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Abstract 

This article analyses object features in terms of their dissimilarity for 
a content-based image retrieval (CBIR) system. The first part is devoted 
to the mathematical fundamentals of recognition procedures. The main 
part serves the survey of low-level object features in relation to our CBIR 
system, which is dedicated to supporting estate agents. In the database 
there are images of houses and bungalows. Hence, the dissimilarity meas-
ures are scrutinized with reference to architectural object features. We 
present a brief overview of (dis)similarity measures for various types of 
object features, together with their characteristics. At the middle-level im-
age analyses based on spatial relations must also employ comparisons to 
evaluate the object spatial localization. At this level the spatial similarity 
gives crucial information to respond to the query concerning the best 
matching of whole images. With the aim of modelling dissimilarity judg-
ments some tree structures are introduced. Therefore, the approach to the 
dissimilarity in this CBIR system is hybrid. The basic experimental re-
search concentrates on examining dissimilarities among house images. 
Keywords: dissimilarity measure, content-based image retrieval system, 
feature space. 

1 Introduction 

Pattern recognition is both art and science. For the purpose of automatic group-
ing and classification it is difficult to determine proper features. The formalized 
representation of objects (usually in mathematical terms) and the definition of 
classes determine how the object recognition level should be modelled.  
While many papers are concerned with various algorithmic procedures, we 
would like to focus on the issue of representation. This work is devoted to par-
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ticular representations, namely dissimilarity representations. Below we will 
examine the nature of basic problems in pattern recognition (see fig. 1) with the 
use of dissimilarity representations. 
 

 

Figure 1: Components of a general pattern recognition system. A representation 
is either a numerical description of objects and/or their relations or their syntac-
tical encoding by a set of primitives together with a set of operations on objects 
and spatial relationships. Adaptation relies on a suitable change of a representa-
tion, e.g. by reducing the number of features, relations or primitives describing 
objects, or some nonlinear transformations of the features, to enhance the class 
or cluster descriptions 
 

There are two principal groups of methods in pattern recognition, statistical 
and structural (or syntactic) [18], [23], [3]. Both approaches use features to de-
scribe objects, but these features are defined differently. In general, features are 
functions of measurements performed on objects. 

1.1. CBIR conception overview 

Pattern recognition is applied as one of the methods for image content analysis 
in image retrieval systems (CBIR). Our CBIR system is dedicated to support 
estate agents. In the estate database there are images of houses, bungalows, and 
other buildings. To be effective in terms of presentation and choice of houses, 
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the system has to be able to find the image of a house with defined architectural 
elements, for example: windows, roofs, doors, etc [19]. This work uses pattern 
recognition as an element of content-based image retrieval system (CBIR). For 
this purpose it is difficult to determine proper features, i.e. shape descriptors 
that would precisely discriminate among many different elements, in our case 
architectural elements. Figure 2 shows the block diagram of our CBIR system. 
The hierarchical structure of the image content analysis block from the segmen-
tation level to the object recognition level covers the present approach to a 
multi-layer image description model in order to reach progressive image analy-
sis and understanding (Gao [13]). In this structure, image content is analyzed 
and represented on three levels. There is a context between adjacent levels, i.e. 
the representation for the upper level is directly extracted from the lower level.  
 
 

 
Figure 2:  Block diagram of our content-based image retrieval system 
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The first stage of our analysis amounts to splitting the original image into 
several meaningful clusters; each of them provides certain semantics in terms of 
human understanding of image content. Next, separate objects are extracted 
from these clusters and our efforts have been put into extracting elements from 
an image in the unsupervised way. With reference to the processes described 
above the selection of image features should be carefully fitted into dissimilarity 
methods in terms of pattern recognition. Another important part of the image 
content analysis block is the object recognition level logically preceded by the 
visual perception level. 

New images (in JPEG format), as well as all results achieved on each level 
of image content analysis, are stored in the related database. For our project the 
Oracle DB system has been chosen on account of its flexibility and complete-
ness. In order to enforce the process of image retrieval many multi-dimensional 
indexes have to be implemented for this database. Some of them are proposed 
by Amsaleg and Gros [1] and also by Głomb [14]. 

 
The right half of the diagram is dedicated to users, hence, it is processed on-

line. It comprises the user’s query interface and the matching engine. In our 
system the user’s interface is offered on the WWW site. Users can select sepa-
rate features such as colour or texture, they can also select an architectural ele-
ment, which automatically defines many features as a query. Indeed, if the users 
have a vague target image in mind, they have the possibility to compose their 
imaginary house and the system presents them some optional houses based on 
these chosen elements [10]. 

The next element of the system is the matching engine which uses the dis-
similarity measures to search for best-matched images. A careful image content 
analysis is crucial for the whole on-line process dedicated to the user, otherwise, 
the proper matching result will not be reached. 

2 Dissimilarity measures 

Pattern recognition relies on the description of regularities in the observed 
classes of objects. Each object is described by a vector of features. We assume 
that there exists a resemblance between dissimilarity and feature-based repre-
sentations (e.g. in their matrix notation). 

The main issue is understanding of the structure and complexity of a dissimi-
larity data representation. Relative similarity can be defined as a relationship 
among entities which are of the same nature or possess the same characteristics, 
but to a different degree or measure. The larger the similarity value, the greater 
the resemblance among objects. Relative dissimilarity, on the other hand, fo-



 83

cuses on the differences; the smaller the dissimilarity, the more alike the objects 
are.  

The dissimilarity space approach addresses a dissimilarity representation as a 
data-dependent mapping specified by the representation set R . A mapping  
ψ(⋅,R) : χ → Rn is defined as ψ(x,R) = [d(x, p1) d(x, p2) … d(x, pn)]. We assume 
a collection of objects R = {p1, p2, … , pn}, called a representation set, or a set of 
prototypes and d is dissimilarity. Note that � denotes either objects themselves 
(e.g. a set of convex subsets of a finite-dimension space), or a feature-based 
vectorial representation of objects. Note that � might not be given explicitly. 
The dimension of such a space is controlled by the cardinality of R  . 

2.1 Measures depending on feature types 

The two determining factors for image retrieval performance are the features 
used to represent the images and the distance function used to measure the simi-
larity between a query image and the images in the database. For a specific fea-
ture representation chosen, the retrieval performance depends critically on the 
similarity measure used. We distinguish the following feature types: binary, 
categorical, ordinal, symbolic and quantitative.  
 
Definition 1. (Feature types) 

Let �={f1, f2,…, fm} be a set of features, also called variables or attributes, 
and Df - a set of valid values for a feature f. The following features f �� can be 
considered: 
• binary if Df is a set of two numbers. They represent either the presence (1) 

or absence (0) of particular characteristics or some opposite qualities. 
• categorical if Df is a finite, discrete set of numbers, e.g. from 1 to 3 to en-

code RGB triples. Here, we also include the case of a discrete feature, i.e. a 
feature with distinct and separate values, which can be counted, such as 
grey level degrees from 0 to 255, etc.  

• quantitative if f is measured on an interval and Df is a convex subset of R, 
e.g. an area of an object in pixels. 

• original if Df is a finite, discrete set of ordered symbols, e.g. a scale from 1 
to 5 representing the answers of ‘strongly dislike’, ‘dislike’, ‘neutral’, ‘like’, 
and ‘strongly like’, after comparing CBIR results with an imaginary house 
by a potential client.  

• symbolic or nominal if Df is a finite, discrete set of symbols; e.g. nationality. 
Symbolic features represent a set of possible values, symbols or modalities. 
Their values can be counted, but not ordered. 
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Measures for binary features 
Let i-th object be represented by a binary vector xi � Bm, where B={0,1}.  

 For   ∑
=

=∈
m
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m
ji xxB

1
xx,xx T  (1) 

is the binary scalar product and (1 – x) is the complementary vector of x. This 
allows us to define the following counters: 
• aij = ji xx T  - the number of properties common for both objects  

• bij = )1( ji xx T −  - the number of properties which i has and j lacks 

• cij = ji xx T)1( −  - the number of properties which j has and i lacks 

• dij = )1()1( ji xx T −−  - the number of properties that both objects 
lack 

 
where aij + bij + cij + dij = m2. For various definitions of similarity measures, a 
2×2 contingency table is considered for each pair of objects i and j as presented 
in Tab. 1. 

Table 1 Counters for binary features 

 Object  j 
1         0 

Object  i 1
0

aij       bij 
cij      dij 

 
Measures for categorical features 

Let X be a categorical n × m data matrix and let the feature fk take values in  
ck categories, so that ∑ == m

k kcc 1 . Dissimilarity measures defined for binary 
data, Tab. 1 can now be adapted for the categorical data, as well. To achieve 
that, one has to code each m-dimensional data vector xi into a c-dimensional 
binary vector ]~,...,~[~

)()1( mi xxx = .  )(
~

kx  is a vector of length ck consisting of all 
zeros except for 1 at the j-th position assuming that xik belongs to the j-th cate-
gory [8]. 

 
Measures for ordinal features 

Let X be an ordinal n×m data matrix, so that the feature fk has ck categories, 
so that ∑ == m

k kcc 1 . In case of ordinal variables, the dissimilarity measure 
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should take into account the positions of categories in the ordering, and it 
should be larger for more distant categories than for the close ones. Here, a gen-
eralization of the Jaccard dissimilarity can be used for a comparison of the ob-
jects pi and pj, as follows: 
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Measures for quantitative features 

Many measures exist for quantitative variables, mostly constructed in an ad-
ditive way after counting the differences for each variable separately [8], [9], 
[15], [16]. Some of them are presented in Tab 2. The basic measures come from 
the family of lp-distances. The lp metric, for p ≥ 1 is defined as 
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which for p=1 becomes the city block distance and for p=2, the Euclidean dis-
tance. 
 

Table 2 Dissimilarity measures for quantitative data in �m. 
Kind of distance D Dissimilarity d (x, y) 
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Measures for symbolic data 
Symbolic objects are described by m variables fi, each on the domain 

ifD  

and a logical statement of the form [fi ∈ χi], where 
ifi D⊆χ , e.g. [col-

our ∈ {red, green, blue}] or [texture ∈ (20, 40)]. A symbolic object x is ex-
pressed as the Cartesian product of the values xi = fi (x) with the total event be-
ing a conjunction of all the feature events. The dissimilarity between two ob-
jects x = [f1 ∈ χ1 ] �…� [fm ∈ χm ] and y = [f1 ∈�1 ] �…�[fm ∈�m ] can be de-
fined with respect to the components due to position (dp), span (ds) and content 
(dc), all normalized to [0,1], as [18]:  
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The component dp, valid for quantitative variables only, indicates the relative 
positions of two variable values. By writing ],[ u
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where 
ifD  is the range of fi over all the objects. The remaining two measures, 

ds and dc are defined for quantitative, symbolic or ordinal attributes.   

2.2 Dissimilarity measures between sets 

Dissimilarities can also be considered between two closed and bounded sub-
regions of an Euclidean space, sets of points or elements. Let us first formally 
introduce the Hausdorff distance. 
 
Hausdorff metric 
Let (X,ρ) be a metric space and C(X) ⊆ X be a space of non-empty, closed and 

bounded subsets of X. Let 
U

Ax
xBAN

∈
= )()( εε

 be the cover of A ∈ X by open 

ε-balls }),(:{)( ερε <∈= yxXyxB , where A, B are two compact subsets of 
metric space X. Since Bε(x) is a neighbourhood of x, then Nε(A) is a neighbo-
urhood of A according to the definition of natural topology in metric spaces. 
The Hausdorff distance between A and B is defined as the smallest ε-
neighbourhood of A which covers B and the other way round (see fig. 3). On 
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the other hand, the direct Hausdorff distance between A and B, ),( BAdH
>

 can 
be expressed as the maximum taken over from the collection of minimum dis-
tances between elements of the set A and B.  

 
 

Figure 3:  Illustration of the Hausdorff distance between sets A and B:  
dH (A,B) = ε. 

Definition 2. (Hausdorff distance) 

In a metric space (X, ρ), the Hausdorff distance with the base ρ is defined for 
all A, B � C(X) in one of the following ways: 

(1)  )}(&)({inf),(
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Variants of the Hausdorff distance 
Let (X, ρ) be a metric space (usually Euclidean) and C(X) � X be a space of 

non-empty, closed and bounded subsets of X. Let  A, B � C(X) be sets of nA and 
nB elements correspondingly. The distance between an element a � A and the set 
B can be defined as: 
 ),(min)},({),( baBadBad
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ρ

∈
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The directed dissimilarity between two sets can be then found as [7]: 
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A Hausdorff-like distance can also be defined for fuzzy sets [4, 5]. Consider 
two non-empty fuzzy sets Af and Bf on support set S in a metric space and a 
discrete set of the membership values μ1, μ2, …, μc. Let ),(

ii
BAdH μμ  be a 

fuzzy Hausdorff distance between sets 
i

Aμ  and 
i

Bμ . Then, the fuzzy Haus-

dorff-like distance between Af  and Bf  is defined as: 
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which is metric [5]. 
fHd  can be seen as membership-weighted average of the 

Hausdorff distances between the modified level sets of the fuzzy sets consid-
ered. 

3 Feature survey 

In terms of the CBIR system discussed in subsec. 1.1 and the above analysed 
dissimilarities the features of objects are examined here separately. An im-
age/object feature is a distinguishing primitive characteristic or attribute of an 
image in general or an object in our case. There are two quantitative approaches 
to the evaluation of image features: a prototype performance and a figure of 
merit.  

In the prototype performance approach for image classification, a prototype 
image with regions (segments) that have been independently categorized is clas-
sified by a classification procedure using various image features to be evaluated. 
The classification error is then measured for each feature set. The best set of 
features is, of course, that which results in the least classification error.  

The figure of merit approach to feature evaluation involves the establishment 
of some functional distance measurements between sets of image features such 
that a large distance implies a low classification error and vice versa. 

Below we will show selected examples of features useful for the CBIR. 
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3.1 Colour – second-order histogram 

Second-order histogram features are based on the definition of the joint prob-
ability distribution of pairs of pixels. Let us consider two pixels F(j,k) and 
F(m,n) that are located at coordinates (j,k) and (m,n) respectively, and, as it is 
shown in Fig. 4 these pixels are separated by r radial units at an angle θ with 
respect to the horizontal axis. The joint distribution of image amplitude values 
is then expressed as P(a,b) = PR { F(j,k) = ra, F(m,n) = rb }, where ra and rb rep-
resent quantized pixel amplitude values. As a result of the discrete rectilinear 
representation of an image, the separation parameters (r,θ) may only assume 
certain discrete values. The histogram which estimates the second order distri-
bution is  

 
M

baNbaP ),(),( ≈  (9) 

where M is the total number of pixels in the measurement window and N(a,b) 
denotes the number of occurrences for which F(j,k) = ra and F(m,n) = rb. 

 
Figure 4:  Relationship of pixel pairs 

When we need a fast estimation of colour for an architectural element we 
can use the average colour of this element, computed separately as an average 
of each colour component of the RGB triple (r,g,b). 

3.2 Texture parameters 

The texture information presented in images is one of the most powerful fea-
tures available. There are many methods which can be used for texture charac-
terization. One of them is the two-dimensional frequency transformation. For 
CBIR purposes, such methods could be applied as the classical Fourier trans-
formation or several spatial-domain texture-sensitive operators, for instance, the 
Laplacian 3x3 or 5x5, the Gaussian 5x5, Hurst, Haralick, or Frei and Chen 
(Russ, 1995). Generally, all of them are useful for relatively small neighbour-
hoods. 
Later methods are based on the transformation domain algorithms. In 2001 
Balmelli and Mojsilović [2] proposed the wavelet domain for texture and pat-
tern. They found features such as directionality, symmetry and regularity for 
regular textures, geometrical patterns and floral ornaments. Unfortunately, they 
have not proposed any application of their method for real images. So far only 
Lewis and Fauzi have managed to perform an automatic texture segmentation 
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algorithm for CBIR based on Discrete Wavelet Transform (DWT). They have 
applied their method for image retrieval in museum collections [11]. 

 

 
Figure 5:  Distance map for positive and negative horizontal wavelet  

coefficients 
In our work we decided to use the Fast Wavelet Transform (FWT) [6], [21], 
[22]. It is efficient and productive enough for frequent use for our purpose. One 
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of the most important features of wavelet details is their directionality. It means 
that the convolution of the horizontal wavelet and the horizontal elements of an 
image results in big values of horizontal details 1

1d , whereas the convolution 
of the vertical wavelet and the vertical elements of image results in big values of 
vertical details 2

1d .  
 
If we use this feature and compute the convolution of an image consisting of 
regular tiles or bricks and the relevant wavelet, we obtain a 2D transform whose 
maximum values are placed in the connection spots among these tiles or bricks. 
We have applied the Haar wavelet for all our counts because it is the simplest 
wavelet and it seems to be the most suitable kind of wavelet for analysis of 
geometrical elements. Having computed horizontal details, we measured the 
distances between the maxima for each column of this matrix as well as the 
distances between the minima for each column of this matrix. After counting 
the distances we have created two distance maps for all positive and negative 
horizontal coefficients (Fig. 5) [20]. 

3.3 Shape descriptors 

In pattern recognition and CBIR shape (similar to colour and texture) is one of 
the primary low level features widely exploited. Therefore, many shape descrip-
tion techniques have been developed for both quantitative and qualitative meas-
urements. There are generally two types of shape representation methods in the 
literature: the region-based and contour-based methods.  

Here, we are interested in the comparison of objects, hence in measures of 
their similarity. For the purpose of matching of region-based shapes variants of 
Hausdorff distances can be used. These measures are, in fact, measures between 
sets of points. They are invariant to either affine transformations or similarity 
transformations of the sets.  

The dissimilarity between image contours can be studied as a cost of 
matching by summing up the costs of local deformations that reflect the differ-
ences between two contours. A cost function is proposed, which depends on the 
local curvature and obeys the constraints of continuity, metric properties and 
invariance under some classes of transformations. 

To be more specific, let us have a look at some kinds of shape descriptors. 
Shape can be described in a structural way. A chain code representation of a 
digital boundary as a sequence of direction vectors based on the 
4- or 8-connectivity principle was proposed by Freeman and Class in 1961 [12] 
(see fig. 6).  

 
 



 92

 
Figure 6: Chain code representation based on the 8-connectivity 

This approach is unique and reconstructs a shape when a starting point is given. 
Unfortunately, chain codes become very long for complex objects, but more 
importantly, they reflect all the noise present on the boundary. 

 
Figure 7: A square and its centroid distance function 

 
Alternatively, shapes can be represented in transform spaces such as Fourier 

or wavelet space. In general, the set of normalized Fourier transformed coeffi-
cients is called the Fourier descriptor of shape. The shape signature is a one-
dimensional function, which is derived from shape boundary coordinates. The 
first step in computing a Fourier descriptor is the obtainment of the boundary 
coordinates (x(θ), y(θ)), θ = 0,1, …, N–1, where N is the number of boundary 
points (see fig. 7). The centroid distance function r(θ)  

 

 
22 ])([])([)( yyxxr −+−= θθθ  (10) 

is expressed by the distance of the boundary points from the centroid ( yx, ) 
computed as follows: 
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An example of such a function for a square object is presented in figure 7.  
Next, we transform function r(θ) and we obtain a set of Fourier coefficients 
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for n = 0,1, …, N–1. The acquired Fourier coefficients are translation, rotation 
and scaling invariant after further normalization a = {a1, a2, .., aN}. 

3.4 Spatial location 

Other important criteria for assessing image similarity are: region treated as a 
location of objects, spatial information about objects in the whole image and 
spatial relationships among objects.  
 

 
Figure 8: Integrated spatial query. Images are compared by the spatial  

arrangements of objects 
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This information is used in spatial image query [25]. In CBIR researchers have 
developed techniques for spatial image query based on the locations of objects 
[17], [24]. Two types of spatial image similarities can be recognize: relative and 
absolute. In a relative spatial image similarity, the objects are matched based 
upon the relative locations of each other. In absolute spatial image similarity the 
objects are matched based upon fixed positions in the images [25].  

In our CBIR system objects and their features, as well as spatial attributes 
are extracted from the images. The comparison of the images then considers the 
similarity of the feature and spatial attributes of the regions, as depicted in Fig. 
8. 
 

The overall match score between images is computed by summing the 
weighted distances between the best matching objects in terms of spatial loca-
tions, sizes and features. The relative spatial locations of objects in the target 
images (I2) are also compared to those in the query image (I1) to determine the 
image matches. The image matching process is carried out on the matching 
objects tables. A query image Q = {

k
II 11 ,...,

0
} consists of k objects. Each ob-

ject has spatial attributes which are stored on a table.  
To match the images, the CBIR system compares the objects from I1 to the 

objects of the target images I2 in the data base. At first, the system determines 
the sets of target regions that sufficiently match each query object 

k
I1 . After 

identifying the candidate target regions, the lists are combined. 
 
Each target image and configuration of objects is assigned an overall match 

score to the query image. At the final stage, any specifications by the user of 
relative spatial constraints are checked for each target image.  

4 Conclusions 

This brief overview of similarity and dissimilarity measures indicates not only 
their variability, but also their different origins and underlying principles. The 
use of dissimilarity is popular in CBIR systems as a natural means for compari-
son of objects. Most of the dissimilarities are defined for the problem at hand, 
but, intuitively, it is clear that a good dissimilarity measure should be small for 
similar objects and large for different ones. Ideally, the measure should be de-
veloped such a way that it is invariant to rotation, translation and scaling and 
also to small aberrations and changes in the images. 

The feature survey has been carried out with reference to the above pre-
sented dissimilarities. It has only focused on the most difficult features to de-
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termine. We have omitted some features which are easy to count such as area, 
moments of gravity, compactness, etc. because of their popularity in the litera-
ture. 

References 

[1] Amsaleg L., Gros P., Berrani S-A. (2004). Robust Object Recognition in 
Images and the Related Database Problems. Multimedia Tools and Appli-
cations, 23, 1, Springer Netherlands, 221-235. 

[2] Balmelli L., Mojsilović A. (2001). Wavelet domain features for textu-
re/pattern description, classification and replicability analysis. In: 
A. Petrosian and F. Meyer, ed., Wavelets in Signal and Image Analysis. 
Kluwer Academic Publishers, London, Chap. 7, 193-212. 

[3] Bunke H., Sanfeliu A., eds.(1990). Syntactic and Structural Pattern Rec-
ognition. Theory and Applications, World Scientific. 

[4] Chaudhuri B., Rosenfeld A. (1996). On a metric distance between fuzzy 
sets. Patter Recognition Letters, 17, 1157-1160. 

[5] Chaudhuri B., Rosenfeld A. (1999). On a metric distance between fuzzy 
sets. Information Sciences, 118, 159-171. 

[6] Daubechies I. (1992). Ten lectures on wavelets. Society for Industrial and 
Applied Math., Filadelfia. 

[7] Dubuison M., Jain A. (1994). Modified Hausdorff distance for object 
matching. In International Conference on Pattern Recognition, 1, 566-
568. 

[8] Esposito F., et al. (2000). Analysis of Symbolic Data, chapter Similarity 
and Dissimilarity, Springer-Verlag. 

[9] Everitt B., Rabe-Hesketh S. (1997). The Analysis of Proximity Data, Ar-
nold, London. 

[10] Fauqueur J., Boujemaa N. (2006). Mental image search by Boolean com-
position of region categories, Multimedia Tools and Applications, Vol. 31, 
No. 1, Springer Netherlands, October, 95-117. 

[11] Fauzi M., Lewis P. (2006). Automatic texture segmentation for content-
based image retrieval application, Pattern Analysis and Applications, 
Springer-Verlag, London. 

[12] Freeman H., Glass J. (1961). On the encoding of arbitrary geometric con-
figurations. IRE Transactions, EC-10(2), 260-268. 

[13] Gao Y. Y., Zhang Y. J., Yu F. (2000). Semantic-based image descrip-tion 
model and its implementation for image retrieval. Proceeding of the First 
International Conference on Image and Graphics, 657-660. 



 96

[14] Głomb P.: Metody indeksowanie ruchomych obrazów wideo, Ph.D. Disser-
tation, Institute of Theoretical and Applied Informatics PAS, Gliwice, 
2006. 

[15] Gowda K., Diday E. (1991). Unsupervised learning through symbolic clus-
tering, Pattern Recognition Letter, 12, 259-564. 

[16] Gower J. (1986). Metric and Euclidean Properties of Dissimilarity Coeffi-
cients, Journal of Classification, 3, 5-48.  

[17] Gudivada V. N., Raghavan V. V. (1995). Design and evaluation of algo-
rithms for image retrieval by spatial similarity, ACM Trans Inf Sys, 13(2), 
115-144. 

[18] Jain A., Duin R., Mao J. (2000). Statistical pattern recognition: A review. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 
4-37. 

[19] Jaworska T., Partyka A, (2005). Research: Content-based image retrieval 
system [in Polish], Report RB/37/2005, Systems Research Institute, PAS.  

[20] Jaworska T. (2007). Low-Level Analysis as a Basic Process for Content-
Based Image Retrieval (CBIR) System, Proceedings of the 10th IFAC/IFIP 
/IFORS/IEA Symposium on Analysis, Design, and Evaluation of Human-
Machine Systems, Seoul, Korea, September.  

[21] Mallat S. (1989). Multiresolution approximations and wavelet orthonormal 
basis of L2(R). In: Trans. Amer. Math. Soc., 315, 69-87. 

[22] Mallat S. (1998). A Wavelet Tour of Signal Processing. Academic Press, 
London.  

[23] Nadler M., Smith E. (1993). Pattern Recognition Engineering. John 
Willey & Sons Inc., New York.  

[24] Petrakis E. (1993). Image representation, Indexing and Retrieval Based on 
Spatial Relationships and Properties of Objects, PhD thesis, University of 
Crete, Crete, Greece. 

[25] Smith J. R., Chang Sh-F. (1999). Integrated spatial and feature image 
query. Multimedia Systems, 7, 129-140.  


