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Abstract— Content-Based Image Retrieval (CBIR) systems 
require image classification. This paper presents an application 
of neural networks (NN) to image segment classification for our 
CBIR system. A new NN architecture which connects a 
convolutional NN (CNN) with a shallow NN is proposed in order 
to improve the classification results. This improvement is 
necessary due to the shortage of image samples to train a CNN 
separately. We obtained 5-11% improvement thanks to the 
fusion of CNN and shallow NN.  

Keywords— CNN, shallow NN, pattern recognition, CBIR, im-
age processing  

I. INTRODUCTION 

Content-Based Image Retrieval (CBIR) systems consist 
of different types of search engines, some of which search for 
image similarity based only on low-level features. Whereas, 
others can use classified segments or whole images. So far, 
in our CBIR system several classical classifiers, such as 
minimal distance, Naïve Bayes, decision trees, fuzzy rule-
based have been implemented [1]. However, the rapid 
development of convolutional neural networks (CNNs) as a 
tool for image detection and classification encourages us to 
implement them also in our CBIR system. We have examined 
a new approach to the classification of existing images in our 
CBIR using neural networks and the tentative results we 
included in the research report [2]. 

The deep learning concept [3] has a long history, 
beginning from artificial neural networks described by 
Fukushima in 1980 [4], through LeCun’s suggestion in 1989 
that the problem of handwriting recognition can be solved by 
a back propagation network [5] but eventually Krizhevsky et 
al. [6] in 2012 introduced a deep convolutional neural 
network (CNN) to image classification. They won the 
ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) for which they classified images into a thousand 
different categories, and in order to do this they had trained 
their CNN based on about 1.2 mln images. Unfortunately, the 
fewer images in the training set, the worse classification 
accuracy. 

The main problem with applying CNN to the 
classification of particular image sets is the insufficient 
number of images and the fact that the classes are unbalanced. 
In our system there are also many classes and subclasses with 
various numbers of examples. Hence, we have analysed some 
pre-trained CNNs and our own architecture of CNN but the 

results obtained have been unsatisfactory, mainly because of 
the small number of samples to train networks.  

In such a situation the transfer learning method is 
suggested. It works under two conditions, first the learning 
task and the target task have the same distribution of 
probability. Second the amount of the target-domain data 
must be smaller than in the source domain. It turns out that in 
our case the first condition is weakly fulfilled so for this 
reason, we decided to incorporate the numeric features 
collected in the DB in order to boost the classification results. 
We have prepared a shallow NN, dedicated to the numeric 
features analysis for pattern recognition, and combined it 
with our previously prepared CNNs. This paper describes the 
CNN architecture and shallow NN, and additionally touches 
the transfer learning problem. 

Our contribution consists in combining CNN and shallow 
NN architectures thanks to which the total accuracy 
increases. Table I presents the total accuracy augmentation in 
comparison to separate accuracies. 

II. CLASSIFICATION PROBLEM 

A. Classification in CBIR  

The house images have been collected in our CBIR 
system. Each new image is segmented, creating a set of 
objects. In turn, each object, segmented according to the 
algorithm presented in detail in [7], is described by a vector of 
45 low-level features, such as shape descriptors, colours, area, 
iteration moments, etc. For classification segments based on 
the feature vectors, we have implemented two-level 
classification systems. There are minimal distance, Naïve 
Bayes, decision trees classifiers at the base level and in the 
case of an inconsistency in the attribution of classes, the fuzzy 
rule-based classifier selects the winner only from among the 
three classes found at the first level. 

B. CNN Classification 

In contrast to a classification based on a feature vector, a 
CNN extracts many image features by using a convolution 
input image with different so-called masks, filters or kernels 
as a result of which an activation map is produced. In the 
second layer a Rectified Linear Unit (ReLU) is applied which 
represents a simplified neuron model with different transfer 
functions which in turn decide what value is transfered farther 
to the next layer. And the third layer is MaxPooling which 
down-samples a feature map and reduces the details in the 
input layer (reduces the resolution) thanks to which the space 
layout of the object becomes more important. A deep NN 



consists of many such triples of layers – the more of them, the 
deeper the network is (see Błąd! Nie można odnaleźć źródła 
odwołania.).  

 
Fig.  1 A CNN deep structure. 

We have had 7070 classified segments of 92 classes of 
architectural elements at our disposal which, additionally, are 
unbalanced in terms of image number for particular classes. 
The most numerous class is ‘window pane’, consisting of 800 
samples. The next four classes were less numerous, but 
sufficient to train the network. 

III.  NEURAL NETWORK ARCHITECTURE 

In the backpropagation technique, first a calculation of the 
dot products of input signals and their corresponding weights 
is propagated forward and then an activation function to these 
sums of products is applied, in order to transform the input 
signal into an output one and to introduce non-linearities to the 
complex model which will enable the model to learn almost 
any arbitrary functional mappings. 

In the next step, error terms are propagated backwards in 
the network and weight values are updated using gradient 
descent and the gradient of error function with respect to the 
weights. The bias values are recalculated and the weights are 
updated in the opposite direction of the loss function gradient 
with respect to the model bias. 

A transfer function for each neuron is very simple, but the 
difficulty arises from both the size of the deep neural network 
and the fact that the model training requires finding the 
optimal value of a non-convex objective function [8]. The 
internal parameters of a CNN model play an important role in 
efficient and effective training of a model and producing 
accurate results. This is why we have tested various 
optimization algorithms to update and calculate optimum 
values of such model’s parameters which influence our 
model’s learning process. First, order optimization algorithms 
minimize (or maximize) a loss function using its gradient 
values with respect to the parameters. The most widely used 
first order optimization algorithm is gradient descent. The first 
order derivative tells us whether the function is decreasing or 
increasing at a particular point. The first order derivative 
basically gives us a line tangent at the minimum point on the 
error surface. Second-order methods we are applied for 
training of our Shallow NN.  

Having assumed that Matlab implementation had been 
prepared by experts, we examined three standard optimization 
solvers for our CNN: the Stochastic Gradient Descent with 
Momentum (SGDM), Root Mean Square Propagation 
(RMSProp) [8] and ADAptive Moment estimation (ADAM) 
[9] – all implemented in Matlab.  

 

 
Fig. 2. Our fusion structure of CNN and shallow NN 

A. Fusion of two NN architecture  

The whole system is implemented in MatLab ver. 2018b. 
Fig.  presents an example of a simple CNN consisting of 15 
layers applied to image classification [2] and shallow NN 
applied to the classification of the same images, based on their 
feature vectors [10]. The product of probabilities coming from 
both networks gives the winner class. The size of the input 
vector for the shallow NN is 45, the first hidden layer consists 
of 145 neurons, each with the elliot symmetric sigmoid 
transfer function. The second softmax layer generates 
probabilities for 6 classes.  

B. Training Process 

The CNN and the Shallow NN were trained separately but 
synchronously in the sense that when an image is put into the 
CNN first layer, the feature vector for this same image is put 
into the SNN first layer. Then, from both outputs, we can 
combine the probabilities for a class of image and a class of 
image feature vector in the common softmax layer as a 
diagonal of a cross product. At the fusion output we get the 
boost class, thanks to which we have obtained an increase in 
accuracy, which is shown in the result section. 

In order to train our CNN we assumed a fixed size of 
image input 227×227×3 with the zero-centre normalization 



for our network. Segment sizes in our DB had an area from 7 
to 1 982 449 pixels, depending on the original image 
resolution. Hence, we had to rescale the smallest segments 
and divide the biggest ones into two or four blocks. This 
procedure offers the best segment matching for the input 
window size because the small elements are not enlarged and 
the big ones, for instance roofs, are not shrunk more than 
10%. Moreover, the division of big elements enlarges the 
number of samples, which is very advantageous in case of an 
insufficiency of training elements. Having done this, we 
trained each of the networks for the 5 classes, of which each 
exceeds 500 samples.  

Our CNN has been trained on a mini-batch size = 128, for 
all experiments [11]. We tested it with the filter size equal to 
[3×3], [7×7] and [9×9], at 40 epochs with 55 iterations per 
epoch, which gives 2200 maximum iterations (see Fig. 3). 
Details of our approach are described in [2]. 

 

 
Fig. 3 Example of a training progress for our network with the RMSProp 
optimization algorithm and filter size [3 3]. (Top) The curve of accuracy 
(blue) during the training process. (Bottom) The curve of the loss function 
(red). 

In order to train our SNN, first of all, we had normalised 
the tagged set of 7070 samples in the range [-1 1]. Later, we 
divided this set into the training part which contains 70% of 
samples, the validation set which contains 15%, and the 
testing set which also contains 15% of samples. During 
experiments we have determined that 47 training epochs is 
enough.  

For our shallow NN we have tested three learning 
functions with respect to a mean squared error (MSE):  

• Levenberg-Marquardt backpropagation that updates 
weight and bias values according to the Hagan 
optimization algorithm [12]. The algorithm was 
designed to approach the second-order training speed 
without having to compute the Hessian matrix. It is 
implemented in the Matlab Deep Learning Toolbox as 
the ‘trainlm’ function.  

 

Fig. 4. Mean squared error for the process of training. The best validation 
performance is marked by the green circle. 

 

 

Fig. 5 The neutral network training toolbox. 

• Scaled conjugate gradient backpropagation is used to 
calculate derivatives of performance related to the 
weight and bias variables w and b, respectively (see 
Fig. ) [13]. It is implemented in the Matlab Deep 
Learning Toolbox as the ‘trainscg’ function.  

• Bayesian regularization backpropagation works 
similarly to the Levenberg-Marquardt optimization. It 
minimizes a combination of squared errors and 



weights, and then determines the correct combination 
so as to produce a network that generalizes 
effectively. It is implemented in the Matlab Deep 
Learning Toolbox as the ‘trainbr’ [14] function. 

We apply the neutral network training toolbox in order to 
easily visualize training parameters (see Fig. 5). 

C. Transfer Learning 

The transfer learning technique assumes that we only fine-
tuned the pre-trained network in such a way that we transfer 
the layers to the new classification task by replacing the last 
three layers with a fully connected layer, a softmax layer, and 
a classification output layer. This technique works under the 
condition that the domain of the source training set and the 
domain of the target training set have the same distribution of 
probability We have tested a transfer learning method on the 
AlexNet which has been trained on over a million images and 
can classify images into 1000 object categories One example 
is shown in Table I for the AlexNet [6]. We have fine-tuned 
this network, using the stochastic gradient descent with 
momentum with MiniBatchSize = 64 for 10 epochs with 712 
iterations each. But the results are similar to our simple CNN, 
probably because the domains of both training sets differed 
too much.  

In this situation we have cancelled further tests simply 
because, in this technique, the whole NN from which the 
transfer is done is in the memory. Since there is a shortage of 
memory, we decided that it would be better to develop small 
own CNN. 

IV.  RESULTS 

Our experiments were carried out on NVIDIA GeForce 
GTX 1050 Ti, with 768 CUDA cores and the graphics 
memory of 4 GB. 

The best results of many experiments have confirmed the 
selection of the ‘trainbr’ as the network training function 
which realizes the Bayesian regularization backpropagation 
[14]. 

We tested our network on three sets of segments. Each set 
contains segments from one image: ‘aksamit.jpg’ has been 
divided into 84 segments, ‘amadeusz_1.jpg’ into 140, and 
‘Abeeku.jpg’ into 55, respectively. Table I sums up the results 
the best of which shows an increase of accuracy up to 11%.  

TABLE I.  EXAMPLES OF THE RESULTS OBTAINED FOR 5 CLASSES 

Sample Set 
(image name) 

Accuracy 

CNN accuracy 
Shallow NN 

accuracy 
Total  

Accuracy 
aksamit.jpg 
Fig. 6, Fig. 7 
_____________ 
amadeusz_1.jpg 
Fig. 8, Fig. 9 
Fig. 10, Fig. 11 
Fig. 12, Fig. 13 
_____________ 
Abeeku.jpg 
Fig. 14, Fig. 15 
Fig. 16, Fig. 17 

CNN_RMS =0.5543 
 

_________________________ 
CNN_RMS = 0.5930 

CNN_ADAM = 0.5581 
alex_trans_sgdm_MBS_10_16 

= 0.5407 
______________________ 

CNN_RMS =0.4253 
CNN_SGDM = 0.4598 

0.4457 
 

__________ 
0.5349 
0.5349 

 
0.5349 

__________ 
0.3793 
0.3793 

0.5978 
 

__________ 
0.6453 
0.6628 

 
0.5930 

__________ 
0.4713 
0.5057 

 
Below we present the details of the fusion classification 

only for each image. Examples of classes: 1 - window pane, 
3 - frame, 5 - roof, 7 - wall, 9 - roof edge. 

Image name = aksamit.jpg 
CNN RMS_1_3_5_7_9.mat 
CNN accuracy = 0.5543 
Fusion classification: 
 
class = 7  recall = 0.25 
class = 9  precision = 0.22222 
class = 9  recall = 0.16667 
class = 0  precision = 0.71875 
class = 0  recall = 0.7541 
class = 1  precision = 0.2 
class = 1  recall = 1 
class = 5  precision = 0.5 
class = 5  recall = 0.5 
class = 3  precision = 0.33333 
class = 3  recall = 0.25 
total precision = 0.39572 
total recall = 0.48679 
total specificity  = 0.5 
Total accuracy = 0.5978 
 

 
Fig. 6. Confusion matrix of fusion accuracy with the CNN for the RMSProp 
optimization solver for image name = ‘aksamit.jpg’ 

 
Fig. 7. Total evaluation of fusion classification with the CNN for the 
RMSProp optimization solver for image name = ‘aksamit.jpg’ 

amadeusz_1.jpg 
CNN RMS_1_3_5_7_9.mat 
CNN accuracy = 0.5930 
Fusion classification: 
 
class = 7  precision = 0.6 
class = 7  recall = 0.14286 
class = 9  precision = 0.75 
class = 9  recall = 0.25 
class = 0  precision = 0.64615 
class = 0  recall = 0.90323 
class = 1  precision = 0.44444 
class = 1  recall = 0.5 
class = 5  precision = 0.75 
class = 5  recall = 0.6 
class = 3  precision = 0.90909 
class = 3  recall = 0.4 
total precision = 0.68328 
total recall = 0.46601 
total specificity  = 0.48837 
Total accuracy = 0.6453  



 
Fig. 8. Confusion matrix of fusion accuracy with the CNN for the RMSProp 
optimization solver for image name = ‘amadeusz_1.jpg’. 

 
Fig. 9. Total evaluation of fusion classification with the CNN for the 
RMSProp optimization solver for image name = ‘amadeusz_1.jpg’. 

CNN ADAM_1_3_5_7_9.mat 
CNN accuracy = 0.5581 
Fusion classification: 
 
class = 7  precision = 0.57143 
class = 7  recall = 0.19048 
class = 9  precision = 0.85714 
class = 9  recall = 0.5 
class = 0  precision = 0.66116 
class = 0  recall = 0.86022 
class = 1  precision = 0.61111 
class = 1  recall = 0.6875 
class = 5  precision = 1 
class = 5  recall = 0.6 
class = 3  precision = 0.625 
class = 3  recall = 0.4 
total precision = 0.72097 
total recall = 0.5397 
total specificity  = 0.46512 
Total accuracy = 0.6628 
 

 
Fig. 10. Confusion matrix of fusion accuracy with the CNN for the ADAM 
optimization solver for image name = ‘amadeusz_1.jpg’. 

 
Fig. 11. Total evaluation of fusion classification with the CNN for the 
ADAM optimization solver for image name = ‘amadeusz_1.jpg’ 

Below we present the results for a transfer learning 
example: 

alex_trans_sgdm_MBS_10_16.mat 
CNN accuracy = 0.5407 
Fusion classification: 
 
class = 7  precision = 0.33333 
class = 7  recall = 0.14286 
class = 9  precision = 0.5 
class = 9  recall = 0.58333 
class = 0  precision = 0.63303 
class = 0  recall = 0.74194 
class = 1  precision = 0.375 
class = 1  recall = 0.375 
class = 5  precision = 1 
class = 5  recall = 0.6 
class = 3  precision = 0.66667 
class = 3  recall = 0.56 
total precision = 0.58467 
total recall = 0.50052 
total specificity  = 0.40116 
Total accuracy = 0.5930 

 

 

Fig. 12. Confusion matrix of fusion accuracy calculated with transfer 
learning with the AlexNet CNN for the SGDM optimization solver for image 
name = ‘amadeusz_1.jpg’. 



 
Fig. 13. Total evaluation of fusion classification calculated with transfer 
learning with the AlexNet CNN for the SGDM optimization solver for image 
name = ‘amadeusz_1.jpg’. 

'Abeeku-house-plan-Small.jpg' 
CNN RMS_1_3_5_7_9.mat 
CNN accuracy = 0.4253 
Fusion classification: 
 
class = 7  precision = 0.6 
class = 7  recall = 0.46154 
class = 9  precision = 0 
class = 9  recall = 0 
class = 0  precision = 0.41509 
class = 0  recall = 0.88 
class = 1  precision = 0.25 
class = 1  recall = 0.66667 
class = 5  precision = 1 
class = 5  recall = 0.38462 
class = 3  precision = 1 
class = 3  recall = 0.4 
total precision = 0.54418 
total recall = 0.46547 
total specificity  = 0.25287 
Total accuracy = 0.4713 
 

 
Fig. 14 Confusion matrix of fusion accuracy with the CNN for the RMSProp 
optimization solver for image name = 'Abeeku-house-plan-Small.jpg'. 

 
Fig. 15. Total evaluation of fusion accuracy with the CNN for the RMSProp 
optimization solver for image name = 'Abeeku-house-plan-Small.jpg'. 

CNN SGDM_1_3_5_7_9.mat 
CNN accuracy = 0.4598 
Fusion classification: 
 
class = 7  precision = 0.875 
class = 7  recall = 0.53846 
class = 9  precision = 0.4 
class = 9  recall = 0.22222 
class = 0  precision = 0.44681 
class = 0  recall = 0.84 
class = 1  precision = 0.1 
class = 1  recall = 0.33333 
class = 5  precision = 1 
class = 5  recall = 0.38462 
class = 3  precision = 0.85714 
class = 3  recall = 0.4 
total precision = 0.61316 
total recall = 0.45311 
total specificity  = 0.24138 
Total accuracy = 0.5057 

 

 
Fig. 16. Confusion matrix of fusion accuracy with the CNN for the SGDM 
optimization solver for image name = 'Abeeku-house-plan-Small.jpg'. 

 
Fig. 17. Total evaluation of fusion accuracy with the CNN for the SGDM 
optimization solver for image name = 'Abeeku-house-plan-Small.jpg'. 

V. DISCUSSION AND FURTHER WORKS 

Our solution can be widely applied in all the systems that 
consist of images and alphanumeric data, for instance, in 
patient examination DBs, especially when medical image-
based classification is combined with the results of other tests 
(blood, biochemical, etc.). 

New architecture of CNN, as well as Shallow NN might 
improve accuracy, so we will work further in this direction. 
We are going to try to test our solution on medical images and 
data. 
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