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Abstract 

This article introduces the imprecision approach to high–level graphical 
object interpretation. It presents a step towards soft computing which sup-
ports the implementation of a content-based image retrieval (CBIR) system 
dealing with graphical object classification. Some crucial aspects of CBIR 
are presented here to illustrate the problems that we are now struggling 
with. The main motivation of our researches is to provide effective and ef-
ficient means for the interpretation of graphical object classification. The 
paper shows how the traditional feature vector method extends to match 
graphical objects, difficult to classify, by applying intuitionistic fuzzy sets 
and possibility theory. We consider the cases where both classification of 
objects and their retrieval are modelled with the aid of fuzzy set extensions. 
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1 Introduction 

In recent years, the availability of image resources on the WWW has increased 
tremendously. This has created a demand for effective and flexible techniques 
for automatic image retrieval, coupled with the fact that a lot of graphical in-
formation is available in an imperfect form only. Indeed, information is likely to 
be imprecise, vague, uncertain, incomplete, inconsistent, etc. For this reason, 
attempts to perform the Content-Based Image Retrieval (CBIR) in an efficient 
way have been made for many years. Nevertheless, the CBIR system, for a 
number of reasons, has yet to reach maturity. A major problem in this area is 
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computer perception. In other words, there remains a considerable gap between 
image retrieval based on low-level features, such as shape, colour, texture [12], 
[14], [19] and spatial relations, and image retrieval based on high-level semantic 
concepts, for example, houses, windows, roofs, flowers, etc [5], [7], [15]. This 
problem emerges especially as challenging when image databases are excep-
tionally large. 

Given the above context, it comes as no surprise that fast retrieval in data-
bases has recently been an active research area. The effectiveness of the retriev-
al process from the start has been a motivation to develop more advanced, se-
mantically richer system models. One of the numerous problems which CBIR 
system authors struggle with is the ability to deal with information imperfection. 
Here, we will focus on this issue, briefly introducing some other, related aspects 
of the main subject. 

In the literature, the fuzzy set theory [21] and its related possibility theory 
[22] have been used as the underlying mathematical framework for enhanced 
approaches to integrate imperfection at the level of alphanumeric data in, what 
is usually called a “fuzzy” database [23]. However, we propose a fuzzy ap-
proach to graphical data in the CBIR structure. This problem has turned out 
specially challenging with graphical information gradually becoming predomi-
nant in modern databases [9], [13]. Application of Atanassov's intuituinistic 
fuzzy sets and possibility theory seems to be justified in terms of improvement 
of the effectiveness of graphical object classification for image retrieval. We are 
aware that some problems remain and in this paper we will discuss a few of 
them, for example, misclassification of graphical objects and imperfect 
knowledge. 

2 CBIR Concept Overview 

In content-based image retrieval, representation and description of the content 
of an image is a central issue. Among different structural levels, object level is 
considered the key linking the lower feature level and the higher semantic one 
[1]. In order to be effective in terms of the presentation and choice of images, 
the system has to be capable of finding the graphical objects that a particular 
image is composed of.  

Figure 1 shows the block diagram of our CBIR system. As can be seen, the 
top part of the diagram illustrates the image content analysis block of our sys-
tem. In this approach we use a multi-layer description model [8]. The descrip-
tion for the higher layer could be generated from the description of the lower 
layer, and establishing the image model is synchronized with the procedure for 
progressive understanding of image contents. These different layers could pro-
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vide distinct information on image content, so this model provides access from 
different levels as a multi-layer representation. 

 

 

Figure 1. Block diagram of our content-based image retrieval system 

Each new image added to our CBIR system, as well as the graphical user’s 
query, must be preprocessed, as shown in the segmentation level frame of the 
image content analysis block (top, Fig. 1). All graphical objects, such as houses, 
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trees, a beach, the sky etc., must be segmented and extracted from the back-
ground at the stage of preprocessing. Although colour images are downloaded 
from the Internet (in the JPEG format), their preprocessing is unsupervised. 
Similarly, an object extraction from the image background must be done in a 
way enabling unsupervised storage of these objects in the DB.  

For this purpose, we apply two-stage segmentation, enabling us to extract 
accurately the desired objects from the image. In the first stage, the image is 
divided into separate RGB colour components which are next divided into lay-
ers according to three light levels. In the second stage, individual graphical ob-
jects are extracted from each layer. Next, the low-level features are determined 
for each object, understood as a fragment of the entire image. These features 
include: colour, area, centroid, eccentricity, orientation, texture parameters, 
moments of inertia, etc. The segmentation algorithm and object extraction algo-
rithm, as well as the texture parameter-finding algorithm are presented in detail 
in an article by Jaworska [10]. The information obtained from the image content 
analysis is stored in the database. 

In general, the system consists of 5 main blocks (fig. 1): 
1. the image preprocessing block (responsible for image segmentation), ap-

plied in Matlab; 
2. the Oracle Database, storing information about whole images, their seg-

ments (here referred to as image objects), segment attributes and object lo-
cation; 

3. the indexing module responsible for the image indexing procedure [11]; 
4. the graphical user's interface (GUI), also applied in Matlab. In comparison 

to the previous systems, ours has been developed in order to give the user 
the possibility to design their image which later becomes a query for the 
system [11]. 

5. the match engine responsible for image matching and retrieval. In this pa-
per we would like to focus on the advanced mechanism, dealing with im-
precision implemented in this engine. 
The next element of the system is the matching engine, which uses indexes 

based on the multi-layer description model and object patterns to search for “the 
best matching images”. Research on models which extend the flexibility of 
matching methods to obtain semantically profound retrieval, similar to human 
image understanding, leads us to experiments with Atanassov's intuitionistic 
fuzzy sets and possibility theory. 

The bottom part of figure 1 is dedicated to users - the GUI block – and pre-
sents the on-line functionality of the system – the match engine and match re-
sults blocks.  
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3 Basic Concepts of Extended Fuzzy Sets 

Definition 1 
A fuzzy set A over a universe of discourse U is defined by means of a member-
ship function µA which associates with each element x of U a membership grade 
µA (u) ∈ [0,1] [21].  
In what follows, a fuzzy set A over a universe of discourse U is denoted by 

A = {(x, µA (x) | x ∈ U)}.   ( 1) 
Two important concepts of core and support are related to a fuzzy set A: 

core(A) = {x | x ∈ U /\ µA (x) =1} 
and 

support (A) = {x | x ∈ U /\ µA (x) >0}. 
 
Definition 2 
Atanassov's intuitionistic fuzzy set (A-IFS) A over a universe of discourse U [2] 
is defined by two functions: 

µA, νA : U → [0,1]    ( 5) 
such that 

Uxxx AA ∈∀≤+≤ ,1)()(0 νµ     ( 6) 
and is denoted by 

}|)(),(,{ UxxxxA AA ∈><= νµ .   ( 7) 

For each x ∈ U the numbers µA(x) and νA(x), respectively, represent the de-
gree of membership and the degree of non-membership of x in A. The constraint 
(6) reflects the consistency condition. For each value x ∈ U, the difference 

hA(x) = 1 – µA(x) – νA(x)    ( 8) 
is referred to as the hesitation margin. If for x ∈ U, hA (x) = 0, then there is no 
hesitation about x being an element of A or not, which implies that 

)(1)( xx AA µν −= . On the other hand, if for x ∈ U, hA (x) = 1, then there is full 
hesitation as µA (x) = 0. In all other cases, the consistency condition guarantees 
that hA (x) ∈ ]0,1[, which reflects partial hesitation. 

 

Figure 2. Graphical representation of Atanassov's intuitionistic fuzzy set. 
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Thus, as in Atanassov's intuitionistic fuzzy sets there are two grades associ-
ated with each element of the universe. The grade µA (x) of x in A is interpreted 
as a membership grade, which is the same as the original interpretation of mem-
bership grades in fuzzy sets. The grade νA (x) of x in A is interpreted as a non-
membership grade. Hereby, it is explicitly demonstrated that membership and 
non-membership do not necessarily complement each other, in other words they 
do not need to sum up to 1, as it is illustrated in fig. 2. 

4 Methods of Image Indexing and Classification 

Since the early 90’s the effectiveness of classifiers has considerably improved 
which is strongly connected with fast development of machine learning meth-
ods, for example, nearest neighbour classifiers [24], Bayesian classifiers, deci-
sion trees or support vector machines.  

In the case of image analysis, we have tried to achieve categories strictly 
connected with the human perception of images. Before image set can be repre-
sented by the classifier, some form of representation must be chosen. Feature 
selection is a key task for the proper classification [20]. For graphical objects 
low-level features are as important as shape descriptors and object locations 
(mutually and in the whole image). If not enough number of features is we can 
receive confusing results whereas using many features is troublesome due to 
space and computing time limitations. 

4.1 Data Representation for Objects 

 

Figure 3. (Left) One colour layer from which the object was extracted. (Centre) 
An image of a separate object (element 13). (Right) Object features. 
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Each graphical object, selected according to the algorithm presented in detail in 
[10], is described by some low-level features such as: average colour kav, texture 
parameters Tp, area A, convex area Ac, filled area Af, centroid {xc, yc}, eccentrici-
ty e, orientation α, moments of inertia m11, bounding box {b1(x,y), ..., bw (x,y)} 
(w – number of vertices), major axis length mlong, minor axis length mshort, solidi-
ty s and Euler number E. These features are presented in the example window 
of the interface (Fig. 3) for a selected object. Let F be a set of features where 
F = {kav, Tp, A, Ac, …, E}. For ease of notation we will use F = { f1, f2,…, fr}, 
where r – number of features. For an object, we construct a feature vector O 
containing the above-mentioned features:  
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This feature vector is further used for object classification. 
The average colour is a complex feature. It means that values of the red, 

green and blue components are summed up for all the pixels belonging to an 
object, and divided by the number of object pixels:  
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The next complex feature attributed to objects is texture. Texture parame-
ters are found in the wavelet domain. The algorithm details are also given in 
[10]. The use of this algorithm results in obtaining two ranges for the horizontal 
object dimension h and two others for the vertical one v:  

{ }
{ }

2,12,1

2,12,1

maxmin

maxmin

;

;

vv

hh
Tp = . (11) 

 

4.2 Pattern Library 

The pattern library contains information about pattern types, shape descriptors, 
object location and allowable parameter values for an object [11]. We define a 



140 

model feature vector Pk  for each type of graphical element. We assume weights 
µP characteristic for each model which satisfy:  

]1,0[)( ∈iP f
k

µ  (12) 

where: 1 ≤ i ≤ r, k – number of patterns. These weights for each pattern compo-
nent should be assigned in terms of the best distinguishability of patterns. 

First, each graphically extracted object is classified into a particular catego-
ry from the pattern library. For this purpose, in the simplest case, we use Eu-
clidean metric, where the distance between vectors O and Pk in an r-
dimensional feature space is defined as follows:  
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where: k – pattern number, 1 ≤ i ≤ r. In the fuzzy set description our weights µP 

correspond to a membership function. Then, for the most important features of a 
graphical object we can assume µp(fi) ≈ 1.  

5 Classification Results 

The first step in our task was defining patterns Pk  for each graphical object cat-
egory. We chose patterns for door and glass pane models distinguished from 
other objects, as an example. For this experiment, we used 35 known graphical 
objects, previously extracted from some images. There were 9 doors with object 
ID = [4,5,7,9,13,15,20,28,35] and 9 panes with object ID = [3,6,14,16,17,27, 
29,30,34], respectively.  

From the methods mentioned in Sec. 4, we used the classification tree for 
data for 8 features of an object. These features are: eccentricity, moments of 
inertia, solidity, minor axis length, major axis length, orientation and average 
colour RGB components. 

As we can see in fig. 4, the main distinguishing parameter is the major axis 
length. We had to normalize all data to [0,1] to be able to compute distances of 
vectors from the particular pattern. The ratio of the minor axis length to the ma-
jor axis length is also a feature containing the original data, but after applying 
this axes ratio and 6 features enumerated above, we obtain a simpler classifica-
tion tree (fig. 5). 

After some numerical experiments we chose two patterns, respectively, for 
the door and glass pane models based on the most distinguishable features (as it 
is shown in Table 1). 
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Figure 4. Classification tree for data for 8 features without any modifications.  

 

 
Figure 5. Classification tree with ratio of minor to major axes. 
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Table 1: Patterns for the door and glass pane models based on the most distin-
guishable features. 

Features Pattern 
door 

Weight 
doorPµ  Pattern 

pane 
Weight 

panePµ  

eccentricity 0,93 0,1 0,85 0,1 
moments of inertia average 0,01 average 0,01 
solidity 0,8 0,3 0,9 0,19 
minor axis length 
/major axis length 

0,427 0,1 0,5 0,1 

orientation 0,99 0,46 0,99 0,3 
average colour component R 0,33 0,01 0,15 0,1 
average colour component G 0,217 0,01 0,22 0,1 
average colour component B 0,33 0,01 0,12 0,1 
 

 
Figure 6. Distances d for all graphical objects computed for pattern_door and 

pattern_pane, respectively without weights. 

Figure 6 illustrates the appropriateness of our decision. There are distances 
d (computed based on eq. (13) but without weights µP) for each object in its ID 
order. The figure presents overlapping distances for door and pane patterns (see 
the legend). The majority of smallest d corresponds with the object numbers IDs 
for pattern_door and pattern_pane, respectively. 

Only for doors ID = [7,15] and for glass panes ID = [17,27] misclassifica-
tion can be noticed. Hence, subsequently, we added weights µP for both pat-
terns, respectively, and obtained distances d for each object according to 
eq. (13).  The results are presented in fig. 7 for pattern_door and in fig. 8 for 
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pattern_ pane, respectively. Doors and panes in our experiment were varied, for 
instance, the panes came from windows as well as doors, which means that not 
all objects classified, as doors or panes gained the minimal values of d in com-
parison with other objects. But the weight introduction improved the classifica-
tion when we compare patterns to each other for each object separately. We can 
see it in fig. 7 and fig. 8, respectively. It is worth noticing that for the above-
mentioned doors and panes the distances for patterns Pdoor and Ppane with 
weights received better values. For example, d(7,Pdoor) = 0.065, whereas 
d(7,Ppane) = 0.067 or d(15,Pdoor) = 0.051, whereas d(15,Ppane) = 0.057, and 
d(27,Pdoor) = 0.113, whereas d(27,Ppane) = 0.104. This is a right tendency in the 
case when we have many patterns and we classify a new object. 

 

 

Figure 7. Distances d for pattern_door with weight 
doorPµ . 

However, in reality, while misclassifications occur, the relationship is more 
complicated. An example of this is object ID = 17 which is a glass pane but dis-
tance values for the considered patterns are equal to d(17,Pdoor) = 0.1 and 
d(17,Ppane) = 0.166. 

6 Possibility theory for the best graphical object classifi-
cation 

We can assume that we have such imbalanced and misclassified data that it is 
very problematic to achieve high accuracy by simply classifying some examples 
as negative. However, many attempts have been made to address the imbal-
anced data problem. Some methods try to receive more balanced, relevant and 
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irrelevant training data via up-sampling and down-sampling [6]. Unfortunately, 
in the case of overlapping classes, or a lesser number of classes than required, 
even the balance received in an artificial way does not solve the problem.  
 

 

Figure 8. Distances d for pattern_pane with weight 
panePµ . 

As it has been shown in fig. 6, the commonly used methods of feature se-
lection (using the positive features only) may lead to object misclassification. It 
may be even worse for the imbalanced data with dominating irrelevant objects. 
That is why, we suggest the application of intuitionistic fuzzy sets for the graph-
ical object classification. For our task, when we look at fig. 6, it is easy to see 
that for some objects the classification problem will become especially compli-
cated when we introduce k > 2 patterns. 

Then we can use, the apparently distant from our discussion, possibility 
theory and introduce Baldwin’s model developed by Baldwin [3], [4] and 
Szmidt [16], [17], [18], which so far has been employed only for votings. The 
basic representation of uncertainty in Baldwin’s model contains terms necessity 
n and possibility p. Following these authors we can cite equality of the parame-
ters for Baldwin’s model and the IFS model (Table 2).  

Table 2: Equality of the parameters for Baldwin’s model and IFS model. 

 Baldwin’s model IFS model 
Voting for n µ 

Voting against 1-p ν 
Abstaining p-n h 
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In the case of graphical object classification, we propose to use the notions 
necessity and possibility to a support the estimation of an object assignment to a 
particular class. As it was explained in Sec. 4, the assignment of object x into k-
class is based on distances d(O(x),Pk) ∈ [0,1] between an object feature vector 
and patterns. 

We can assume that the necessity for an object to belong to a class is repre-
sented by the differences of values d. An object is attributed into this class for 
which value d is the smallest. For a given object x, its distances from particular 
patterns Pk can be denoted as a distribution of possibility  

p (x,Pk) = 1 – d (x,Pk),   (14) 
then the possibility that x belongs to class Pk is equal to p (x,Pk). Therefore, the 
necessity that x belongs to class Pk is given in the form: 

),(max)1(max),( j
kj

j
j

k PxpdPxn
≠

−−=  (15) 

where 1 ≤ j,k ≤ n. This formula means that we subtract the smallest value of 
d(x,Pk) from the maximum value of other ds without the distance for k-pattern, 
which is presented in fig. 9 (the case for x). 
 

 
Figure 9. The interpretation of the degree of necessity, possibility and hesitation 

for the distances of an object feature vector from a particular pattern. 

Under the above assumptions, we can consider the extremal cases: 
I. If dk = 0 and dj = 1 then p (x,Pk) = 1 and n (x,Pk) = 1, respectively. Thus, the 

degree of hesitation h (x,Pk) = p (x,Pk) - n (x,Pk) = 0. 
II.  If dk = 0 and dj = 0 then p (x,Pk) = 1 and n (x,Pk) = 0, respectively. Thus, the 

degree of hesitation h (x,Pk) = 1. 
III.  If dk = 1 and dj = 1 then p (x,Pk) = 0 and n (x,Pk) = 0, respectively. Thus, the 

degree of hesitation h (x,Pk) = 0. In this particular case we can infer there 
should be a new class introduced distinguishing the objects more precisely. 
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This approach seems to be useful with respect to problems with assigning a 
new object to particular class or small distinguishability of some graphical ob-
jects. 

7 Conclusions 

The construction of a CBIR system requires combining some systems: an image 
processing module for automatic segmentation, a database to store the generated 
information about images and their segments, and a module for image 
classification with predefined patterns. Having built these elements of the 
system, we faced the problem of image retrieval. We attempt to deal with it by 
introducing an intuitionistic fuzzy set, as well as constructing and describing an 
object pattern library. Object patterns are used for optimum object distinction 
and identification. 

The application of intuitionistic fuzzy sets, in general, gives the opportunity 
to introduce another degree of freedom (non-memberships) into a set 
description. Such a generalization gives us an additional possibility to represent 
imperfect knowledge, which leads to describing many real problems in a more 
adequate way. 

To classify a new graphical object, we used an already known method of 
comparing the object feature vector with patterns. However, we suggest the 
application of the possibility theory, and introduce Baldwin’s model with its 
notions of necessity, possibility, and IFS for imbalanced and uncertain data. 
This approach seems to be important for unsupervised analysis of large image 
databases. 
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