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Abstract. The subject of the presented research is to determine the
complete neural procedure for classifying inaccurate information, as given
in the form of an interval vector. For such a formulated task, a basic func-
tionality Probabilistic Neural Network was extended upon the interval
type of information. As a consequence, a new type of neural network has
been proposed. The presented methodology was positively verified using
random and benchmark data sets. In addition, a comparative analysis of
existing algorithms with similar conditions was made.
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1 Introduction

Recently, in many applications, there has been a growth of interest in interval
analysis. The basis of this concept is the assumption that the only possessed
information about the tested quantity x, is the fact that it fulfils the relationship
x ≤ x ≤ x, and, consequently, it may be identified with the interval:

[x, x]. (1)

Interval analysis is a separate area of mathematics which has its own formal
apparatus based on the axiom theory [15]. Formerly, its primary use was to
provide the required accuracy within numerical calculations, as these are often
affected by the control error resulting from rounding [1]. However, as a result of
its continuous development, this area is becoming frequently used in engineering,
econometrics, and other related fields [5]. Its main advantage is the fact that,
by its nature, it is modelling the uncertainty of an examined quantity by using
the simplest possible formula. In many applications, interval analysis has found
to be completely sufficient, and it requires low computation effort (which allows
its employment in very complex tasks). Moreover, this methodology is easy to
identify and interpret, while also having a convenient formalism based on a
mathematical apparatus.
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The goal of the research is to reveal the complete neural procedure for clas-
sifying inaccurate information (1) as applied in cases of multi-dimensional data
that are expressed in the form of the interval vector:

[[x1, x1], [x2, x2], . . . [xn, xn]]
T , (2)

where xk � xk for k = 1, 2, ..., n, when the patterns of individual classes are
determined on the basis of unambiguously defined sets of items, that is

xk = xk for k = 1, 2, ..., n. (3)

The concept of classification is based on employing the Probabilistic Neu-
ral Network approach by way of using Bayes theorem, when provided with a
minimum of potential losses resulting from misclassification. For such a task, a
formulated statistical kernel estimator methodology is used. This procedure is
not dependent on arbitrary assumptions about character patterns. Their identi-
fication will be an integral part of the presented algorithm.

2 Kernel Density Estimator

The Statistical Kernel Density Estimators (KDE) belong to the set of non-
parametric methods. They allow the designation and illustration of the char-
acteristics of random variable distribution, without possessing the information
on the membership of a particular class.

Consider a n-dimensional random variable whose distribution has density
function f . Its kernel estimator f̂ is determined on the basis of the m-element
random sample:

x1, x2, . . . , xm (4)

and is defined by the formula:

f̂(x) =
1

mhn

m∑

i=1

K

(
x− xi

h

)
. (5)

The positive coefficient h is called ’smoothing parameter’. A measurable function
K, symmetric with respect to zero at this point, having weak local maximum and
satisfying the condition K(x):R → [0,∞), is referred as a ’kernel’. The form of
the kernel K practically does not affect the statistical quality of the estimation.
In this work, we will use the one-dimensional Cauchy kernel

K(x) = 2/π(x2 + 1)2. (6)

In the case of multivariate situation, this will be generalized using the concept
of a kernel product.

More detailed information about the practical issues of employing KDE meth-
ods, as well as usage examples, can be found in cited references [11] and [19].
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3 Neural Network for Interval Imprecise Information

The Probabilistic Neural Network (PNN), which is very often considered as
being a neural realization of a set of KDE, is a special type of a Radial Neural
Network. It is used mainly for regression [16], prediction [18], classification [14]
[3] and identification [2] tasks, but also for non-linear time series analysis.

In this part of this paper, the generalization of PNN as used in processing in-
terval information, will be introduced. This neural structure is based on Specht’s
Probabilistic Network [17], but it has a several new elements which enable us to
classify interval information. Figure 1 reveals the topological scheme of a gener-
alized probabilistic neural network. This structure, in this paper, is treated as a
network implementation of the interval information classifier.

Fig. 1. The structure of a PNN extended for processing imprecise information

In this created network, there are four layers. The first is the input layer, with
size equal m, wherein the inputs correspond to the dimensions of the interval
element (3) under classification. The next layer is a subset of neurons represent-
ing the successive patterns of classes. Each of these consists of an appropriate
number of neurons whose function is to bring about the operation of integration
(9). The third layer provides a summation of neuronal signals within a pattern
class, as well as a multiplication of the result value by group cardinality (8). The
final single neuron, located in the output layer, determines the highest values
obtained from the pattern layer and fixes the final result of this classification
task.

In a situation wherein information is given by the interval [x, x], the tested
element, based on Bayes Theorem, belongs to the class for which the value:

m1

x− x

∫ x

x

f̂1(x) dx,
m2

x− x

∫ x

x

f̂2(x) dx, . . . ,
mJ

x− x

∫ x

x

f̂J(x) dx (7)

is the largest. This is a natural extension of Bayes’ theorem into interval in-
formation type. In the above formula, the positive constants 1/(x − x), can be
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omitted as these are negligible for the optimization problem under consideration.
Therefore finally, it can be presented in the following form:

m1

∫ x

x

f̂1(x) dx, m2

∫ x

x

f̂2(x) dx, . . . , mJ

∫ x

x

f̂J(x) dx (8)

Moreover, for every f̂1, f̂2, . . . , f̂J one can note:
∫ x

x

f̂(x) dx = F̂ (x)− F̂ (x), (9)

where F̂ means the primitive of the function f̂ . For the Cauchy Kernel 6 used
here, the following analytical formula can be obtained:

F̂ (x) =
1

m

m∑

i=1

[
(x2 − 2xxi + x2

i + h2) arctan(x−xi

h ) + h(x− xi)

x2 − 2xxi + x2
i + h2

+
π

2

]
(10)

(note that the constant π/2 could be again omitted for equal cardinality of
pattern sets). In the multidimensional case, when information is represented by
the interval vector (3), this can be easily extended by using the concept of a
product kernel [9,13] .

4 Numerical Verification

The correctness of the presented method was verified through was conducted by
the way of numerical simulation. Due to the specific conditioning of the presented
method, this type of data was not found in public repositories. The following
are the results for data obtained using the random number generator with nor-
mal distribution. This was done using a given vector of expected value and a
covariance matrix. This, in turn, was derived from the implemented multivariate
normal distribution generator based on the concept of Box-Muller [4].

The quality assessment methods presented here were obtained by generating
a set of random numbers of the assumed distribution, and provide an analysis of
the correctness of the results of the classification procedures used for data that
was either of an interval type, or (for comparison) of an unambiguous type. In
order to ensure the reproducibility of the results, for each of the pseudo-random
sets, the seed value that defines it was strictly determined.

After obtaining the sequences of pseudo-random patterns representing the
different classes, test data consisting of classified items was generated. These
included those of an interval type, and occasionally those that were of an un-
ambiguous type, for comparative purposes. Each class corresponded to a set of
a size of 1,000 items.

4.1 Basic Synthetic Data

This section will firstly put forward the basic form of the research conducted for
the classification method developed herein that is build upon the information in-
terval and upon uniform given patterns. In the case of a one-dimensional (n = 1)
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pattern the first class was obtained by using a pseudo-random number generator
with a normal distribution N(0, 1) and the other as N(2, 1). The results of this
example are presented in Table 1.

The classified elements were obtained through generation by one of the afore-
mentioned generators with normal distribution of the first pseudo-random num-
ber, as well as the second taken from a generator with uniform distribution. This
defines the location of the first as within an interval of an arbitrarily assumed
length. Moreover, this represents information of interval type when there are no
circumstances for the considered imprecision, although its size is known. Such
an interpretation seems to be the most appropriate for the majority of practi-
cal interval analysis applications. The tables below show the results with the
following size of patterns: 10, 20, 50, 100, 200, 500 and 1000. In the mentioned
tables, each cell contains the results obtained from 100 tests, giving an average
classification error that is defined on the basis of these 100 random samples.

Table 1. Average classification error for the basic concept of Neural Classification

interval length 0.00 0.1 0.25 0.5 1.00 2.00 5.00
no. of elements

10 0.1713 0.1720 0.1720 0.1723 0.1729 0.1761 0.1944
20 0.1655 0.1669 0.1669 0.1672 0.1680 0.1713 0.1888
50 0.1602 0.1605 0.1606 0.1609 0.1617 0.1652 0.1848
100 0.1596 0.1601 0.1602 0.1604 0.1615 0.1650 0.1827
200 0.1596 0.1602 0.1604 0.1609 0.1618 0.1650 0.1840
500 0.1591 0.1595 0.1596 0.1602 0.1613 0.1647 0.1844
1000 0.1579 0.1584 0.1588 0.1591 0.1603 0.1637 0.1833

4.2 Iris Benchmark Data

In the following studies, a real data set was employed. This is derived from a
well-known repository located at the Center for Machine Learning and Intelligent
Systems at the University of California, Irvine. The pattern set and the reference
sample testing are not distinguished. For this reason, in the study, data elements
were randomly divided into subsets of elements which include both reference
patterns and test samples. The results shown in Table 2 are the average of 1000
tests made into random divisions. The intervals were generated in the same
manner as in previous studies.

The results that are displayed, underline the many positive features of em-
ploying the classification methods mentioned in this paper. The first is small in
practice, and, while sensitivity is often mentioned as being the curse of dimen-
sionality, yet, herein, the classification of a four-dimensional feature vector has
been satisfactorily performed on the basis of patterns containing about 25 items.
Additional confirmation of the effectiveness of the method proposed within this
paper was obtained by comparison with the results presented in [7] for the un-
ambiguous data. In the aforementioned article, a classification error of no less
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Table 2. The results of the numerical verification for the Iris data

interval length 0.00×0.00 0.10×0.10 0.25×0.25 0.50×0.50 1.00×1.00 2.00×2.00

mean error 0.041 0.045 0.047 0.048 0.049 0.066

than 4.5 % was obtained. A similar result was obtained in this study for the
unambiguous data (cf. second column of the Table 2). Despite reducing the ac-
curacy of the classified information by processing it into inaccurate information,
the results had not deteriorated to the length of the interval of 1.0 - which is
worth especially underlining.

4.3 Comparison with Similar Algorithms Used for Classification

The purpose of the following research is to compare the quality of classification
of inaccurate information with other works available in the literature which are
suitable for adoption.

The first one is based on a method very broadly used today due to its certain
advantages, that of support vectors machines; while the other is employed for
comparing the number of elements of each pattern contained in the investigated
interval.

The results were obtained using the technique of supporting vectors, according
to the algorithm presented in the work [20]. As a result of this procedure, three
types of decisions are generated: assignment of an interval element to the first
or to the second class, or the lack thereof. The study considered the amount of
misclassification, lack of decision, and, in addition, the total error which is the
sum of bad decisions and those of the elements for which there is no decision.
Information found inside the latter was classified by drawing lots in relations
proportional to the number of patterns. Upon comparing the results in the base
case, it is clear that the results obtained using the method of support vectors
are worse by 5% to up to 50%.

The second, relatively simple method of classifying interval type information
is the procedure for patterns counting. This consists of reckoning how many
elements of the learning sample are contained in the interval which is under
consideration. In each case study of this algorithm, the obtained results were
distinguished to be within four situations: the amount of misclassification is
equal to the cardinality of elements drawn from both patterns belonging to the
tested element of the interval; that the interval elements do not contain any
element that is referenced; that further total error is the sum of wrong decisions;
and that the consequential errors draw a ratio of 0.5 and 0.5 for those cases
where the number of elements of both patterns were the same.

The effects obtained from the use of the concept of counting, revealed them-
selves to be absolutely worse than those obtained using the method developed in
this article. However, current methods for classifying interval data are not limited
to those presented this subsection. There is also a very interesting algorithm with



212 P.A. Kowalski and P. Kulczycki

similar conditions described in [6]. A comparison of the proposed neural algorithm
with the cited method will be the subject of further research.

5 Conclusions

In conclusion, the results presented in the previous section, through numeric
verification, confirm the correctness of the developed herein neural classification
method of the interval type for dealing with contained inaccurate information.
The results were compared with those obtained when the element was classified
as being uniquely defined, as well as with those gained through utilizing other
algorithms commonly employed for classifying interval data. In all the studies,
enlarging the cardinality patterns resulted in a decrease of the average value
of the error classification. This, in practice, allows the gradual improvement of
the quality of the classification as new data is acquired. Furthermore, with the
increasing length of the interval, classification errors were seen to increase to a
certain limit that is justified by the data structure.

These conclusions are worth emphasizing from the application point of view.
This is because they indicate that it is possible to increase the quality of classifi-
cation by way of enlarging the available information through placing this in the
form of numerous patterns, and by accurately classifying the interval element.
In practical matters, therefore, it becomes necessary to establish a compromise
between the amount of available data and the quality of the results. In situa-
tions in which there are very large representations of classes, the neural networks
size rapidly increases. For this reason, we recommend using a method of reduc-
ing the sample size. With respect to employing a generalized PNN on interval
information, particularly advantageous results are gained through enlisting the
reduction method described in [10].

What is more, if there are no previously distinguished classes before the learn-
ing process is undertaken, the data set should be divided into smaller groups by
the way of utilising a clustering method. If the number of classes is known, the
application of the simple k-means method is recommended. Otherwise, the al-
gorithm that is required should determine the optimal number of groups during
the process of clustering. An example of a procedure satisfying the above task
is an algorithm based on the Kernel Estimators Methodology [8,12].

The issue of information classification on the basis of interval data can be
illustratively interpreted when unambiguous examples of the patterns contain
specific, precisely measured data, while the compartments represent limitations
within the plans or estimates, or when it is difficult to perform the measurements.
In particular, this neural method can be used for generating a classification where
a set of unambiguous data is treated as being specific information from the past
(for example, temperature or exchange rates), while the classification element
represents the inaccuracies forecast as being naturally limiting.
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