A Memory Gradient Algorithm for ℓ_2 - ℓ_0 Regularization with Applications to Image Restoration

Emilie Chouzenoux, Jean-Christophe Pesquet, Hugues Talbot and Anna Jezierska

Université Paris-Est, Institut Gaspard Monge, France, {first.last}@univ-paris-est.fr

INTRODUCTION

State of the art:

Non-convex priors have good ability to promote sparsity
However, they lead to a difficult optimization problem
Proposal: Majorize-Minimize Memory Gradient algorithm
Proof of convergence of the iterates of the algorithm
Good numerical performance on image restoration problems

ALGORITHM

Majorize-Minimize Memory-Gradient algorithm: \rightsquigarrow Subspace algorithm $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{D}_k \boldsymbol{s}_k.$ $\rightsquigarrow \boldsymbol{D}_k$: set of Memory-Gradient directions $\rightsquigarrow \boldsymbol{s}_k$ resulting from MM minimization of $f_{k,\delta}(\boldsymbol{s})$: $\boldsymbol{s} \mapsto F_{\delta}(\boldsymbol{x}_k + \boldsymbol{D}_k \boldsymbol{s})$

PROBLEM

Objective: Restore the unknown original image $\overline{x} \in \mathbb{R}^N$ from $y \in \mathbb{R}^Q$, related to \overline{x} through:

$$oldsymbol{y} = oldsymbol{H} \overline{oldsymbol{x}} + oldsymbol{u}, \qquad oldsymbol{H} \in \mathbb{R}^{Q imes N}$$

Goal of the algorithm:

 $\underset{\boldsymbol{x} \in \mathbb{R}^N}{\text{minimize } F_{\delta}(\boldsymbol{x}) = \Phi(\boldsymbol{H}\boldsymbol{x} - \boldsymbol{y}) + \Psi_{\delta}(\boldsymbol{x}) }$

 Φ - some measure of data fidelity Ψ_{δ} - regularization term defined as:

$$\Psi_{\delta}(\boldsymbol{x}) = \lambda \sum_{c=1}^{C} \psi_{\delta}(\boldsymbol{V}_{c}^{\top}\boldsymbol{x}) + \|\boldsymbol{\Pi}\boldsymbol{x}\|^{2}$$

with V_c a dictionary of analysis vectors, λ a positive real value, Π a matrix in $\mathbb{R}^{P \times N}$ and ψ_{δ} a **differentiable, non-convex** approximation of the ℓ_0 norm. **Property**: Epi-convergence to the ℓ_0 solution.

OPTIMIZATION

Construction of the directions: Memory-Gradient subspace [Cantrell 1969] $\boldsymbol{D}_k = [-\nabla F_{\delta}(\boldsymbol{x}_k), \boldsymbol{x}_k - \boldsymbol{x}_{k-1}] \in \mathbb{R}^{N \times 2}$

Computation of the stepsize: [Chouzenoux *et al.* 2011] We assume that for all x', there exists A(x'), definite positive, such that

 $Q(\boldsymbol{x}, \boldsymbol{x}') = F_{\delta}(\boldsymbol{x}') + \nabla F_{\delta}(\boldsymbol{x}')^{\top}(\boldsymbol{x} - \boldsymbol{x}') + \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}')^{\top}\boldsymbol{A}(\boldsymbol{x}')(\boldsymbol{x} - \boldsymbol{x}')$

is a quadratic tangent majorant of F_{δ} at x' i.e., $Q(x, x') \ge F_{\delta}(x), \forall x$.

MM minimization in the subspace:

 $\begin{cases} \boldsymbol{s}_k^0 = \boldsymbol{0}, \\ (\forall j \in \{0, \dots, J-1\}) \\ \boldsymbol{s}_k^{j+1} \in \operatorname{Argmin}_{\boldsymbol{s}} q_k(\boldsymbol{s}, \boldsymbol{s}_k^j), \end{cases}$ $oldsymbol{s}_k = oldsymbol{s}_k^J.$

where $q_k(\boldsymbol{s}, \boldsymbol{s}_k^j)$ is a quadratic tangent majorant of $f_{k,\delta}$ at \boldsymbol{s}_k^j with Hessian: $\boldsymbol{B}_{\boldsymbol{s}_k^j} = \boldsymbol{D}_k^\top \boldsymbol{A}(\boldsymbol{x}_k + \boldsymbol{D}_k \boldsymbol{s}_k^j) \boldsymbol{D}_k$.

 $-\psi_{\delta}(t) = \min(t^{2}/(2\delta^{2}), 1)$ $-\psi_{\delta}(t) = t^{2}/(2\delta^{2} + t^{2})$ $-\psi_{\delta}(t) = 1 - \exp(-\frac{t^{2}}{2\delta^{2}})$ $-\psi_{\delta}(t) = \tanh(t^{2}/(2\delta^{2}))$

Convergence result

- If Φ is coercive, Ker $H \cap$ Ker $\Pi = 0$, and the gradient of Φ is *L*-Lipschitzian, then, for all $J \ge 1$, $\lim_{k\to\infty} \nabla F_{\delta}(\boldsymbol{x}_k) = 0$.
- Morever, if F_{δ} satisfies the Łojasiewicz inequality [Attouch *et al.* 2010], the sequence $(\boldsymbol{x}_k)_{k \in \mathbb{N}}$ converges to a critical point $\tilde{\boldsymbol{x}}$ of F_{δ} .

Noisy sinogram (25 *dB*)

Reconstructed image

Convergence speed of several optimization algorithms for the considered denoising problem, with ℓ_2 - ℓ_0 penalties.

Original image (Detail)Proposed non-convexSmooth convex20.4 dB, MSSIM =0.7918.4 dB, MSSIM =0.78

Proposed MM-MG algorithm	<u>36</u> s
Conjugate Gradient algorithm [Hager 2006]	48 s
Quasi-Newton algorithm [Liu & Nocedal 1989]	42 s
Half-Quadratic algorithm [Allain et al. 2006]	779 s

Convergence speed of several optimization algorithms

for the considered reconstruction problem, with ℓ_2 - ℓ_0 penalties.