that, from the point of view of the optimization problem investi-

gated here, the positive constant )(1
1

2 ∑ =
m

i iwh  present in definition (20) may be 

omitted.  
Based on the above dependence one can calculate the performance index for any 

system of base-stations with specific types of transceiver (or lack thereof, where in-
stallation of such equipment is not foreseen) mapped to particular locations. The  



88 P. Kulczycki 

proposed procedure also allows “shaded” areas (where transmission is not possible 
because of uneven terrain or obstacles, e.g. tall buildings) to be taken into account, as 
well as limited bitrate of equipment. Namely, in very attractive districts, demand for 
coverage by particular transceivers can not be satisfied by one base-station and so 
some of the unsatisfied demand should be met by another base-station within range – 
the optimal division is calculated based on the classic linear optimization methods, in 
particular the simplex algorithm.  

With possession of the performance index for a fixed base-stations system created 
above, one can calculate – using operational research procedures, in particular the 
branch and bound method – their optimal system within the available investment 
budget. It is also possible to expand the problem to the task of planning over a few 
years, with changing conditions.  

The coefficients iw  for mi ,...,2,1=  represent the demand for teletransmission  

services assigned to particular subscriber-station locations. Their identification is in 
practice conducted on the basis of an expert opinion expressed verbally, often based on 
intuitional premise. Consequently, the description of the predicted demand for tele-
transmission services by a subscriber-station will require fuzzy logic elements. The task 
with fuzzy character of the coefficients iw  introduced in definition (20) is commented 

below in detail, as such a problem can arise in various applications of kernel  
estimators in engineering challenges. What should be taken into account here is the spe-
cific nature of the task under consideration: a lot of fuzzy numbers (equal to the sample 
size m) necessary to identify and to use in subsequent analysis, as well as the fact that 
incidentally, the coefficients iw  may be deterministic owing to previously executed 

agreements.  
In this situation, especially suitable are fuzzy numbers of the type L-R, whose 

membership function is denoted here in the following form:  
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where R∈iw  and 0β ,α >ii , while the real functions L and R are symmetrical with 

respect to zero, assume here the value 1 and are nondecreasing within the interval 
]0,(−∞ . The parameter iw  may therefore be interpreted as a modal value, while iα  

and iβ  describe left- and right-hand concentration around that value, respectively. 

The fuzzy number A  of the type L-R may, therefore, be identified by three parame-
ters, which will be denoted as )β ,α ,(w=A , and, consequently, the process of iden-

tification requires only to determine the values which are close to intuitional interpre-
tation. Algebraic operations on fuzzy numbers of the type L-R are defined as follows:  

)ββ ,αα ,()β,α,()β,α,( BABABABBBAAABA +++=+=+ wwww  (50) 
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)ββ ,αα ,()β,α,()β,α,( BABABABBBAAABA ++−=−=− wwww  
(51)

)β ,α ,( AAAA cccwc =⋅   , (52) 

where A  and B denote fuzzy numbers, while c is a positive real number. If one 
adopts the notation in which the real number a is described in the form of three  
parameters )0 ,0 ,(aa = , those operations may be generalized to addition and sub-

traction of the fuzzy and real numbers. Moreover, formulas (50)-(52) also correctly 
express the operations on two real numbers. Finally, the result is that the fuzzy num-
ber of the type L-R in the above range is a generalization of the real number. In the 
end, each coefficient iw  introduced in formula (20), was generalized to the three-

parameter fuzzy number suitable for identification and calculation in practice, denoted 
below as )β ,α ,( iiii w=W . In a special case, )0 ,0 ,( ii w=W  may represent the real 

(nonfuzzy) number iw .  

If the coefficients iw  are fuzzy, then the performance index of the base-station 

system under consideration has a form of linear combination of three-parameter fuzzy 
numbers i W , and, therefore, due to formulas (50)-(52), it also becomes a three-

parameter fuzzy number, denoted below as E. To allow for the comparison of quali-
ties of particular base-station systems, the methodology of fuzzy preference theory 
(Fodor and Rubens 1994) will be applied. The preference function P  of the fuzzy 
number E, with the bounded support of the membership function, will be adopted in 
the form resulting from the decision-making practice (Berger 1980):  
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where ]1,0[δ∈ , Eμ  means the membership function of the fuzzy number E, while 

Eμ supp  denotes its support. The value of the membership function is therefore a 

linear combination with weights δ  and δ1−  of the average value of the fuzzy num-
ber and the minimum value of its support. The average number corresponds to the 
Bayes decision rule and expresses a “realistic” operation, while the minimum value of 
the membership function support results from the minimax rule and represents the 
“pessimistic” point of view. The parameter δ  determines therefore the company’s 
strategy in the range from realistic (assuming average predicted demand) for 1δ = , to 
pessimistic (assuming the lowest level of predicted demand) for 0δ = . When clear 
preferences are missing, the value 5,0δ =  can be proposed.  

Finally, when two base-station systems characterized by fuzzy performance in-
dexes are considered, the one for which the preference function (53) is larger should 
be treated as the “better”.  
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The above section contains material from research carried out together with Jacek 
Waglowski, published in the common paper (Kulczycki and Waglowski 2005).  
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