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Abstract. Pore space study has been utilized as a general method for defining 

soil structures. This is because the characteristics particular to pore space im-

pact the majority of physical and physicochemical soil parameters relevant due 

to plant growth. This paper presents an image segmentation approach for de-

tecting the soil pore structures that have been studied by way of soil tomogra-

phy sections. In so-doing, a research study was conducted using a density-based 

clustering method, and in turn, the nonparametric kernel estimation methodolo-

gy. This overcomes the rigidity of arbitrary assumptions concerning the number 

or shape of clusters among data, and lets the researcher detect inherent data 

structures. After a short description of the method, the practical aspects and ap-

plications illustrated with a number of soil aggregates are presented. 

Keywords: image processing and analysis, image segmentation, clustering, 

natural grouping, nonparametric estimation, kernel estimators, pore space, total 

porosity.  

1 Introduction  

Among all measurements characterizing the various aspects of a particular soil, the 

total porosity provides a more useful physical description that is relevant to plant 

growth. This measure is defined as the fraction of the total pore volume of soil mate-

rial, including the solid and void components, that is taken up by the volume of void-

space. Being simply a fraction of total volume, it can range between 0 and 1, typically 

falling between 0.3 and 0.7 for most soils. Moreover, a number of scientists have 

reported that studies of pore size distribution are useful as a general method for defin-

ing the soil structure [6, 17, 22]. Pore spaces location within the soil has different 

influences on fluid retention, conduction within the soil and the maximum space 

available for water, and, therefore, it is important to identify pore zones.  
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Advances in X-ray microtomography, together with image processing methods, 

provide a non-destructive alternative for detecting soil structures, especially pore 

space [15, 16]. However, the usefulness of computed tomography data for pore struc-

ture characterization depends on the accuracy of the grayscale images segmentation 

into binary pore and solid components. Different methods have been used to segment 

soil images, among these, simple binary and multiple thresholding [14], watershed, 

morphological, and normalized cut [3, 18, 21]. Furthermore a fuzzy approach success-

fully used in various data analysis problems [1, 10, 12, 13] is discovered for the seg-

mentation methods [5]. These methods have given promising results, but they are 

very sensitive to image quality, low level of contrast and unintended noises. Based on 

these arguments, many studies now have begun to utilize the potential of image seg-

mentation done by clustering methods [7, 11]. The objective of clustering process is 

to find pixel groups of a similar grey level intensity so as to organize them into more 

or less homogeneous groups and assign the same label to every pixel sharing certain 

visual characteristics. As a traditional clustering algorithm, K-means is popular for its 

simplicity in implementation, and it is commonly applied for grouping pixels in imag-

es. However, the quality of K-means suffers from being confined to being run with a 

fixed number of clusters. Therefore, many current research efforts have been focused 

on discovering and applying new approaches in segmenting by way of using various 

now available image processing techniques.  

The main purpose of this investigation is to evolve a standard method of detecting 

pore space in the soil. A proposed methodology integrates image processing and clus-

tering technique based on the Complete Gradient Clustering Algorithm [9, 10]. The 

principle of the proposed algorithm is based on the distribution of the data and the 

need to estimate its density. Within the algorithm, each cluster is identified by a local 

maximum of the kernel density estimator of the data distribution. As a result, regions 

of high densities of objects are recognized as clusters, while areas with sparse distri-

butions of objects divide one group from another. The algorithm works in an iterative 

manner until a termination criterion has been satisfied. Data points are assigned to 

clusters by using an ascending gradient method, i.e. points moving to the same local 

maximum are put into the same cluster. It is worth underlining that the whole proce-

dure does not need the application of any assumptions concerning the data distribu-

tion or fixed number of clusters. Rather, the parameter values are calculated using 

optimizing criteria, without any necessity of their arbitrary specification. However, by 

an appropriate change in values of these parameters, it is possible to influence the size 

of number of clusters, and also the proportion of their appearance in dense areas in 

relation to sparse regions of elements in a data set. As a result, the proposed procedure 

allows researchers to examine soil structure and extract pore space using the segment-

ed images. Moreover, a comparison between the clustering results obtained from this 

method and the classical K-means clustering algorithm shows positive practical fea-

tures of the Complete Gradient Clustering Algorithm. 
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2 Statistical Kernel Estimators  

Let ),,( PΣΩ  be a probability space. Let also a real random variable RX →Ω: , 

whose distribution has the density function f , be given. The corresponding kernel 

estimator ),0[:ˆ ∞→Rf , calculated using experimentally obtained values for the  

m-element random sample 1x , 2x ,..., mx , in its basic form is defined by   
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where }0{\Nm ∈ , the positive coefficient h  is known as a smoothing parameter, 

whereas the measurable function ),0[: ∞→RK  of unit integral, symmetrical with 

respect to zero and having a weak global maximum at this point, takes the name of a 

kernel. The influence of the smoothing parameter on particular kernels is the same for 

the basic definition of kernel estimator (1). Advantageous results are obtained thanks 

to the individualization of this effect, achieved through a so-called modification of the 

smoothing parameter. It relies on mapping the positive modifying parameters 1s , 

mss  , ... ,2  on particular kernels, described as  
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where ),0[ ∞∈c , f̂  denotes the kernel estimator without modification, and s  is the 

geometrical mean of the numbers )(ˆ
1xf , )(ˆ,...,)(ˆ

2 mxfxf . The parameter c  

stands for the intensity of the modification procedure and based on indications for the 

criterion of the integrated mean square error, the standard value 5.0=c  can be sug-

gested. Finally, the kernel estimator with the smoothing parameter modification is 

defined in the following formula:  
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The choice of the kernel K  form and the calculation of the smoothing parameter h 

is made most often with the criterion of the mean integrated square error. From a 

statistical point of view, the choice of the kernel form has no practical meaning and 

thanks to this, it becomes possible to take into account primarily properties of the 

estimator obtained or calculation aspects, advantageous from the viewpoint of the 

application problem under investigation. The standard normal kernel given by 
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is used most often. It is differentiable up to any order and assumes positive values in 

the whole domain.  

The fixing of the smoothing parameter h  has significant meaning for the quality 

of estimation. A smoothing parameter controls the tradeoff between bias and variance 

in the result. A large bandwidth leads to a very smooth density distribution, whereas a 

small bandwidth leads to an ragged density distribution. A frequently used bandwidth 

selection technique, called the “cross-validation method”, chooses h to minimize the 

function RRg →:  defined as  
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where )(2)()(
~ 2*

xKxKxK −= , whilst 
2*

K  denotes convolution function of K , i.e.  
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The tasks concerning the choice of the kernel form, as well as additional procedures 

improving the quality of the estimator obtained, and all rules needed for calculating 

the smoothing parameter, are found in [8, 19, 20]. The utility of kernel estimation has 

been investigated in the context of the Complete Gradient Clustering Algorithm.  

3 Complete Gradient Clustering Algorithm  

Consider the data set containing m  elements mxxx ,,, 21 , in  n -dimensional 

space. Using the methodology introduced in Section 2, the kernel density estimator 

(3)  may be constructed in n-dimensional space, i.e.: 
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where the kernel K is assumed to be radial or product [8, 19, 20]. The idea of the algo-

rithm is based on the approach proposed by Fukunaga and Hostetler [4]. Thus given 

the start points: 

 mjxx jj ,,2,1for0 ==   (9) 

each point is moved in an uphill gradient direction using the following iterative  

formula:  
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where f̂∇  denotes the gradient of kernel estimator f̂  and the value of parameter b  

is proposed as )2/(2 +nh  while the coefficient h is the bandwidth of f̂ . The algo-

rithm will be stopped when the following condition is fulfilled:  

 
01 aDDD kk ≤− −

  , (11) 

where 0D  and 1−kD , kD  denote sums of Euclidean distances between particular 

elements of the set mxxx ,,, 21  before starting the algorithm as well as after the 

)1( −k -th and k -th step, respectively. The positive parameter a is taken arbitrary and 

the value 0.001 is primarily recommended. This k -th step is the last one and will be 

denoted hereinafter by 
*

k  where  { }0\* Nk ∈  .  

Finally, after the 
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considered as the new representation of all points mxxx ,,, 21 , is obtained. Follow-

ing this, the set of mutual Euclidean distances of the above elements:  
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is defined. Using the methodology presented in Section 2, the auxiliary kernel estima-

tor df̂  of the elements of the set (13), treated as a sample of a one-dimensional ran-

dom variable, is created under the assumption of nonnegative support. Next, the first 

(i.e. obtained for the smallest value of an argument) local minimum of the function 

df̂  belonging to the interval ],0( D , where D  means the maximum value of the set 

(13), is found. This local minimum will be denoted as dx , and it can be interpreted as 

the half-distance between potential closest clusters. Finally, the clusters are created. 

First, the element of the set (13) is taken; it initially create a one-element cluster con-

taining it. An element of the set (13) is added to the cluster if the distance between it 

and any element belonging to the cluster is less than dx . Every added element is 

removed from the set (13). If there are no more elements belonging to the cluster, the 

new cluster is created. The procedure of assigning elements to clusters is repeated as 

long as the set (13) is not empty.  

Procedures described above constitute the Complete Gradient Algorithm in its 

basic form. The values of the parameters used are calculated automatically. However, 

by an appropriate change in values of these parameters it is possible to influence the 

size of number of clusters, and also the proportion of their appearance in dense areas 
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in relation to sparse regions of elements in a data set. Too small a value of the 

smoothing parameter h results in the appearance of too many local extremes of the 

kernel estimator, and as a consequence, an increase in the number of clusters. On the 

other hand too great a value causes its excessive smoothing and an decrease in the 

number of clusters.  

Next, the intensity of modification of the smoothing parameter is implied by the 

value of the parameter c. Its increase smoothes the kernel estimator in areas where 

elements of data set are sparse, and also it sharpens it in dense areas. In consequence, 

if the value of the parameter c is raised, then the number of clusters in sparse areas of 

data decreases, while at the same time, increases in dense regions. Inverse effects can 

be seen in the case of lowering this parameter value.  

Detailed information on the CGCA procedures and their influences on the cluster-

ing results as well as applicational examples are described in the articles [2, 9, 10].  

4 Methodology 

The proposed methodology to elaborate an innovative image processing approach for 

detection pore space, based on computed tomography and the nonparametric kernel 

estimation methodology, is summarized as follows: 

1. preparing the soil sample; 

2. capturing the soil tomographic slices; 

3. applying the contrast enhancement technique on the original soil images; 

4. extracting the color components from the enhanced image; 

5. applying the unsupervised segmentation technique that is based on the 

complete gradient clustering algorithm; 

6. detecting the pore space from the segmented images. 

4.1 Soil Classification 

The investigated material was sampled from the cultivated soil layer, classified as 

silty loam (WRB Mollic Gleysols), explored at the Institute of Agrophysics, of the 

Polish Academy of Sciences in Lublin. The proportion of each particle size group in 

the soil was as follows: sand – 46%, silt – 28%, clay – 26%. Furthermore, the pH was: 

H2O – 5.9, while KCl was 5.4.  

On the experimental fields, a long-term fertilization trial had been executed. The 

adopted crop rotation from 1955 to 1989 was a cycle of potato – barley – rye, and 

from 1990 – a cycle of sugar beat – barley – rape – wheat. Three treatments concern-

ing fertilization: control group – plant residues only, mineral fertilization – according 

to plant needs, and pig manure – 80 ton per ha, were studied. The aggregate soil  

organic matter was measured by the Multi N/C 3100 Autoanalyser (Analitic Jena, 

Germany).  
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Table 1. Aggregate soil organic matter measurements 

Type of fertilization 
Total organic carbon content 

[g/kg] 

Total nitrogen content 

[g/kg] 

Control  

(without fertilization) 
13.54 1.35 

Mineral fertilization 14.89 1.51 

Pig manure  

fertilization 
21.50 2.10 

The total organic carbon shows the same tendency as total nitrogen, i.e. increasing in 

the same order: the lowest – control, middle – mineral fertilization, the highest – pig 

manure.  

4.2 Soil Sample Preparation and Image Processing 

The soil samples were air dried in room conditions, divided into smaller amounts, and 

gently sieved through 2 and 10 mm sieves. Soil aggregates remaining at 2 mm sieve 

and ranging from 2 to 10 mm, were then detected by means of X-ray computational 

tomography, using a GE Nanotom S device, with the voxel-resolution of 2.5 microns 

per volume pixel. Three 2D sections uniformly located within each aggregate were 

performed to characterize the aggregate structure. Next, tomography sections were 

processed using the Aphelion 4.0.1 package. In the initial step, the contrast enhance-

ment technique was applied on the original soil images, and, subsequently, a rectangle 

ROI (region of interest) selection of the size of 128x128 pixels was performed upon 

the enhanced grayscale image. Thus, the ring artifacts of the original images were 

removed, and these ROI's were saved as a bitmap format. The color components data 

derived automatically from these images were then examined, as the Complete Gradi-

ent Clustering Algorithm (CGCA) allowed for soil image segmentation. In order to 

find a distribution density of the color components, the kernel estimators methodolo-

gy, presented in Section 2 was used, with the application of the normal kernel, the 

cross-validation method, as well as the smoothing parameter modification procedure 

with standard intensity. Moreover, in the clustering algorithm, a modification of pa-

rameters values was employed to eliminate peripheral clusters. Finally, pore space 

detection was done automatically using the segmented images through choosing the 

cluster containing the lowest color components. 

4.3 Image Segmentation Results 

In order to assess the proposed segmentation method, three sections of each soil ag-

gregate were captured from soil samples differing in term of fertilization. The color 

components that had been extracted from the grayscale images were subsequently fed 

as input to the Complete Gradient Clustering Algorithm for further segmentation pro-

cessing. After that, the cluster of the lowest values corresponding to the pore space in 
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each sample was detected. What is more, all pixels of these values that had been dis-

tinguished in the original images in black, were captured. Fig. 1-3 show the 8 bit 

grayscale images of the captured soil samples and the corresponding resultant images 

with pore space shown in black. These images were subsequently composed in the 

table rows from the lowest to the highest sections, as cut with proportions 25%, 50%, 

and 75% of the aggregate height. After the pore space detection, a common quantita-

tive analysis was conducted in order to assess the overall performance of the results 

obtained.  

 

(a) 

  
    

(b) 

  

Fig. 1. The rectangle ROI selections of control group aggregates: original images (a), images 

with pore space in black detected by the CGCA (b) 

(a) 

  
    

(b) 

  

Fig. 2. The rectangle ROI selections of mineral fertilization aggregates: original images (a), 

images with pore space in black detected by the CGCA (b) 
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(a) 

  
    

(b) 

  

Fig. 3. The rectangle ROI selections of pig manure fertilization aggregates: original images (a), 

images with pore space in black detected by the CGCA (b) 

Based on the observation of several soil images, it was found that the appearance 

of the pore space cells is similar within the aggregate of each treatment. Indeed, the 

upper limits of pixel values classified as pore space within the aggregate are almost 

the same and are nearly equal: 162, 165, and 163 for soil without fertilization (control 

group), 155, 156, and 155 for soil with mineral fertilization and 149, 148, and 151 for 

soil with pig manure fertilization. For each type of fertilization, values are ordered 

correspondingly to the image order as displayed on the Fig. 1-3.  

As revealed, a diversity in pore space appearance is found between aggregates dif-

fering in term of fertilization. The largest upper limits of pixel values classified as 

pore space occurs in the soil without fertilization, and, despite this, the pore fraction, 

equaling 21% in an averaging of the three sections, is the smallest. The soil with pig 

manure fertilization incorporates the smallest values of the upper limits of these pix-

els, but despite this, has the largest fraction of pores, equaling 28% in an averaging of 

the three sections. Generally, the effect of fertilization is to increase the amounts of 

pores and its size in relation to the control group. The greater increase is for pig ma-

nure fertilization.  

A comparable analysis of segmentation was obtained when the K-means algorithm 

with an arbitrary taken cluster number of two was used. Table 2 contains pixel value 

limits between the pore space and solid components, as calculated by the CGCA and 

the K-means algorithm for each type of fertilization.  

This study has shown the adequacy of using nonparametric kernel estimation theo-

ry for determining soil structure. The limits obtained by the K-means algorithm are a 

bit greater than these obtained by the CGCA, and when used in the segmentation pro-

cess, the K-means algorithm gives an overestimation of the pore space. Furthermore it 

is worth stressing, that this algorithm needs an a priori assumed correct number of 

clusters, which in many applications, may not be known. Indeed, even such a “cor-

rect” (from a theoretical point of view) number might not exist at all.  
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Table 2. The limits between the pore space and solid components calculated by the CGCA and 

K-means algorithm 

Type of  

fertilization 

The CGCA  The K-means algorithm 

section 1 section 2 section 3 section 1 section 2 section 3 

Control  

group 
162 165 163 183 167 174 

Mineral  

fertilization 
155 156 155 165 165 161 

Pig manure 

fertilization 
149 148 151 153 151 156 

 
The CGCA, instead, does not require strict assumptions regarding the desired 

number of cluster. This allows the number obtained to be better suited to the soil 

structure. Moreover, in its basic form, the values of the parameters may be calculated 

automatically, however, there exists the possibility of their optional change. A feature 

specific to it is the possibility that it can influence the proportion between the number 

of clusters in areas where data elements are dense, as opposed to their sparse regions. 

In addition, by the detection of peripheral clusters, the algorithm allows the identifica-

tion of outliers. This enables their elimination or designation to more numerous clus-

ters, thus increasing the homogeneity of the data set.  

The segmentation of soil images using the proposed method has given promising 

results. The clustering algorithm enabled the detection and recognition of the soil 

features from which for our needs, the pore space was ascertained. However, its com-

putation can be challenging even for recent computer hardware. The most significant 

trend towards facilitating this, is to increase the number of CPU cores and increase the 

CPU’s ability to process more and more tasks in parallel. Even more important, and 

an integral part of this practice, is that it allows optimization, so that the complex 

algorithm could be performed in a reasonable time.  

5 Summary 

Recent advances in computed tomography and digital image processing provide non-

destructive tools for studying the internal structures of soil aggregates. This seems 

very useful in characterizing the pore space and in quantifying the differences in pore 

structures of different types of soil. In so doing, a more detailed analysis may be ob-

tained by quantifying the soil structure through using the proposed segmentation 

techniques based on the kernel density estimation.  

In this paper, an alternative way of detecting pore space in computed tomography 

soil slices is proposed by way of using image processing and data clustering based on 

the kernel estimation methodology. This density-based clustering algorithm allows us 

to get a better comprehension and knowledge of data, with the objective of segment-

ing images into either pore space or into solid components that constitute homogene-

ous areas with respect to a property of interest. 
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The presented approach is more objective than classical parametric methods, and 

can be successfully applied for many tasks in data mining, particularly where arbitrary 

assumptions concerning the number or shape of clusters among data are not recom-

mended. This approach is also motivated by the current rapid growth in computational 

power. Improved real-time data processing and algorithm efficiency have important 

add-on effects due to the concurrent increase in the quantity and complexity of the 

image data that are now being collected.  
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