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Abstract Methods based on kernel density estimation have been successfully ap-
plied for various data mining tasks. Their natural interpretation together with suit-
able properties make them an attractive tool among others in clustering problems.
In this paper, the Complete Gradient Clustering Algorithm has been used to in-
vestigate a real data set of grains. The wheat varieties, Kama, Rosa and Canadian,
characterized by measurements of main grain geometric features obtained by X-ray
technique, have been analyzed. The proposed algorithm is expected to be an ef-
fective tool for recognizing wheat varieties. A comparison between the clustering
results obtained from this method and the classical k-means clustering algorithm
shows positive practical features of the Complete Gradient Clustering Algorithm.

1 Introduction

Clustering is a major technique for data mining, used mostly as an unsupervised
learning method. The main aim of cluster analysis is to partition a given popula-
tion into groups or clusters with common characteristics, since similar objects are
grouped together, while dissimilar objects belong to different clusters [4, 11]. As
a result, a new set of categories of interest, characterizing the population, is dis-
covered. The clustering methods are generally divided into six groups: hierarchical,
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partitioning, density-based, grid-based, and soft-computing methods. These numer-
ous concepts of clustering are implied by different techniques of determination of
the similarity and dissimilarity between objects. A classical partitioning k-means
algorithm is concentrated on measuring and comparing the distances among them.
It is computationally attractive and easy to interpret and implement in comparison
to other methods. On the other hand, the number of clusters is assumed here by user
in advance and therefore the nature of the obtained groups may be unreliable for the
nature of the data, usually unknown before processing.

The rigidity of arbitrary assumptions concerning the number or shape of clusters
among data can be overcome by density-based methods that let the data detect in-
herent data structures. In the paper [9], the Complete Gradient Clustering Algorithm
was introduced. The main idea of this algorithm assumes that each cluster is iden-
tified by local maxima of the kernel density estimator of the data distribution. The
procedure does not need any assumptions concerning the data and may be applied
to a wide range of topics and areas of cluster analysis [3, 9, 10].

The main purpose of this work is to propose an effective technique for forming
proper categories of wheat. In the earliest attempts to classify wheat grains a geom-
etry and set of parameters were defined. The size, shape and colour of grain because
of their heritable characters, can be used for wheat variety recognition. Accom-
plished studies showed that digital image processing techniques commonly used in
multivariate analysis give reliable results in classification process [13, 15, 17]. In
this paper, the algorithm proposed in [9] will be used to identify wheat varieties,
using their main geometric features.

2 Complete Gradient Clustering Algorithm (CGCA)

In this section, the Complete Gradient Clustering Algorithm, for short the CGCA,
is shortly described. The principle of the proposed algorithm is based on the distri-
bution of the data; the implementation of the CGCA needs to estimate its density.
Each cluster is characterized by a local maximum of the kernel density estimator. As
a result, regions of high densities of objects are recognized as clusters, while areas
with sparse distributions of objects divide one group from another. Data points are
assigned to clusters by using an ascending gradient method, i.e. points moving to
the same local maximum are put into the same cluster. The algorithm works in an
iterative manner until a termination criterion has been satisfied.

2.1 Kernel Density Estimation

Suppose that x1, x2, . . . , xm is a random sample of m points in n-dimensional space
from an unknown distribution with density f . Its kernel estimator can be defined as
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where the positive coefficient h is called the smoothing parameter or bandwidth,
while the measurable function K : Rn → [0,∞) of unit integral

∫
Rn K(x)dx = 1, uni-

modal and symmetrical with respect to zero, takes the name of a kernel [5, 14].
It is generally accepted, that the choice of the kernel K is not as important as

the choice of the coefficient h and thank to this, it is possible to take into account
the primarily properties of the estimator obtained. Most often the standard normal
kernel given by

K(x) =
1

2π
n/2 e−

xTx
2 (2)

is used. It is differentiable up to any order and assumes positive values in the whole
domain.

The practical implementation of the kernel density estimators requires a proper
choice of the bandwidth h. In practice the best value of h is mostly taken as the
value that minimizes the mean integrated square error. A frequently used bandwidth
selection method is based on the approach of least-squares cross validation [5, 14].
The value of h is chosen to minimize the function M : (0,∞)→ R given by the rule:

M(h) =
1

m2hn
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2
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where K̃(x) = K∗2(x)−2K(x) and K∗2 is the convolution square of the function K;
for the standard normal kernel (2):

K∗2(x) =
1

(4π)n/2 e−
xTx

4 . (4)

In this case the influence of the smoothing parameter on particular kernels is the
same. The individualization of this effect may be achieved through the modifica-
tion of the smoothing parameter. This relies on introducing the positive modifying
parameters s1,s2, . . . ,sm mapped on particular kernels, described by the formula

si =
(

f̂∗(xi)
s̃

)−c

, (5)

where c ∈ [0,∞), f̂∗ is the kernel estimator in its basic form (1) and s̃ denotes the
geometrical mean of the numbers f̂∗(x1), f̂∗(x2), . . ., f̂∗(xm). The value of the pa-
rameter c implies the intensity of modification of the smoothing parameter. Based
on indications for the criterion of the mean integrated square error the value 0.5
as c is proposed. Finally, the kernel estimator with modification of the smoothing
parameter is defined as
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Additional procedures improving the quality of the estimator obtained, such as
a linear transformation and support boundary, as well as the general aspects of the
theory of statistical kernel estimators are found in [5, 6, 14]. Exemplary practical
applications are presented in the publications [1, 3, 7, 8, 10].

2.2 Procedures of the CGCA

Consider the data set containing m elements x1, x2, . . . , xm in n-dimensional space.
Using the methodology introduced in Subsect. 2.1, the kernel density estimator f̂
may be constructed. The idea of the CGCA is based on the approach proposed by
Fukunaga and Hostetler [2]. Thus given the start points:

x0
j = x j for j = 1,2, . . . ,m, (7)

each point is moved in an uphill gradient direction using the following iterative
formula:

xk+1
j = xk

j +b
∇ f̂ (xk

j)

f̂ (xk
j)

for j = 1,2, . . . ,m and k = 0,1, . . . , (8)

where ∇ f̂ denotes the gradient of kernel estimator f̂ and the value of the parameter
b is proposed as h2/(n+2) while the coefficient h is the bandwidth of f̂ .

The algorithm will be stopped when the following condition is fulfilled:

|Dk−Dk−1| ≤ αD0, (9)

where D0 and Dk−1, Dk denote sums of Euclidean distances between particular el-
ements of the set x1, x2, . . . , xm before starting the algorithm as well as after the
(k− 1)-th and k-th step, respectively. The positive parameter α is taken arbitrary
and the value 0.001 is primarily recommended. This k-th step is the last one and
will be denoted hereinafter by k∗.

Finally, after the k∗-th step of the algorithm (7)-(8) the set

xk∗
1 ,xk∗

2 , . . . ,xk∗
m , (10)

considered as the new representation of all points x1, x2, . . . , xm, is obtained. Fol-
lowing this, the set of mutual Euclidean distances of the above elements:{

d(xk∗
i ,xk∗

j )
}

i=1,2,...,m−1
j=i+1,i+2,...,m

(11)
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is defined. Using the methodology presented in Subsect. 2.1, the auxiliary kernel
estimator f̂d of the elements of the set (11), treated as a sample of a one-dimensional
random variable, is created under the assumption of nonnegative support. Next, the
first (i.e. obtained for the smallest value of an argument) local minimum of the
function f̂d belonging to the interval (0,D], where D means the maximum value
of the set (11), is found. This local minimum will be denoted as xd , and it can
be interpreted as the half-distance between potential closest clusters. Finally, the
clusters are created. First, the element of the set (11) is taken; it initially create a one-
element cluster containing it. An element of the set (11) is added to the cluster if the
distance between it and any element belonging to the cluster is less than xd . Every
added element is removed from the set (11). If there are no more elements belonging
to the cluster, the new cluster is created. The procedure of assigning elements to
clusters is repeated as long as the set (11) is not empty.

Procedures described above constitute the Complete Gradient Algorithm in its
basic form. The values of the parameters used are calculated automatically, using
optimization criteria. However, by an appropriate change in values of these parame-
ters it is possible to influence the size of number of clusters, and also the proportion
of their appearnce in dense areas in relation to sparse regions of elements in this
set. Namely, lowering (raising) the value of smoothing parameter h results in rais-
ing (lowering) the number of local maxima. A change in the value of that parameter
of between -25% and +50% is recommended. Next, raising the intensity c of the
smoothing parameter modification results in decreasing the number of clusters in
sparse areas of data and increasing their number in dense regions. Inverse effects
can be seen in the case of lowering this parameter value. The value of the parameter
c to be between 0 and 1.5 is recommended. Finally, an increase of both parameters
c and h can be proposed. Then the additional formula

h∗ =
(

3
2

)c−0.5

h (12)

is used for calculating the smoothing parameter h∗, where the value of the parameter
h is calculated on the criterion of the mean integrated square error. The joint action
of both these factors results in a twofold smoothing of the function f̂ in the regions
where the elements of the set x1, x2, . . . , xm are sparse. Meanwhile these factors
more or less compensate for each other in dense areas, thereby having small influ-
ence on the detection of clusters located there. Detailed information on the CGCA
procedures and their influences on the clustering results is described in [9].

3 Materials and methods

The proposed algorithm has been applied for wheat variety recognition. Studies
were conducted using combine harvested wheat grain originating from experimen-
tal fields, explored at the Institute of Agrophysics of the Polish Academy of Sciences
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in Lublin. The examined group comprised kernels belonging to three different vari-
eties of wheat: Kama, Rosa and Canadian, 70 elements each, randomly selected for
the experiment. High quality visualization of the internal kernel structure was de-
tected using a soft X-ray technique. It is non-destructive and considerably cheaper
than other more sophisticated imaging techniques like scanning microscopy or laser
technology. The images were recorded on 13×18 cm X-ray KODAK plates. Figure
1 presents the X-ray images of these kernels.

Fig. 1 X-ray photogram
(13×18 cm) of kernels

The X-ray photograms were scanned using the Epson Perfection V700 table
photo-scanner with a built-in transparency adapter, 600 dpi resolution and 8 bit gray
scale levels. Analysis procedures of obtained bitmap graphics files were based on
the computer software package GRAINS, specially developed for X-ray diagnos-
tic of wheat kernels [12, 16]. To construct the data, seven geometric parameters
of wheat kernels: area A, perimeter P, compactness C = 4πA/P2, length of kernel,
width of kernel, asymmetry coefficient and length of kernel groove, were measured
from a total of 210 samples (see Fig. 2). All of these parameters were real-valued
continuous.

In our investigations, the data was reduced to be two-dimensional after applying
the Principal Component Analysis [4] to validate the results visually.

4 Results and discussion

The data’s projection on the axes of the two greatest principal components, with
wheat varieties being distinguished symbolically, is presented in Fig. 3. Samples
were labeled by numbers: 1-70 for the Kama wheat variety, 71-140 for the Rosa
wheat variety, and 141-210 for the Canadian wheat variety. To discuss the clustering
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Fig. 2 Document window with geometric parameters of a kernel and statistical parameters of its
image (as a unit of measure millimeters were used)

results obtained by the CGCA, mistakenly classified samples are displayed with
their labels (see Fig. 3).

Using procedures described in Subsect. 2.2 allowing elimination of clusters in
sparse areas, the CGCA created three clusters corresponding to Rosa, Kama, and
Canadian varieties, containing 69, 65, and 76 elements respectively. Thus the sam-
ples 9 and 38, which belong to the Kama wheat variety are incorrectly grouped into
the cluster associated with the Rosa wheat variety. What is more, the samples 125,
136, 139, which belong to the Rosa wheat variety, and the samples 166, 200, 202,
which belong to the Canadian wheat variety are mistakenly classified into the clus-
ter associated with the Kama wheat variety. In addition, the samples 20, 27, 28, 30,
40, 60, 61, 64, 70, which belong to the Kama wheat variety are mistakenly classified
into the cluster associated with the Canadian wheat variety. It is worth noticing how-
ever, that in the case of samples 9 and 38, misclassification can be justifiable – both
samples lie close to the area of a high density of the Rosa wheat variety samples. The
same problem is discerned with samples 125, 136, 139 and 166, 200, 202, which are
placed close to samples of the Kama wheat variety. Similarly, mistakenly classified
samples 20, 27, 28, 30, 40, 60, 61, 64, 70 lie very close to samples of the Canadian
wheat variety. Thus, taking into consideration characteristics of wheat varieties, the
CGCA seems to be an effective technique for wheat variety recognition.

Clustering results, containing numbers of samples classified properly and mistak-
enly into clusters associated with Rosa, Kama, and Canadian varieties, are shown in
Table 1.
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Fig. 3 Wheat varieties data set on the axes of the two greatest principal components: (◦) the Rosa
wheat variety, (×) the Kama wheat variety, (ut) the Canadian wheat variety

Table 1 Clustering results for the wheat varieties data set

Number of elements in clusters

Clusters Correctly classified Incorrectly classified Total

Rosa 67 2 69
Kama 59 6 65
Canadian 67 9 76

According to the results of the CGCA, out of 70 kernels of the Rosa wheat va-
riety, 67 were classified properly. Only 2 of the Kama variety were classified mis-
takenly as the Rosa variety. For the other two varieties, the CGCA created clusters
containing 65 elements (the Kama variety) and 76 elements (the Canadian variety).
In regard to the Kama variety, 59 kernels were classified correctly, while 6 of the
other varieties were incorrectly identified as the Kama variety. For the Canadian va-
riety, 67 kernels were correctly identified and 9 kernels of the Kama variety were
mistakenly identified as the Canadian variety. The results of Kama and Canadian
varieties are not so satisfactory as for Rosa and this implies that these two varieties
could not be so clearly distinguished as the Rosa variety, when using main geometric
parameters.
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Table 2 Correctness percentages for the wheat varieties data set

Wheat Varieties Correctness %

Rosa 96
Kama 84
Canadian 96

The percentages of correctness of the CGCA are presented in Table 2. The pro-
posed algorithm achieved an accuracy of about 96% for the Rosa wheat variety, 84%
for the Kama wheat variety, and 96% for the Canadian wheat variety.

The comparable percentages of correctness of classification has been obtained
when the k-means algorithm with arbitrary taken cluster number of 3 was used. It is
worth stressing however, that this algorithm availed of the a priori assumed correct
number of clusters, which in many applications may not be known, or even such
a “correct” – from a theoretical point of view – number might not exist at all. The
CGCA instead does not require strict assumptions regarding the desired number of
cluster, which allows the number obtained to be better suited to a real data structure.
Moreover, in its basic form values of parameters may be calculated automatically,
however there exists the possibility of their optional change. A feature specific to
it is the possibility to influence the proportion between the number of clusters in
areas where data elements are dense as opposed to their sparse regions. In addition,
by the detection of one-element clusters the algorithm allows the identification of
outliers, which enables their elimination or designation to more numerous clusters,
thus increasing the homogeneity of the data set.

5 Conclusions

The proposed clustering algorithm, based on kernel estimator methodology, is ex-
pected to be an effective technique for wheat variety recognition. It performs com-
parable with respect to the classical k-means algorithm, however requires no a priori
information about the data. The data reduced after applying the Principal Compo-
nent Analysis, contained apparent clustering structures according to their classes.
The amount of 193 kernels, giving almost 92% of the total, was classified properly.
The wheat varieties used in the study showed differences in their main geometric
parameters. The Rosa variety is better recognized, whilst Kama variety and Cana-
dian variety are less successfully differentiated. Further research is needed on grain
geometric parameters and their ability to identify wheat kernels.
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