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Fuzzy Controller for Mechanical Systems
Piotr Kulczycki, Member, IEEE

Abstract—In many applications of motion control, the occur-
rence of nonlinear friction constitutes a fundamental obstacle in
the design of satisfactory controlling systems. Since it is seldom
possible to obtain a relatively accurate model of resistance to mo-
tion, a solution more and more often applied in practice is to in-
troduce approaches that incorporate the inevitable imprecisions
of the model in the form of uncertainties. This paper deals with
the time-optimal (minimum-time) control for mechanical systems
with a discontinuous and uncertain model of resistance to motion.
A fuzzy approach is used in the design of suboptimal feedback con-
trollers, convenient in practice thanks to their many advantages,
especially in respect to robustness.

Index Terms—Fuzzy models, robustness, suboptimal controller,
time-optimal control.

I. INTRODUCTION

PROBLEMS of time-optimal (minimum-time) control have
been considered since the early introduction of optimiza-

tion theory in control applications. Basic solutions for mechan-
ical systems with a single degree of freedom are well known and
can be found in many textbooks (see, e.g., [1, ch. 7.2] or [2, sec.
8]). However, these solutions rely on an object model, and the
performance of the obtained control system seems to be very
sensitive to occurring mismatches and uncertainties. Therefore,
in recent years, many authors have taken up such problems, as
well as the robust control techniques needed to cope with them
(see in particular [3], [4], and also [5]–[7]). A major source of
uncertainty in models of mechanical systems is friction, espe-
cially dry friction and stiction effects, and various models for
resistance to motion suitable for control purposes have been in-
vestigated (see survey paper [8] or book [9]). However, these
models mostly include many parameters whose actual values
cannot be determined by proper experiments; moreover, they
increase the dimensionality of the object model to such an ex-
tent that the synthesis of useful time-optimal controlling struc-
tures becomes virtually impossible. In the present paper, that
problem has been solved by the introduction of the fuzzy type
of uncertainty to the discontinuous model for resistance to mo-
tion, which has made it possible to propose new types of control
structures that take into account the complex nature of friction
phenomena, without the undue complication of a control law.
Moreover, such a concept also considers the perturbations and
noise naturally occurring in the system.

Thus, the dynamics of single-degree-of-freedom mechanical
systems with friction can be described in its fundamental ver-
sion by the differential equation

(1)
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where denotes the position of an object andis a bounded
control: either a force or a torque depending on the applications.
The core of the above model is the function, which represents
the resistance to motion and is most often related to friction phe-
nomena that depend predominantly on velocity but, generally,
also on position and time, e.g., if there are spring forces and/or
gravitational effects. This function can be described in the fol-
lowing form, inspired by the physical perspective:

sgn (2)

where is a nonnegative real number. The sgn mapping de-
scribes the discontinuous nature—with respect to velocity—of
friction phenomena. In real systems, however, the number
cannot be sufficiently specified because it represents an overly
dispersed range of physical phenomena. In the present paper,
this number will be defined as a fuzzy set. In this situation, such
a factor takes into account—as a fuzzy uncertainty—the depen-
dence of resistance to motion on a number of factors, e.g., posi-
tion, as well as velocity or even temperature and disturbances.
By its very nature, the above fuzzy approach offers the possi-
bility to describe a complex reality with a precision that exceeds
classical modeling techniques. Allowing for some discomfort
resulting from the uncertainty introduced into the model (note,
e.g., that the state of the dynamical system starts to be fuzzy,
too), one may achieve a characteristic that is essential in modern
engineering: robustness of the designed control system.

Finally, let

1) and represent ini-
tial and target states, respectively;
2) denotes a fuzzy set with a support such that
supp ;
3) the difference equation

(3)

sgn (4)

and the initial condition

(5)

describe the dynamics of a system with the fuzzy state
, submitted to the control limited to the in-

terval [ 1,1].
The goal of this paper is to design a suboptimal (in respect to
time) feedback controller, whose values directly depend only
on the valid state of the object, obtained by a real-time mea-
surement process.

The foregoing problem has been formulated in a fundamental
version in order to assure the clarity of the investigations. Sec-
tion V will provide example concepts of generalizations to
forms frequently used in engineering applications.
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Fig. 1. Time-optimal controller (12) and trajectories in the casey = 0.

II. SOME AUXILIARY CONSIDERATIONS

In the following section, an auxiliary task will be investigated.
Let at this point the fuzzy set be reduced to the real number

. Due to Assumption 2, .
Suppose that and are unique solutions

[10] of the ordinary differential equation related then to system
(3-4)

(6)

sgn (7)

with the condition
, defined on the interval , and generated

by the control or , respectively. Moreover,
consider

for (8)

for (9)

therefore, these are the sets of all states which can be brought
to the target by the control or ,
respectively. Also let

such that there exists

with (10)

such that there exists

with (11)

where . The time-optimal
control is then expressed by the following [11]:

if
if
if

(12)

and the set constitutes a switching curve (Figs. 1 and 2).

Fig. 2. Time-optimal controller (12) and trajectories in the casey 6= 0.

Fig. 3. Trajectories forW > w in the casey = 0.

In the time-optimal feedback controller equations, i.e.,
(8)–(12), the parameter intervenes, because it influences
the form of the trajectories and, there-
fore, also the shape of the switching curve. In the fuzzy
system, however, its value is of course not uniquely defined.
The analysis of the system’s sensitivity to the value of that
parameter [11], which is briefly presented below, will then
be of great importance. Thus, the value of the parameter
occurring in the object is still denoted as; however, the value
used in feedback controller equations will be marked by;
therefore, the parameter can be interpreted as an (uncertain)
knowledge about the parameterneeded for the purpose of
the synthesis of the feedback controller.

The case where the second coordinate of the target state is
equal to zero, i.e., with , will be considered first.

If , the control is time-optimal (Fig. 1). The state of
the system is brought to the switching curve, and being perma-
nently included in this curve hereafter, it reaches the target in a
minimal and finite time.

The trajectory representative for is shown in Fig. 3.
As a result of its having oscillations around the target, over-
regulations occur in the system. The target is reached in a finite
time.
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Fig. 4. Trajectories forW < w in the casey = 0.

Fig. 4 shows, however, the trajectories that are representative
when . After the switching curve is crossed, sliding
trajectories [12] appear in the system. Here, too, the target is
reached in a finite time.

In both of the last two cases, i.e., with , the time to
reach the target increases from the optimal more or less propor-
tionally to the difference between the valuesand .

The remaining case will be presented now. Let, in
particular, ; investigations for can be made
analogously.

If , the control is time-optimal (see again Fig. 2), and
the considerations are identical as before for .

When , the trajectories occurring in the system create
a limit cycle; the target is not reached (see Fig. 5).

Finally, for (Fig. 6) only some of the trajectories
(marked on Fig. 6 with arrows) reach the target in a finite time.
Other trajectories attain only the end point , which is
the intersection of the axis and the switching curve; the state
does not then reach the target. Sliding trajectories occur on the
switching curve.

III. SUBOPTIMAL FEEDBACK CONTROLLER FOR AFUZZY

SYSTEM

In this section, the fuzzy system (3)–(5), which is the subject
of the present paper, will be considered. The parameter, intro-
duced in the previous section, happens to be a fuzzy setin the
problem worked out here. A fuzzy set naturally cannot be used
directly to define a control in a real system. For this reason, some
elements of fuzzy decision theory [13] will be used. Its aim is
to make the optimal selection of one element from all possible
decisions on the basis of a membership function.

Let the following be given: a fuzzy set (with the member-
ship function representing the state of reality,
a nonempty set of possible decisions, and a loss function

(13)

where the values can be interpreted as losses occurring
in the hypothetical case when the fuzzy setis reduced to the

Fig. 5. Trajectories forW > w in the casey 6= 0.

Fig. 6. Trajectories forW < w in the casey 6= 0.

real number , and the decision has been made. Denote by
the minimax loss function

(14)

If additionally for every the integral
exists, suppose also the Bayes loss function
defined as

(15)

Every element such that

(16)

is called a minimax decision and, analogously, every element
such that

(17)

is called a Bayes decision. The procedures for obtaining these
elements are said to be minimax and Bayes rules, respectively.
The main difference between the above rules appears in their
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interpretation. This results directly from the forms of the func-
tions and : the “pessimistic” minimax rule assumes the oc-
currence of the most unfavorable state of reality and counteracts
it, while the Bayes rule is more flexible.

In the problem of a time-optimal control investigated here,
the parameter used in the feedback controller
equations will be treated as a decision, and the numberoc-
curring in system (3-4), as the fuzzy state of reality. The loss
function (13) is defined for , and its values
are related to the time to reach the target, if in the feedback con-
troller equations the parameter was used, while hypotheti-
cally in the object the value is occurring.

Once again the case will be considered first. The
following suggestions for the determination of the value of the
parameter result from the analysis of the auxiliary problem
presented in the previous section.

If overregulations can be allowed, it is worthwhile using the
Bayes rule with real values for the loss function. Such a choice
is possible because the determination of the parametervalue
that is either less than, equal to, or greater thanallows the
system state to be brought to the target in a finite time. (How-
ever, this time increases approximately proportionally to the dif-
ference between the values and .)

If overregulations are not allowed, this determination should
be carried out on the basis of the minimax rule, assuming infinite
values of the loss function for . This enables the over-
regulations to be avoided, because they occur only if .

Let now . The case will be considered; the
investigations for are analogous.

The condition is impossible to obtain in practice.
However, the determination of a parametervalue that is ei-
ther greater or less than precludes reaching the target from
any initial state, because of the occurrence of the cycle (Fig. 5)
or the existence of the end point (Fig. 6). In the proposed feed-
back controller, the switching curve will be divided into three
parts. The division points are the target and the point of intersec-
tion with the axis . For every part, there will be differently de-
termined values of the parameter, which for particular parts
are defined in the following as and .

The value of the parameter , i.e., the one that defined
the part of the switching curve , which means for

(see also Fig. 9), should be determined using the min-
imax rule with infinite values of the loss function for .
This choice is made in order to avoid the generation of a limit
cycle, which appears when the value of the parameteris
greater than . If, however, this value is smaller than, the
state of the system is brought to the target in a finite time.

For the determination of the value of the parameter
defining the part for , it is necessary to apply
the minimax rule with infinite values of the loss function
for . This is because an overly large value of the
parameter allows the state to be brought to the part defined
by the parameter , which, as was demonstrated above, can
be successfully determined. An overly small one, however,
causes the occurrence of the end point, whose existence is not
admissible from the point of view of utility.

Finally, the value of the parameter defining the part
for can be obtained using the Bayes rule with real

Fig. 7. Membership function� , specified using the kernel estimators
technique [14], for experimentally obtained values of resistance to motion
w ;w ; � � � ; w ; (K � Gauss curve with restricted “tails,”h = 0:08).

values of the loss function. Both overly small and overly large
values of this parameter are acceptable, because this allows the
state to be brought to the parts defined by the parameters
and , which can be successfully determined as shown above.

Suppose, as an example, that the fuzzy sethas the support
of the form supp , and moreover let
its membership function be continuous and positive in the
interval . (The exemplary membership function, spec-
ified using the kernel estimators technique [14], for experimen-
tally obtained values of resistance to motion is shown in Fig. 7;
for the sake of clarity, the basic form with only six independent
measurements has been used.) The loss function (13) will be de-
scribed by the following:

if
if

(18)

where , but only one of them can be infinite;
in this case, let .

According to the above assumptions, it is accepted that
.

With the fixed value of the parameter , from the defini-
tions of minimax and Bayes loss functions (14) and (15), the
following results, respectively:

(19)

(20)

If , then from (19) it can be determined that the infimum
of the function on the set is realized by

(21)

and if , then this infimum is assumed for

(22)
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The values indicated by (21) and (22) constitute the desired
minimax decision with infinite values of the loss function for

and , respectively.
With real positive values and , however, the function is

differentiable in the interval ; therefore, one obtains

(23)

as well as

(24)

Using (23), the equivalence of the following conditions can be
proved by elementary transformations:

(25)

(26)

Equation (24) implies that the function is positive in the set
; therefore, the function is here strictly convex. Be-

cause , (26), equivalent to condition (25),
is fulfilled only at one point; at this point, then, the function
assumes its minimum, global in the set due to
the continuity of this function at the points and . Finally,
the value that fulfills condition (26) constitutes the desired
Bayes decision with real values of the loss function. To obtain
this value one can use the kernel estimators technique, according
to the algorithm presented in papers [15], [16]. Finally, the proof
of condition (26), omitting the assumption of the continuity of
the membership function , is found in article [16].

To summarize, in accordance with the considerations stated
before, if the values of the parametersor should
be determined due to the minimax rule with infinite values of the
loss function for or or the Bayes rule with
real values of this function, then they can be obtained from (21),
(22), or (26), respectively.

If one possesses the obtained valuesor , the
feedback controller equations can be calculated. Thus, the equa-
tions of the switching curve take on the form

for (27)

for (28)

for

(29)

in the case . [(27) defines the set , while dependen-
cies (28) and (29), the set .] For , the equations are
analogous. If , one should substitute, in (27) and (29),

(dependence (28) has no meaning here). The
sets and constitute adequate areas resulting from the
section of the plane by the curve , according to (10) and

Fig. 8. Fuzzy feedback controller (30) and trajectories in the casey = 0.

Fig. 9. Fuzzy feedback controller (30) and trajectories in the casey 6= 0.

(11). For the sets obtained in this way, the
value of the control is simply defined by

if
if
if

(30)

where means the object state, obtained by a real-time
measurement process in the moment. Figs. 8 and 9 provide
an illustration of the control structure worked out here with the
trajectories it generates.

The control designed above may lead to chattering, i.e.,
frequent switchings between the two values and along
sliding trajectories. In mechanical systems, such a phenomena
can have a negative impact on the actuator life and excite
vibrations in elastic transmissions, hence, it should be avoided.
Under the assumption that the control may take any value in
the interval , this goal can be obtained by substituting a
modified control law, rendered continuous instead of discon-
tinuous (30).

As before, the case will be considered first. Initially,
the next parameter can be introduced, in addition to the
constant used so far, with the condition .
Let also, beside the sets and defined by (8) and (9)
for the parameter (or more precisely ), similar sets
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Fig. 10. Fuzzy feedback controller (35) and trajectories in the casey = 0.

and be given for the constant (see Fig. 10). Defining
moreover

such that there exists and

with (31)

such that there exists and

with (32)

where , and slightly altering
(10) and (11) to

such that there exists

with (33)

such that there exists

with (34)

the time-optimal control can now be given by

if
if
if
if
if

(35)

with the function continuously and strictly in-
creasing from the value1 on the sets and to the value
1 on the sets and . A suitable value for the parameter

can be determined heuristically; in general, the difference
should be proportional to the delay in the system.

The trajectories generated by control (35) are shown in Fig. 10
for . Thus, control law (35) constitutes the continuated
variant of control (30), which is of the “bang-bang” type.

Fig. 11. Fuzzy feedback controller (35) and trajectories in the casey 6= 0.

And now, the second case will be worked out. As pre-
viously, in addition to the parameters defined earlier,
two further constants must be determined heuristi-
cally according to the delay in the system, subject to the con-
ditions . The con-
cept introduced in the preceding paragraph, expressed by (35),
should be applied here twice in a natural way. An illustration of
the control structure such obtained, along with the trajectories
it generates, is provided in Fig. 11.

IV. SIMULATION RESULTS

The correct functioning of the suboptimal structures de-
scribed in this paper has been verified by numerical simulations.
The object was a single-degree-of-freedom mechanical system
(1) with the discontinuous model of resistance to motion given
in the form of the so-called Stribeck curve [19], obtained
experimentally from a metallurgic reversing mill. Random
components with expectation values 2–10% of proper averages
were added to the particular quantities, representing perturba-
tions and noise occurring in the system.

Typical results obtained for control structures (30) and (35)
worked out in this paper are shown in Figs. 8–11. If it is assumed
that over-regulations are undesirable, then they did not occur in
the controlled object, though the times to reach the target set
were then greater than those obtained without this limit. In con-
clusion, it should be strongly emphasized that the control struc-
tures presented in this paper turn out to be only slightly sensitive
to the inaccuracy resulting from identification and the occur-
rence of perturbations. Such robustness should be emphasized
as a very valuable property of uncertain, especially fuzzy, con-
trol systems.

Table I contains a comparison of the times obtained using
feedback controllers (30), (35) designed in this paper, classical
sliding mode control [18], and a friction compensation system
(similar to that presented in [19] for an inverted pendulum).
The shortest times were obtained using structure (30). The re-
sults obtained by continuated structure (35) were comparable,
though 1–3% worse. Finally, the times to reach the target set for
the sliding mode control were 5–10% greater, which seems ob-
vious due to the lack of optimal selection of parameter values.
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TABLE I
TIMES TO REACH THE TARGET SET, OBTAINED USING FEEDBACK CONTROLLERS(30), (35), SLIDING MODE CONTROL, AND FRICTION COMPENSATIONSYSTEM

The least satisfactory results were obtained for the friction com-
pensation system, which can be explained by the general diffi-
culties entailed in using such methods for tasks with bounded
control (since, generally speaking, it is necessary here to apply
a yet sharper boundary in order to assure a certain reserve that
will allow for possible compensation of friction; once obtained
practically in this manner, the control values can then be far from
maximal).

V. SUMMARY AND FINAL REMARKS

This paper has dealt with the problem of time-optimal control
for single-degree-of-freedom mechanical systems with the dis-
continuous and uncertain model of resistance to motion. A fuzzy
approach has been used in the design of discrete-time control
laws (30) and (35), in discontinuous and continuous versions,
respectively.

As mentioned in Section I, the problem worked out here has
been formulated in a fundamental version in order to assure the
clarity of the investigations. However, the material presented
here allows for the easy introduction of generalizations to forms
that are frequently used in engineering applications.

First, let , introduced in (1), mean the momentum obtained
from the drive, which is treated here as a inertial element with
the constant , i.e.,

(36)

and subsequently letbe a bounded control (for the engineering
basics and interpretation, see, e.g., [1, ch. 7.4] and [20]). If the
number is treated as the fuzzy set, the concept of the feed-
back controller presented here can easily be generalized to a
system constructed in this way. An analysis of sensitivity to the
value of the parameter produces results similar to those pre-
sented in Section II: namely, an overly large value used for the

feedback controller equations implies sliding trajectories, while
too small value generates limit cycles. Of course, due to the in-
crease in the dimension of the vector state to three, the switching
curve crosses into the switching surface and the analysis be-
comes much more complex, but the basic principles remained
unchanged in terms of the fundamental concept presented ear-
lier in this paper.

Once again, let the basis for considerations constitute the fun-
damental system described in Section I. If one transforms (1) to
the form

(37)

then one obtains the well-known model of a DC motor with
the friction model and the constants describing viscous
damping as well as representing the momentum of inertia (for
the engineering basics and interpretation, see, e.g., [2, sec. 36]
and [21]). Here, too, by treating the parametersand as the
fuzzy sets and , the concept presented in this paper can be
generalized for purposes of synthesizing the time-optimal con-
trol, in accordance with the scheme presented in the previous
section. Here, also, the occurrence of sliding trajectories and
limit cycles is dependent on the value of those parameters used
for feedback controller equations. The differences are rather of
a technical nature, e.g., the shapes of trajectories are variable,
which naturally implies a different type of formulas (27)–(29).

Finally, the concept presented here can be used in a sim-
ilar fashion for many other models of mechanical systems fre-
quently encountered in engineering applications.

REFERENCES

[1] M. Athans and P. L. Falb,Optimal Control. New York: McGraw-Hill,
1966.

[2] W. G. Boltianski,Mathematical Methods of Optimal Control. Mos-
cow, USSR: Nauka, 1969.

[3] A. Weinmann,Uncertain Models and Robust Control. Berlin, Ger-
many: Springer-Verlag, 1991.



652 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 5, OCTOBER 2000

[4] K. Zhou, J. C. Doyle, and K. Glover,Robust and Optimal Con-
trol. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[5] R. Gorez and M. De Neyer, “Fuzzy control of robotic manipulators
and mechanical systems,” inFuzzy Reasoning in Information, Deci-
sion and Control Systems, S. G. Tzafestas and A. N. Venetsnopoulos,
Eds. Dordrecht, The Netherlands: Kluwer, 1994, pp. 451–492.

[6] P. Kulczycki, “Almost certain time-optimal positional control,”IMA J.
Mathematical Contr. Inform., vol. 13, pp. 63–77, 1996.

[7] , “A random approach to time-optimal control,”J. Dynamic Syst.,
Meas., Contr., vol. 121, pp. 542–543, 1999.

[8] B. Armstrong, “Challenges to systematically engineered friction com-
pensation,” inProc. IFAC Workshop Motion Contr., Munich, Germany,
Oct. 1995, pp. 21–30.

[9] , Control of Machines with Friction. Dordrecht, The Netherlands:
Kluwer, 1991.

[10] P. Kulczycki, “Some remarks on solutions of discontinuous differen-
tial equations applied in automatic control,”Indust. Math., vol. 46, pp.
119–128, 1996.

[11] , Time-Optimal Stochastic Control of Discontinuous Dynamical
Systems. Cracow, Poland: WPK, 1992.

[12] J.-J. E. Slotine and W. Li,Applied Nonlinear Control. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

[13] J. Kacprzyk,Fuzzy Sets in System Analysis. Warsaw, Poland: PWN,
1986.

[14] B. L. S. Prakasa Rao,Nonparametric Functional Estimation. New
York: Academic, 1983.

[15] H. Schiøler and P. Kulczycki, “Neural network for estimating con-
ditional distributions,” IEEE Trans. Neural Networks, vol. 8, pp.
1015–1025, Sept. 1997.

[16] P. Kulczycki, “Parameter identification using Bayes and kernel ap-
proaches,”Proc. Nat. Sci. Council ROC(A), vol. 23, pp. 205–213, 1999.

[17] J. T. Teeter, M.-Y. Chow, and J. J. Brickley, Jr., “A novel fuzzy friction
compensation approach to improve the performance of a DC motor con-
trol system,”IEEE Trans. Indust. Electron., vol. 43, pp. 113–120, Feb.
1996.

[18] V. I. Utkin, Sliding Models in Control Optimization. Berlin, Germany:
Springer-Verlag, 1992.

[19] E. Ostertag and M. J. Carvalho-Ostertag, “Fuzzy control of an inverted
pendulum with fuzzy compensation of friction forces,”Int. J. Syst. Sci.,
vol. 24, pp. 1915–1921, 1993.

[20] W. Hejmo and P. Kulczycki, “On the approach to time-optimal control of
positional systems,”Archiwum Automatyki i Telemechaniki, vol. XXXI,
pp. 103–116, 1986.

[21] L. Güvenç, “Friction compensation using fuzzy logic control,” inProc.
Int. Conf. ICRAM’95 Recent Adv. Mechatron., vol. 2, Istanbul, Turkey,
Aug. 1995, pp. 667–672.


