
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

The Fusion of two NN Architectures for

the Improvement of Image Classification

Tatiana Jaworska
Systems Research Institute
Polish Academy of Sciences

01-447, 6 Newelska Street, Warsaw,
Poland

Tatiana.Jaworska@ibspan.waw.pl
https://orcid.org/0000-0001-5399-8474

Abstract— Content-Based Image Retrieval (CBIR) systems
require image classification. This paper presents an application
of neural networks (NN) to image segment classification for our
CBIR system. A new NN architecture which connects a
convolutional NN (CNN) with a shallow NN is proposed in order
to improve the classification results. This improvement is
necessary due to the shortage of image samples to train a CNN
separately. We obtained 5-11% improvement thanks to the
fusion of CNN and shallow NN.

Keywords— CNN, shallow NN, pattern recognition, CBIR, im-
age processing

I. INTRODUCTION

Content-Based Image Retrieval (CBIR) systems consist
of different types of search engines, some of which search for
image similarity based only on low-level features. Whereas,
others can use classified segments or whole images. So far,
in our CBIR system several classical classifiers, such as
minimal distance, Naïve Bayes, decision trees, fuzzy rule-
based have been implemented [1]. However, the rapid
development of convolutional neural networks (CNNs) as a
tool for image detection and classification encourages us to
implement them also in our CBIR system. We have examined
a new approach to the classification of existing images in our
CBIR using neural networks and the tentative results we
included in the research report [2].

The deep learning concept [3] has a long history,
beginning from artificial neural networks described by
Fukushima in 1980 [4], through LeCun’s suggestion in 1989
that the problem of handwriting recognition can be solved by
a back propagation network [5] but eventually Krizhevsky et
al. [6] in 2012 introduced a deep convolutional neural
network (CNN) to image classification. They won the
ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) for which they classified images into a thousand
different categories, and in order to do this they had trained
their CNN based on about 1.2 mln images. Unfortunately, the
fewer images in the training set, the worse classification
accuracy.

The main problem with applying CNN to the
classification of particular image sets is the insufficient
number of images and the fact that the classes are unbalanced.
In our system there are also many classes and subclasses with
various numbers of examples. Hence, we have analysed some
pre-trained CNNs and our own architecture of CNN but the

results obtained have been unsatisfactory, mainly because of
the small number of samples to train networks.

In such a situation the transfer learning method is
suggested. It works under two conditions, first the learning
task and the target task have the same distribution of
probability. Second the amount of the target-domain data
must be smaller than in the source domain. It turns out that in
our case the first condition is weakly fulfilled so for this
reason, we decided to incorporate the numeric features
collected in the DB in order to boost the classification results.
We have prepared a shallow NN, dedicated to the numeric
features analysis for pattern recognition, and combined it
with our previously prepared CNNs. This paper describes the
CNN architecture and shallow NN, and additionally touches
the transfer learning problem.

Our contribution consists in combining CNN and shallow
NN architectures thanks to which the total accuracy
increases. Table I presents the total accuracy augmentation in
comparison to separate accuracies.

II. CLASSIFICATION PROBLEM

A. Classification in CBIR

The house images have been collected in our CBIR
system. Each new image is segmented, creating a set of
objects. In turn, each object, segmented according to the
algorithm presented in detail in [7], is described by a vector of
45 low-level features, such as shape descriptors, colours, area,
iteration moments, etc. For classification segments based on
the feature vectors, we have implemented two-level
classification systems. There are minimal distance, Naïve
Bayes, decision trees classifiers at the base level and in the
case of an inconsistency in the attribution of classes, the fuzzy
rule-based classifier selects the winner only from among the
three classes found at the first level.

B. CNN Classification

In contrast to a classification based on a feature vector, a
CNN extracts many image features by using a convolution
input image with different so-called masks, filters or kernels
as a result of which an activation map is produced. In the
second layer a Rectified Linear Unit (ReLU) is applied which
represents a simplified neuron model with different transfer
functions which in turn decide what value is transfered farther
to the next layer. And the third layer is MaxPooling which
down-samples a feature map and reduces the details in the
input layer (reduces the resolution) thanks to which the space
layout of the object becomes more important. A deep NN

consists of many such triples of layers – the more of them, the
deeper the network is (see Błąd! Nie można odnaleźć źródła
odwołania.).

Fig. 1 A CNN deep structure.

We have had 7070 classified segments of 92 classes of
architectural elements at our disposal which, additionally, are
unbalanced in terms of image number for particular classes.
The most numerous class is ‘window pane’, consisting of 800
samples. The next four classes were less numerous, but
sufficient to train the network.

III. NEURAL NETWORK ARCHITECTURE

In the backpropagation technique, first a calculation of the
dot products of input signals and their corresponding weights
is propagated forward and then an activation function to these
sums of products is applied, in order to transform the input
signal into an output one and to introduce non-linearities to the
complex model which will enable the model to learn almost
any arbitrary functional mappings.

In the next step, error terms are propagated backwards in
the network and weight values are updated using gradient
descent and the gradient of error function with respect to the
weights. The bias values are recalculated and the weights are
updated in the opposite direction of the loss function gradient
with respect to the model bias.

A transfer function for each neuron is very simple, but the
difficulty arises from both the size of the deep neural network
and the fact that the model training requires finding the
optimal value of a non-convex objective function [8]. The
internal parameters of a CNN model play an important role in
efficient and effective training of a model and producing
accurate results. This is why we have tested various
optimization algorithms to update and calculate optimum
values of such model’s parameters which influence our
model’s learning process. First, order optimization algorithms
minimize (or maximize) a loss function using its gradient
values with respect to the parameters. The most widely used
first order optimization algorithm is gradient descent. The first
order derivative tells us whether the function is decreasing or
increasing at a particular point. The first order derivative
basically gives us a line tangent at the minimum point on the
error surface. Second-order methods we are applied for
training of our Shallow NN.

Having assumed that Matlab implementation had been
prepared by experts, we examined three standard optimization
solvers for our CNN: the Stochastic Gradient Descent with
Momentum (SGDM), Root Mean Square Propagation
(RMSProp) [8] and ADAptive Moment estimation (ADAM)
[9] – all implemented in Matlab.

Fig. 2. Our fusion structure of CNN and shallow NN

A. Fusion of two NN architecture

The whole system is implemented in MatLab ver. 2018b.
Fig. presents an example of a simple CNN consisting of 15
layers applied to image classification [2] and shallow NN
applied to the classification of the same images, based on their
feature vectors [10]. The product of probabilities coming from
both networks gives the winner class. The size of the input
vector for the shallow NN is 45, the first hidden layer consists
of 145 neurons, each with the elliot symmetric sigmoid
transfer function. The second softmax layer generates
probabilities for 6 classes.

B. Training Process

The CNN and the Shallow NN were trained separately but
synchronously in the sense that when an image is put into the
CNN first layer, the feature vector for this same image is put
into the SNN first layer. Then, from both outputs, we can
combine the probabilities for a class of image and a class of
image feature vector in the common softmax layer as a
diagonal of a cross product. At the fusion output we get the
boost class, thanks to which we have obtained an increase in
accuracy, which is shown in the result section.

In order to train our CNN we assumed a fixed size of
image input 227×227×3 with the zero-centre normalization

for our network. Segment sizes in our DB had an area from 7
to 1 982 449 pixels, depending on the original image
resolution. Hence, we had to rescale the smallest segments
and divide the biggest ones into two or four blocks. This
procedure offers the best segment matching for the input
window size because the small elements are not enlarged and
the big ones, for instance roofs, are not shrunk more than
10%. Moreover, the division of big elements enlarges the
number of samples, which is very advantageous in case of an
insufficiency of training elements. Having done this, we
trained each of the networks for the 5 classes, of which each
exceeds 500 samples.

Our CNN has been trained on a mini-batch size = 128, for
all experiments [11]. We tested it with the filter size equal to
[3×3], [7×7] and [9×9], at 40 epochs with 55 iterations per
epoch, which gives 2200 maximum iterations (see Fig. 3).
Details of our approach are described in [2].

Fig. 3 Example of a training progress for our network with the RMSProp
optimization algorithm and filter size [3 3]. (Top) The curve of accuracy
(blue) during the training process. (Bottom) The curve of the loss function
(red).

In order to train our SNN, first of all, we had normalised
the tagged set of 7070 samples in the range [-1 1]. Later, we
divided this set into the training part which contains 70% of
samples, the validation set which contains 15%, and the
testing set which also contains 15% of samples. During
experiments we have determined that 47 training epochs is
enough.

For our shallow NN we have tested three learning
functions with respect to a mean squared error (MSE):

• Levenberg-Marquardt backpropagation that updates
weight and bias values according to the Hagan
optimization algorithm [12]. The algorithm was
designed to approach the second-order training speed
without having to compute the Hessian matrix. It is
implemented in the Matlab Deep Learning Toolbox as
the ‘trainlm’ function.

Fig. 4. Mean squared error for the process of training. The best validation
performance is marked by the green circle.

Fig. 5 The neutral network training toolbox.

• Scaled conjugate gradient backpropagation is used to
calculate derivatives of performance related to the
weight and bias variables w and b, respectively (see
Fig.) [13]. It is implemented in the Matlab Deep
Learning Toolbox as the ‘trainscg’ function.

• Bayesian regularization backpropagation works
similarly to the Levenberg-Marquardt optimization. It
minimizes a combination of squared errors and

weights, and then determines the correct combination
so as to produce a network that generalizes
effectively. It is implemented in the Matlab Deep
Learning Toolbox as the ‘trainbr’ [14] function.

We apply the neutral network training toolbox in order to
easily visualize training parameters (see Fig. 5).

C. Transfer Learning

The transfer learning technique assumes that we only fine-
tuned the pre-trained network in such a way that we transfer
the layers to the new classification task by replacing the last
three layers with a fully connected layer, a softmax layer, and
a classification output layer. This technique works under the
condition that the domain of the source training set and the
domain of the target training set have the same distribution of
probability We have tested a transfer learning method on the
AlexNet which has been trained on over a million images and
can classify images into 1000 object categories One example
is shown in Table I for the AlexNet [6]. We have fine-tuned
this network, using the stochastic gradient descent with
momentum with MiniBatchSize = 64 for 10 epochs with 712
iterations each. But the results are similar to our simple CNN,
probably because the domains of both training sets differed
too much.

In this situation we have cancelled further tests simply
because, in this technique, the whole NN from which the
transfer is done is in the memory. Since there is a shortage of
memory, we decided that it would be better to develop small
own CNN.

IV. RESULTS

Our experiments were carried out on NVIDIA GeForce
GTX 1050 Ti, with 768 CUDA cores and the graphics
memory of 4 GB.

The best results of many experiments have confirmed the
selection of the ‘trainbr’ as the network training function
which realizes the Bayesian regularization backpropagation
[14].

We tested our network on three sets of segments. Each set
contains segments from one image: ‘aksamit.jpg’ has been
divided into 84 segments, ‘amadeusz_1.jpg’ into 140, and
‘Abeeku.jpg’ into 55, respectively. Table I sums up the results
the best of which shows an increase of accuracy up to 11%.

TABLE I. EXAMPLES OF THE RESULTS OBTAINED FOR 5 CLASSES

Sample Set
(image name)

Accuracy

CNN accuracy
Shallow NN

accuracy
Total

Accuracy
aksamit.jpg
Fig. 6, Fig. 7

amadeusz_1.jpg
Fig. 8, Fig. 9
Fig. 10, Fig. 11
Fig. 12, Fig. 13

Abeeku.jpg
Fig. 14, Fig. 15
Fig. 16, Fig. 17

CNN_RMS =0.5543

CNN_RMS = 0.5930

CNN_ADAM = 0.5581
alex_trans_sgdm_MBS_10_16

= 0.5407

CNN_RMS =0.4253
CNN_SGDM = 0.4598

0.4457

0.5349
0.5349

0.5349

0.3793
0.3793

0.5978

0.6453
0.6628

0.5930

0.4713
0.5057

Below we present the details of the fusion classification

only for each image. Examples of classes: 1 - window pane,
3 - frame, 5 - roof, 7 - wall, 9 - roof edge.

Image name = aksamit.jpg
CNN RMS_1_3_5_7_9.mat
CNN accuracy = 0.5543
Fusion classification:

class = 7 recall = 0.25
class = 9 precision = 0.22222
class = 9 recall = 0.16667
class = 0 precision = 0.71875
class = 0 recall = 0.7541
class = 1 precision = 0.2
class = 1 recall = 1
class = 5 precision = 0.5
class = 5 recall = 0.5
class = 3 precision = 0.33333
class = 3 recall = 0.25
total precision = 0.39572
total recall = 0.48679
total specificity = 0.5
Total accuracy = 0.5978

Fig. 6. Confusion matrix of fusion accuracy with the CNN for the RMSProp
optimization solver for image name = ‘aksamit.jpg’

Fig. 7. Total evaluation of fusion classification with the CNN for the
RMSProp optimization solver for image name = ‘aksamit.jpg’

amadeusz_1.jpg
CNN RMS_1_3_5_7_9.mat
CNN accuracy = 0.5930
Fusion classification:

class = 7 precision = 0.6
class = 7 recall = 0.14286
class = 9 precision = 0.75
class = 9 recall = 0.25
class = 0 precision = 0.64615
class = 0 recall = 0.90323
class = 1 precision = 0.44444
class = 1 recall = 0.5
class = 5 precision = 0.75
class = 5 recall = 0.6
class = 3 precision = 0.90909
class = 3 recall = 0.4
total precision = 0.68328
total recall = 0.46601
total specificity = 0.48837
Total accuracy = 0.6453

Fig. 8. Confusion matrix of fusion accuracy with the CNN for the RMSProp
optimization solver for image name = ‘amadeusz_1.jpg’.

Fig. 9. Total evaluation of fusion classification with the CNN for the
RMSProp optimization solver for image name = ‘amadeusz_1.jpg’.

CNN ADAM_1_3_5_7_9.mat
CNN accuracy = 0.5581
Fusion classification:

class = 7 precision = 0.57143
class = 7 recall = 0.19048
class = 9 precision = 0.85714
class = 9 recall = 0.5
class = 0 precision = 0.66116
class = 0 recall = 0.86022
class = 1 precision = 0.61111
class = 1 recall = 0.6875
class = 5 precision = 1
class = 5 recall = 0.6
class = 3 precision = 0.625
class = 3 recall = 0.4
total precision = 0.72097
total recall = 0.5397
total specificity = 0.46512
Total accuracy = 0.6628

Fig. 10. Confusion matrix of fusion accuracy with the CNN for the ADAM
optimization solver for image name = ‘amadeusz_1.jpg’.

Fig. 11. Total evaluation of fusion classification with the CNN for the
ADAM optimization solver for image name = ‘amadeusz_1.jpg’

Below we present the results for a transfer learning
example:

alex_trans_sgdm_MBS_10_16.mat
CNN accuracy = 0.5407
Fusion classification:

class = 7 precision = 0.33333
class = 7 recall = 0.14286
class = 9 precision = 0.5
class = 9 recall = 0.58333
class = 0 precision = 0.63303
class = 0 recall = 0.74194
class = 1 precision = 0.375
class = 1 recall = 0.375
class = 5 precision = 1
class = 5 recall = 0.6
class = 3 precision = 0.66667
class = 3 recall = 0.56
total precision = 0.58467
total recall = 0.50052
total specificity = 0.40116
Total accuracy = 0.5930

Fig. 12. Confusion matrix of fusion accuracy calculated with transfer
learning with the AlexNet CNN for the SGDM optimization solver for image
name = ‘amadeusz_1.jpg’.

Fig. 13. Total evaluation of fusion classification calculated with transfer
learning with the AlexNet CNN for the SGDM optimization solver for image
name = ‘amadeusz_1.jpg’.

'Abeeku-house-plan-Small.jpg'
CNN RMS_1_3_5_7_9.mat
CNN accuracy = 0.4253
Fusion classification:

class = 7 precision = 0.6
class = 7 recall = 0.46154
class = 9 precision = 0
class = 9 recall = 0
class = 0 precision = 0.41509
class = 0 recall = 0.88
class = 1 precision = 0.25
class = 1 recall = 0.66667
class = 5 precision = 1
class = 5 recall = 0.38462
class = 3 precision = 1
class = 3 recall = 0.4
total precision = 0.54418
total recall = 0.46547
total specificity = 0.25287
Total accuracy = 0.4713

Fig. 14 Confusion matrix of fusion accuracy with the CNN for the RMSProp
optimization solver for image name = 'Abeeku-house-plan-Small.jpg'.

Fig. 15. Total evaluation of fusion accuracy with the CNN for the RMSProp
optimization solver for image name = 'Abeeku-house-plan-Small.jpg'.

CNN SGDM_1_3_5_7_9.mat
CNN accuracy = 0.4598
Fusion classification:

class = 7 precision = 0.875
class = 7 recall = 0.53846
class = 9 precision = 0.4
class = 9 recall = 0.22222
class = 0 precision = 0.44681
class = 0 recall = 0.84
class = 1 precision = 0.1
class = 1 recall = 0.33333
class = 5 precision = 1
class = 5 recall = 0.38462
class = 3 precision = 0.85714
class = 3 recall = 0.4
total precision = 0.61316
total recall = 0.45311
total specificity = 0.24138
Total accuracy = 0.5057

Fig. 16. Confusion matrix of fusion accuracy with the CNN for the SGDM
optimization solver for image name = 'Abeeku-house-plan-Small.jpg'.

Fig. 17. Total evaluation of fusion accuracy with the CNN for the SGDM
optimization solver for image name = 'Abeeku-house-plan-Small.jpg'.

V. DISCUSSION AND FURTHER WORKS

Our solution can be widely applied in all the systems that
consist of images and alphanumeric data, for instance, in
patient examination DBs, especially when medical image-
based classification is combined with the results of other tests
(blood, biochemical, etc.).

New architecture of CNN, as well as Shallow NN might
improve accuracy, so we will work further in this direction.
We are going to try to test our solution on medical images and
data.

References
[1] T. Jaworska, “Classification problem in CBIR,”

Journal of Theoretical and Applied Computer Science,
vol. 7, no. 2, pp. 3-15, 2013.

[2] T. Jaworska, “CNN as a Tool for Image Segment
Classification,” Warsaw, Dec., 2018.

[3] Q. Abbas, M. E. A. Ibrahim and M. . A. Jaffar, “A
comprehensive review of recent advances on deep
vision systems,” Artificial Intelligence Review, vol. 52,
pp. 39-76, May on-line 2018.

[4] K. Fukushima, “Neocognitron: a self-organizing neural
network model for a mechanism of pattern recognition
unaffected by shift in position,” Biological
Cybernetics, vol. 36, no. 4, pp. 193-202, April 1980.

[5] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R.
E. Howard, W. Hubbard i L. D. Jackel,
„Backpropagation Applied to Handwritten Zip Code
Recognition,” Neural Computation, tom 1, nr 4,
pp. 541-551, Winter 1989.

[6] A. Krizhevsky, I. Sutskever and G. E. Hinton,
“ImageNet Classification with Deep Convolutional
Neural Networks,” in Proceedings of the 25th
International Conference on Neural Information
Processing Systems - NIPS'12, Lake Tahoe, Nevada,
USA, 03 - 06 Dec. 2012.

[7] T. Jaworska, “A Search-Engine Concept Based on
Multi-Feature Vectors and Spatial Relationship,” in
Flexible Query Answering Systems, vol. 7022, H.
Christiansen, G. De Tré, A. Yazici, S. Zadrożny and H.
L. Larsen, Eds., Ghent, Springer, 2011, pp. 137-148.

[8] Y. Dauphin, H. de Vries, J. Chung and Y. Bengio,
“RMSProp and equilibrated adaptive learning rates for
non-convex optimization,” Neural Information
Processing Systems, 15 Feb. 2015.

[9] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent
magnitude.,” COURSERA:Neural Networks for
Machine Learning, 2012.

[10] N. N. K. Win, T. Zin and H. M. Tun , “Comparison Of
Power Quality Disturbances Classification Based On
Neural Network,” International Journal of Scientific &
Technology Research, vol. 4, no. 7, pp. 97-103, July
2015.

[11] D. Masters and C. Luschi, “Revisiting Small Batch
Training for Deep Neural Networks,” ArXiv e-prints,
Bristol, UK, 2018.

[12] M. Hagan, H. B. Demuth , M. H. Beale and . O. De
Jesús , Neural Network Design, vol. 2nd edition,
Boston, Massachusetts: PWS Publishing Co., 1996.

[13] M. F. MEILLER, “A Scaled Conjugate Gradient
Algorithm for Fast Supervised Learning,” Neural
Networks, vol. 6, no. 4, pp. 525-533, 1993.

[14] F. D. Foresee and M. T. Hagan, “Gauss-Newton
approximation to Bayesian learning,” in Proceedings
of the International Joint Conference on Neural
Networks, July, 1997.

