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Abstract— Content-Based Image Retrieval (CBIR) systems
require image classification. This paper presents aapplication
of neural networks (NN) to image segment classifitian for our
CBIR system. A new NN architecture which connects a
convolutional NN (CNN) with a shallow NN is proposeé in order
to improve the classification results. This improverant is
necessary due to the shortage of image samples tainh a CNN
separately. We obtained 5-11% improvement thanks tahe
fusion of CNN and shallow NN.

Keywords— CNN, shallow NN, pattern recognition, CBIR, im-
age processing

|I. INTRODUCTION

results obtained have been unsatisfactory, maiebabse of
the small number of samples to train networks.

In such a situation the transfer learning method is
suggested. It works under two conditions, first lderning
task and the target task have the same distribubibn
probability. Second the amount of the target-dontsma
must be smaller than in the source domain. It torrighat in
our case the first condition is weakly fulfilled $or this
reason, we decided to incorporate the numeric festu
collected in the DB in order to boost the clasatiign results.
We have prepared a shallow NN, dedicated to theeniem
features analysis for pattern recognition, and doet it

Content-Based Image Retrieval (CBIR) systems cobnsiswith our previously prepared CNNs. This paper dbssrthe

of different types of search engines, some of whidrch for
image similarity based only on low-level featurééhereas,
others can use classified segments or whole im&me$ar,
in our CBIR system several classical classifierg;hsas
minimal distance, Naive Bayes, decision trees, fuzee-

CNN architecture and shallow NN, and additionatlyches
the transfer learning problem.

Our contribution consists in combining CNN and &hal
NN architectures thanks to which the total accuracy
increases. Table | presents the total accuracy engtion in

based have been implemented [1]. However, the rapidomparison to separate accuracies.

development of convolutional neural networks (CNBs)a
tool for image detection and classification encgesus to
implement them also in our CBIR system. We haverexed
a new approach to the classification of existingdes in our
CBIR using neural networks and the tentative resule
included in the research report [2].

Il. CLASSIFICATION PROBLEM

A. Classification in CBIR

The house images have been collected in our CBIR
system. Each new image is segmented, creating afset
objects. In turn, each object, segmented accortbnghe

The deep learning concept [3] has a long historyalgorithm presented in detail in [7], is descrilbgca vector of

beginning from artificial neural networks describdxy
Fukushima in 1980 [4], through LeCun’s suggestioi$89
that the problem of handwriting recognition carsbéved by
a back propagation network [5] but eventually Kezbky et

45 low-level features, such as shape descriptolsiics, area,
iteration moments, etc. For classification segméatsed on
the feature vectors, we have implemented two-level
classification systems. There are minimal distaridaive

al. [6] in 2012 introduced a deep convolutional natu Bayes, decision trees classifiers at the base kwelin the
network (CNN) to image classification. They won thecase ofan incon;i_stencyinthe attr?bution ofsdasthe fuzzy
ImageNet Large Scale Visual Recognition Challengdule-based classifier selects the winner only fiomong the

(ILSVRC) for which they classified images into atsand
different categories, and in order to do this thad trained
their CNN based on about 1.2 min images. Unforeigathe
fewer images in the training set, the worse clasdibn
accuracy.

The main problem with applying CNN to the
classification of particular image sets is the ffisient
number of images and the fact that the classagdaanced.
In our system there are also many classes andesged with
various numbers of examples. Hence, we have arthbmae
pre-trained CNNs and our own architecture of CNN\ the
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three classes found at the first level.

B. CNN Classification

In contrast to a classification based on a featertor, a
CNN extracts many image features by using a cotieoiu
input image with different so-called masks, filterskernels
as a result of which an activation map is produdedhe
second layer a Rectified Linear Unit (ReLU) is agghwhich
represents a simplified neuron model with differeansfer
functions which in turn decide what value is transtl farther
to the next layer. And the third layer is MaxPogliwhich
down-samples a feature map and reduces the datdie
input layer (reduces the resolution) thanks to Whie space
layout of the object becomes more important. A dBi&p



i i _ input
consists of many such triples of layers — the nabtbem, the (227%097x3]

deeper the network is (sBéad! Nie mozna odnaleié zrodia
odwotania).
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Fig. 1 A CNN deep structure.
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We have had 7070 classified segments of 92 claxfses
architectural elements at our disposal which, mfetily, are 3X{ LomED
unbalanced in terms of image number for particalasses. MaxPooling
The most numerous class is ‘window pane’, congjstiir800
samples. The next four classes were less numeimis,
sufficient to train the network.

I1l. NEURALNETWORKARCHITECTURE

In the backpropagation technique, first a calcatatf the
dot products of input signals and their correspogdieights
is propagated forward and then an activation fonctd these
sums of products is applied, in order to transfoine input Fully Connected
signal into an output one and to introduce nondliities to the RelU
complex model which will enable the model to lealmost Py okt
any arbitrary functional mappings.
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In the next step, error terms are propagated baclsna
the network and weight values are updated usindigma
descent and the gradient of error function wittpees to the
weights. The bias values are recalculated and #ights are
updated in the opposite direction of the loss fiamctjradient
with respect to the model bias.

A transfer function for each neuron is very simplat the
difficulty arises from both the size of the deepinaé network  Fig. 2. Our fusion structure of CNN and shallow NN
and the fact that the model training requires figdithe
optimal value of a non-convex objective functiorj. [Bhe  A. Fusion of two NN architecture
internal parameters of a CNN model play an impartaie in The whole system is implemented in MatLab ver. 2018
efficient and eﬁectlve_ training of a model and gwoing __Fig. presents an example of a simple CNN congisifnl5
accurate. resullts. .Eh's IS wr:jy we gavel tleste_d VBINOU4vers applied to image classification [2] and khvalNN
optimization algorithms to update and calculateinoptn - e 11 the classification of the same imagaset on their
\&aéléZ?scl)éaf#icnh nrw(g)geeslss g?srf 'g]rec;[g:SO gm&g;géﬁﬂﬁi © feature vectors [10]. The product of probabilitesning from

gp ' : P both networks gives the winner class. The sizenefihput

minimize (or maximize) a loss function using itsadient . ) . .
values wit(h respect to t)he parameters. The m%&elyv%sed vector for the shallow NN is 45, the first hiddagér consists
of 145 neurons, each with the elliot symmetric sgm

first order optimization algorithm is gradient dest The first _
order derivative tells us whether the functionesmasing or  transfer function. The second softmax layer geesrat
increasing at a particular point. The first ordarigative  Probabilities for 6 classes.

basically gives us a line tangent at the minimunntpon the g Training Process

error surface. Second-order methods we are apptied .
training of our Shallow NN. The CNN and the Shallow NN were trained separdtety
] ) ) synchronously in the sense that when an imagetimfmthe
Having assumed that Matlab implementation had bee@NN first layer, the feature vector for this samege is put
prepared by experts, we examined three standairdizgtion  into the SNN first layer. Then, from both outputee can
Momentum (SGDM), Root Mean Square PropagatioNnmage feature vector in the common softmax layeraas
(RMSProp) [8] and ADAptive Moment estimation (ADAM) diagonal of a cross product. At the fusion outpetget the
[9] — all implemented in Matlab. boost class, thanks to which we have obtained eease in
accuracy, which is shown in the result section.
In order to train our CNN we assumed a fixed site o
image input 227x227x3 with the zero-centre norrasilim



for our network. Segment sizes in our DB had aa &@m 7

to 1982449 pixels, depending on the original imag

resolution. Hence, we had to rescale the smalkginsnts
and divide the biggest ones into two or four blockkis
procedure offers the best segment matching forirpet
window size because the small elements are notgadand
the big ones, for instance roofs, are not shrunkentban
10%. Moreover, the division of big elements enlargee
number of samples, which is very advantageousse o&an
insufficiency of training elements. Having donesthive
trained each of the networks for the 5 classeshi¢h each
exceeds 500 samples.

Our CNN has been trained on a mini-batch size = ft28
all experiments [11]. We tested it with the fil®ze equal to
[3%3], [7x7] and [9%9], at 40 epochs with 55 itévas per
epoch, which gives 2200 maximum iterations (see B)g
Details of our approach are described in [2].

Training Frogress (1B-8¢p 2013 1942 19]
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Fig. 3 Example of a training progress for our netwaith the RMSProp
optimization algorithm and filter size [3 3]. (Tophe curve of accuracy
(blue) during the training process. (Bottom) Theveuof the loss function
(red).

In order to train our SNN, first of all, we had nw@lised
the tagged set of 7070 samples in the range [-Latgr, we
divided this set into the training part which conga70% of
samples, the validation set which contains 15%, e
testing set which also contains 15% of samples.inQur
experiments we have determined that 47 traininglepds
enough.

For our shallow NN we have tested three learning

functions with respect to a mean squared error (MSE

e Levenberg-Marquardt backpropagation that updates
weight and bias values according to the Hagan
optimization algorithm [12]. The algorithm was
designed to approach the second-order trainingdspee
without having to compute the Hessian matrix. It is
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Fig. 4. Mean squared error for the process of trainiiige best validation
performance is marked by the green circle.

4\ Neural Network Training (nntraintool) - ‘ )
Neural Network
 Eiosig layer Softmax layer
= B0 = @ ligt-o—o
2 =Pl a®E T
Algorithms
Data Division: Random (dividerand)
Training: Bayesian Regularization (trainbr)
Performance: Mean Squared Error (mse)
Calculations: MEX
Progress
Epoch: 0 47
Time:
Performance: 0.187 0.00
Gradient: 0.387 1.00e-07
Mu: 0.100 1.00e+10
Effective # Param:  7.55e+03 0.00
Sum Squared Param: 764 0.00
Validation Checks: 0 17 17
Plots
Performance |(p|otperform)
Error Histogram | (ploterrhist)
Regression |(p|otregression)
Fit (plotfit)
" Plot Interval: | 1 epochs |

¥ Validation stop.

Stop Training || ® Cancel

implemented in the Matlab Deep Learning Toolbox ad '9- 5 The neutral network training toolbox.

the ‘trainlm’ function.

« Scaled conjugate gradient backpropagation is used t

calculate derivatives of performance related to the
weight and bias variables andb, respectively (see
Fig. ) [13]. It is implemented in the Matlab Deep
Learning Toolbox as the ‘trainscg’ function.

e Bayesian regularization backpropagation works

similarly to the Levenberg-Marquardt optimizatidn.
minimizes a combination of squared errors and



weights, and then determines the correct combinatiolmage name = aksamit.jpg
so as to produce a network that generalize§\N RVB_1_3 5 7_9. mat
effectively. It is implemented in the Matlab Deep I(::NN. accuracy = 0.5543

. R . usion classification:
Learning Toolbox as the ‘trainbr’ [14] function.

We apply the neutral network training toolbox inler to 2: 222 = ; [,?Zi‘! Isi ono':zg, 22222

easily visualize training parameters (see 5jg class = 9 recall = 0.16667
. class = 0 precision = 0.71875

C. Transfer Learning class = 0 recall = 0.7541

The transfer learning technique assumes that vefioe- g: s i e 0.2
tuned the pre-trained network in such a way thatraesfer ¢ ;55 = 5 precision = 0.5
the layers to the new classification task by reptp¢he last class =5 recall = 0.5
three layers with a fully connected layer, a softieger, and class = 3 precision = 0.33333
a classification output layer. This technique wouksler the class =3 recall = 0.25
condition that the domain of the source trainingasel the | o al precision = 0.39572

. . O otal recall = 0.48679

domain of the target training set have the samteluliion of ;51 specificity = 0.5
probability We have tested a transfer learning mettbn the  Total accuracy = 0.5978

AlexNet which has been trained on over a milliomagas and
can classify images into 1000 object categories €agnple
is shown in Table | for the AlexNet [6]. We havedituned

Confusion Matrix
Fusion classification

ipg

this network, using the stochastic gradient desaeitih omers , S I NG N w
momentum with MiniBatchSize = 64 for 10 epochs witt2 oiess:pene [ : e |° ! ° -
iterations each. But the results are similar tosiunple CNN, Buindoutrames| 2 | o | 1 | o | o | o
probably because the domains of both training diéfisred 2 wot| 3 | o o | o | o
too mUCh' wall 3 (4] 0 0 2 0 1‘:

In this situation we have cancelled further testsply roofedge | 4 0 0 s 0 2 °

because, in this technique, the whole NN from which
transfer is done is in the memory. Since theresiatage of
memory, we decided that it would be better to dgveimall
own CNN.
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Predicted Class
accuracy = 0.59783

Fig. 6. Confusion matrix of fusion accuracy witle t8NN for the RMSProp

optimization solver for image name = ‘aksamit.jpg’
IV. RESULTS P 9 Ipg

Our experiments were carried out on NVIDIA GeForce
GTX 1050 Ti, with 768 CUDA cores and the graphics
memory of 4 GB.

Total evaluation
Fusion classification

06 aksamit.jpg

The best results of many experiments have confirthed
selection of the ‘trainbr’ as the network trainifignction
which realizes the Bayesian regularization backpgagion 03
[14].

We tested our network on three sets of segmenth &zt
contains segments from one image: ‘aksamit.jpg’ Iheesn
divided into 84 segments, ‘amadeusz_1.jpg’ into, 1d8d 0
‘Abeeku.jpg’ into 55, respectively. Table | sumsthp results
the best of which shows an increase of accurady 4 %.

recall

precision

accuracy specificity

Fig. 7. Total evaluation of fusion classificatioritwthe CNN for the
RMSProp optimization solver for image name = ‘aki4pgy’

TABLE 1. EXAMPLES OF THERESULTSOBTAINED FOR5 CLASSES )
amadeusz_1.jpg
sample Set Accuracsyhauo NN| Total o ?cvfarlai’fjagsgg%
f W = 0.
Image name
(imag ) CNN accuracy accuracy | Accuracy Fusion cl assification:
aksamit.jpg CNN_RMS =0.5543 0.4457 0.5978
Fig. 6, Fig. 7 class = 7 precision = 0.6
class =7 recall = 0.14286
amadeusz_1.jgg CNN_RMS = 0.5930 0.5349 0.6453 class = 9 precision = 0.75
Fig. 8, Fig. 9 CNN_ADAM = 0.5581 0.5349 0.6628 class = 9 recall =0.25
Fig. 10, Fig. 11 alex_trans_sgdm_MBS_10_16 class = 0 precision = 0.64615
Fig. 12, Fig. 13 =0.5407 0.5349 0.5930 class = 0 recall = 0.90323
B class = 1 precision = 0.44444
Abeeku.jpg CNN_RMS =0.4253 0.3793 0.4713 class = 1 recall = 0.5
Fig. 14, Fig. 15 CNN SGDM = 0.4598 0.3793 0.5057 class = 5 precision = 0.75
Fig. 16, Fig. 17 - class =5 recall = 0.6
class = 3 precision = 0.90909
. . . class = 3 recall = 0.4
Below we present the details of the fusion cl_assifon fotal precision = 0.68328
only for each image. Examples of classes: 1 - windane, total recall = 0.46601
3 - frame, 5 - roof, 7 - wall, 9 - roof edge. total specificity = 0.48837
Total accuracy = 0.6453



Confusion Matrix Total evaluation

Fusion classification Fusion classification
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= 30
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Predicted Class
accuracy = 0.64535

. ) i i i accuracy precision recall specificity
Fig. 8. Confusion matrix of fusion accuracy witle t8NN for the RMSProp
optimization solver for image name = ‘amadeuszgl.jp Fig. 11. Total evaluation of fusion classificatiorith the CNN for the
ADAM optimization solver for image name = ‘amadeubkipg’

Total evaluation
Fusion classification

07 1109 Below we present the results for a transfer learnin
06 J example:
05 ] al ex_trans_sgdm MBS _10_16. mat
CNN accuracy = 0.5407
04 Fusi on cl assification:
o2 [ class = 7 precision = 0.33333
02 J class =7 recall = 0.14286
class = 9 precision = 0.5
0.1 class = 9 recall = 0.58333
. class = 0 precision = 0.63303
accuracy precision recall specificity class = 0 recall = 0.74194
) . ) o class = 1 precision = 0.375
Fig. 9. Total evaluation of fusion classificatiorittvthe CNN for the  ¢Jass = 1 recall = 0.375
RMSProp optimization solver for image name = ‘amesde 1.jpg’. class = 5 precision = 1
class =5 recall =0.6
CNN ADAM 1 3.5 7_9. mat class = 3 precision = 0.66667
CNN accuracy = 0.5581 class = 3 recall = 0.56
Fusion cl assification: total precision = 0.58467
o total recall = 0.50052
class = 7 precision = 0.57143 total specificity = 0.40116
class =7 recall = 0.19048 Total accuracy = 0.5930
class = 9 precision = 0.85714
class =9 recall =0.5 Confusion Matrix
class = 0 precision = 0.66116 Fusionclassiﬁcfa(ion
class = 0 recall = 0.86022 deusz-1jpg
class =1 precision = 0.61111 athers [ 10 11 0 15 4 "
class =1 recall = 0.6875
class = 5 precision =1 glass pane [l ‘ 8 ¢ ¢ 3 ¢ 50
class =5 recall = 0.6 @
class = 3 precision = 0.625 Guincowtremes O] ° WO ° | ° | ° °
class = 3 recall =0.4 2 wofl 0 | o | o | 3 | o | o %
total precision = 0.72097 2
total recall = 0.5397 wall| 6 0 0 0 3 0
total specificity = 0.46512 10
Total accuracy = 0.6628 roafedge | o | o I [ ,
o® <@ s & @ &
Confusion Matrix & g\'é"sv’b 60»:‘“66\5 &°°\06
Fusion classification R\
d 1.ipg ™~ Predicted Class
others [0 5 14 2 14 ‘ 6 ‘ L apcyracy;=0:33302
—— | 4 5 . . Fig. 12. Confusion matrix of fusion accuracy calculated witansfer
. » learning with the AlexNet CNN for the SGDM optimian solver for image
§window'rames 5 0 10 0 1 0 N name = ‘amadeusz_1.jpg’.
E roof 0 0 0 3 0 0 %
wall 3 0 0 0 4 0 20
10
roof edge 1 0 0 0 0 6 ‘
0

& @ 3 $ A
& ,;,Qd\ & «° W M@@
o° ,,x\x\“'wl

Predicted Class
accuracy = 0.66279

Fig. 10. Confusion matrix of fusion accuracy witte tCNN for the ADAM
optimization solver for image name = ‘amadeuszgl.jp
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Fig. 13. Total evaluation of fusion classification calcuthteith transfer
learning with the AlexNet CNN for the SGDM optimia solver for image
name = ‘amadeusz_1.jpg’.

'‘Abeeku-house-plan-Small.jpg'
CNN RVB_1_3_5_7_9. mat

CNN accuracy = 0.4253
Fusi on cl assification

class =7 precision = 0.6
class =7 recall = 0.46154
class = 9 precision =0
class =9 recall =0

class = 0 precision = 0.41509
class = 0 recall = 0.88
class =1 precision = 0.25
class =1 recall = 0.66667
class =5 precision =1
class =5 recall = 0.38462
class = 3 precision =1
class =3 recall =0.4
total precision = 0.54418
total recall = 0.46547

total specificity = 0.25287
Total accuracy = 0.4713

Confusion Matrix
Fusion classification
Abeeku-house-plan-Small.jpg

others 22 1 2 3 17 20
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15
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Predicted Class
accuracy = 0.47126

Fig. 14 Confusion matrix of fusion accuracy witke tBNN for the RMSProp
optimization solver for image name = 'Abeeku-hopks-Small.jpg'.
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Fig. 15. Total evaluation of fusion accuracy witke CNN for the RMSProp
optimization solver for image name = 'Abeeku-hopkss-Small.jpg'.

CNN SGDM 1_3_5_7_9. mat

CNN accuracy = 0.4598
Fusi on cl assification

class = 7 precision = 0.875
class = 7 recall = 0.53846
class = 9 precision = 0.4
class = 9 recall = 0.22222
class = 0 precision = 0.44681
class = 0 recall = 0.84

class =1 precision = 0.1
class =1 recall = 0.33333
class =5 precision =1

class = 5 recall = 0.38462
class = 3 precision = 0.85714
class =3 recall =0.4

total precision = 0.61316
total recall = 0.45311

total specificity = 0.24138
Total accuracy = 0.5057

Confusion Matrix
Fusion classification
Abeeku-house-plan-Small.jpg

others [P 2 6 2 3 -
glass pane 3 1 3 0 3 0 15
®
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5} }
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roof edge [} 0 0 ‘ 6 0 4
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Predicted Class
accuracy = 0.50575

Fig. 16.Confusion matrix of fusion accuracy with the CNN fbe SGDM
optimization solver for image name = 'Abeeku-hopka-Small.jpg'.
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Fig. 17. Total evaluation of fusion accuracy witle tCNN for the SGDM
optimization solver for image name = 'Abeeku-hopksa+-Small.jpg'.

V. DISCUSSION ANDFURTHERWORKS

Our solution can be widely applied in all the systethat
consist of images and alphanumeric data, for icgtam
patient examination DBs, especially when medicahges
based classification is combined with the resulistioer tests
(blood, biochemical, etc.).

New architecture of CNN, as well as Shallow NN nigh
improve accuracy, so we will work further in thisedtion.
We are going to try to test our solution on mediceges and
data.
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