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Abstract—At present a great deal of research is being done in 
different aspects of Content-Based Image Retrieval (CBIR). 
Image classification is one of the most important tasks that must 
be dealt with in image DB as an intermediate stage prior to 
further image retrieval. The issue we address is an evolution 
from the simplest to more complicated classifiers. Firstly, there is 
the most intuitive one based on a comparison of the features of a 
classified object with a class pattern. Next, the paper presents 
decision trees and Naïve Bayes as another option in a great 
number of classifying methods. Lastly, to assign the most 
ambiguous objects we have built fuzzy rule-based classifiers. We 
propose how to find the ranges of membership functions for 
linguistic values for fuzzy rule-based classifiers according to crisp 
attributes. Experiments demonstrate the precision of each 
classifier for the crisp image data in our CBIR. Furthermore, 
these results are used to describe a spatial object location in the 
image and to construct a search engine taking into account data 
mining.  

Keywords-CBIR, classification, decision trees, fuzzy rule-based 
classifiers  

I. INTRODUCTION 
In recent years, the availability of image resources and 

large image datasets has increased dramatically. This has 
created a demand for effective and flexible techniques for 
automatic image classification and retrieval. Although 
attempts to construct the Content-Based Image Retrieval 
(CBIR) in an efficient way have been made before [3, 9, 11], a 
major problem in this area, i.e. the extraction of semantically 
rich metadata from computationally accessible low-level 
features, still poses a tremendous scientific challenge and 
constitutes a topic open to research. A prominent trend in 
scientific interests focuses on matching the most similar set of 
images to the query image. In this field, the latest 
achievements using relevance feedback and collaborative 
image retrieval seem to be very promising [21, 29, 30, 31,32]. 
However, our motivation was to give the user a more powerful 
tool, namely, to give him/her the opportunity to construct their 
own images based on different image segments. The image 
constructed in that way which, in fact, consists of elements 
similar to different images, is our query.  

Seemingly, the SIFT method introduced by Lowe [22] and 
developed by Cho et al. [8] is the most powerful one because 
it matches separate objects from one image to another. This 
approach requires immense calculating capacity. But our aim 

is to give the user classified images (segments of images) for 
the GUI for their own image construction, thus we cannot 
avoid image classification. 

There are a number of standard classification methods in 
use, such as: k-NN [10], SVM [13], Naïve Bayes classifier 
[25], neural network [28], and others [2]. Having surveyed 
these algorithms, we started our classification from the 
simplest one, namely, the similarity to the pattern which 
compares the features of a classified object with the set of 
pattern features which define classes. 

Object classification is so important in the context of CBIR 
because it is used for several purposes, for example [20]: 

• to compare whole images. Specifically, an algorithm 
which describes a spatial object location needs 
classified objects (see sec. VI); 

• to help the user form a query in the GUI. The user 
forms a query choosing graphical objects semantically 
collected in groups; 

• to compare image objects coming from the same class 
as a stage in the image retrieval process. 

A. CBIR concept overview 
In general, our system consists of five main blocks (Fig. 1), 

implemented in Matlab ver. R2013b: 

• the image preprocessing block, responsible for image 
segmentation and extraction of image object features, 
(cf. [18]);  

• the database, which is implemented in the Oracle 
Database (DB), stores information about whole 
images, their segments (here referred to as graphical 
objects), segment attributes, object location, pattern 
types and object identification, (cf. [19]);  

• the classification module, which is used by the search 
engine and the GUI. The algorithms applied in this 
module will be described in the following sections. 

• the search engine responsible for the searching 
procedure and retrieval process based on feature 
vectors of objects and spatial relationship of these 
objects in an image;  
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• the graphical user's interface (GUI), which allows 
users to compose their own images, consisting of 
separate graphical objects as a query. Classification 
helps in the transition from rough graphical objects to 
human semantic elements which is expedient in 
creating a user-friendly semantic system. 

 

Figure 1. Block diagram of our content-based image retrieval system. 

B. Representation of graphical data 
As we have mentioned above, we are interested in image 

segmentation as the first stage of preprocessing. At present, 
there are tendencies to use more natural thus simpler methods 
to separate foreground objects from the monolithic 
background using wavelets [24] or morphological operations 
[7], whereas in our system the foreground objects, mainly 
houses, sometimes overlapped by trees, are found against 
complicated, multi-objected backgrounds. Surely, such images 
are more challenging and the segmentation process forced us 
to use different methods to obtain the desired features. 

In a nutshell, a new image is segmented, yielding as a 
result a collection of objects from several up to more than 100. 
Both the image and the extracted objects are stored in the 
database. Each object, selected according to the algorithm 
presented in detail in [18], is described by features, such as: 
average colour kav, texture parameters Tp (based on wavelet 
algorithm), area A, convex area Ac, filled area Af, centroid 
C={xc, yc}, eccentricity e, orientation α, moments of inertia 
m11,…, m22 , bounding box {bb1(x,y), ..., bb4 (x,y)}, major axis 
length mlong, minor axis length mshort, solidity s and Euler 
number E and complex Zernike moments Z00,…,Z33 [26]. 

Let Fo be a set of features where FO = {kav, Tp, A, 
Ac ,…, E}. Hence, for an object, we construct a feature vector: 
x = [x1, x2, …, xn], where n = 45 is the number of the above-
mentioned features.  

II. STANDARD CLASSIFICATION METHODS 

A. Similarity to Pattern 
The simplest approach to classification is the comparison 

of an object feature vector x to the previously prepared 
patterns Pk  for each class used, for instance, Euclidean or 
Minkowski’s metrics. We tried to design classes which 
attribute (the) objects in accordance with human perception. In 
our system the main set contains house images, which prompts 
division of objects into M = 32 architectural classes (technical 
details in App. A). 

B. Decision Trees 
In the construction of decision trees [12], a measure of 

discrimination is used in order to rank attributes and select the 
best one. Each vertex of a binary tree is associated with an 
attribute [5]. In order to avoid high error rates resulting from as 
many as 32 classes we use the hierarchical method. A more 
general division is created by dividing the whole data set into 
four clusters, applying k-means clustering. The most numerous 
classes of each cluster, constituting a meta-class are assigned to 
four decision trees, which results in 8 classes for each one. The 
process of tree construction is very prone to the unequal 
numbers of elements in learning subsets for each class. 

Additionally, the Naïve Bayes classifier [25] has been 
implemented and now it seems to be as good as decision trees. 

III. FUZZY CLASSIFICATION  
The results presented in sec. V indicate that there are 

objects difficult to classify. Some difficulties arise from 
mistakes in object segmentation. Some others come from the 
fact that there are imbalanced classes because some 
architectural elements are very numerous or they are always 
found in images (for instance, windows) but others are very 
rare (for example, some kinds of lamps, pillars or satellite 
dishes). All this motivated us to use fuzzy sets [27], 
specifically, the fuzzy rule-based classifiers. 

A.  Fuzzy rule-based classifiers  
Let us consider an M-class classification problem in an 

n-dimensional normalized hyper-cube [0,1]n. For this problem, 
we use fuzzy rules of the following type [16]: 

Rule  Rq :  
If x1 is Aq1 and ... and xn is Aqn then Class Lq with CFq ,   (1) 

where Rq is the label of the qth fuzzy rule, x = (x1, ..., xn) is an 
n-dimensional feature vector, Aqi is an antecedent fuzzy set 
(i = 1,...,n), Lq is a class label, CFq is a real number in the unit 
interval [0,1] which represents a rule weight. The rule weight 
can be specified in a heuristic manner or it can be adjusted, 
e.g. by a learning algorithm introduced by Ishibuchi et al. 
[23, 17].  
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We use the n-dimensional vector Aq = (Aq1, ..., Aqn) to 
represent the antecedent part of the fuzzy rule Rq in (1) in a 
concise manner. 

A set of fuzzy rules S of the type shown in (1) forms a 
fuzzy rule-based classifier. When an n-dimensional vector 
xp = (xp1,..., xpn) is presented to S, first the compatibility grade 
of xp with the antecedent part Aq of each fuzzy rule Rq in S is 
calculated as the product operator 

qAμ (xp) = 1qAμ (xp1)×...×
qnAμ (xpn)   for  Rq ∈ S  (2) 

where 
qiAμ (.) is the membership function of Aqi. Then a single 

winner rule ܴ௪ሺܠሻ is identified for xp as follows:  

w (xp) = 
q
maxarg {CFq × 

qAμ (xp) | Rq ∈S},  (3) 

where w(xp) denotes the rule index of the winner rule for xp.  

The vector xp is classified by the single winner rule ܴ௪ሺܠሻ 
belonging to the respective class. If there is no fuzzy rule with 
a positive compatibility grade of xp (i.e., if xp is not covered 
by any fuzzy rules in S), the classification of xp is rejected. 
The classification of xp is also rejected if multiple fuzzy rules 
with different consequent classes have the same maximum 
value on the right-hand side of (3). In this case, xp is on the 
classification boundary between different classes. We use the 
single winner-based fuzzy reasoning method in (3) for pattern 
classification.  

An ideal theoretical example of a simple three-class, two-
dimensional pattern classification problem with 20 patterns 
from each class is considered by Ishibuchi and Nojima [16]. 
There three linguistic values (small, medium and large) are 
used as antecedent fuzzy sets for each of the two attributes, 
and 3×3 fuzzy rules are generated. S1 is the fuzzy rule-based 
classifier with nine fuzzy rules shown below (Fig. 2):  

 
Figure 2. An ideal example of a fuzzy rule-based classifier S1 developed by 

Ishibuchi and Nojima [16]. 

S1: fuzzy rule-based classifier with nine fuzzy rules 

R1: If x1 is small and x2 is small then Class2 with 1.0, 
R2: If x1 is small and x2 is medium then Class2 with 1.0, 
R3: If x1 is small and x2 is large then Class1 with 1.0, 
R4: If x1 is medium and x2 is small then Class2 with 1.0, 
R5: If x1 is medium and x2 is medium then Class2 with 1.0, 
R6: If x1 is medium and x2 is large then Class1 with 1.0, 
R7: If x1 is large and x2 is small then Class3 with 1.0, 
R8: If x1 is large and x2 is medium then Class3 with 1.0, 
R9: If x1 is large and x2 is large then Class3 with 1.0. 

B. Construction of membership functions 
The theoretical method presented by Ishibuchi does not 

answer the question how to construct membership functions, 
especially those corresponding to linguistic values. Hamilton 
and Stashuk [15] gave a suggestion for the construction of 
membership functions based on the standardized residual 
analysis but they applied it to continuous data. 

For our discrete data, we solved this problem calculating 
the mean value ݔҧ and standard deviation σ for the elements of 
each of the three classes. The membership function of each 
class is constructed as a symmetrical trapezoidal function in 
respect to the mean value ݔҧ  where the smaller basis has the σ 
length and the longer one - 2σ. Then, we divide the ranges of 
features x1 and x2 into three equal intervals. Next, we assign the 
mean value of a particular class to correspondent intervals 
which represent the proper linguistic values. The effect is 
visible in Fig. 3 for the horizontal and vertical axes in the side 
subplots, respectively.  

In each case, the fuzzy rule-based classifier is constructed 
automatically by matching the membership function related to 
the proper linguistic value, resulting in the right class for each 
rule. The classifier S2 corresponds to the example seen in 
Fig. 3. In this case, x1 is orientation and x2 the real part of 
Zernike’s moment. 

 
Figure 3. Classification example. The new element marked by the full green 
square is recognized as an arc among classes: arc, pillar and balcony. 
Membership functions are represented by solid colour lines and linguistic 
intervals are drawn in dashed lines. 

S2: fuzzy rule-based classifier with nine fuzzy rules 

R1: If x1 is small and x2 is small then non-defined with 1.0, 
R2: If x1 is small and x2 is medium then balkon with 1.0, 
R3: If x1 is small and x2 is large then arc with 1.0, 
R4: If x1 is medium and x2 is small then non-defined with 1.0, 
R5: If x1 is medium and x2 is medium then balkon with 1.0, 
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R6: If x1 is medium and x2 is large then non-defined with 1.0, 
R7: If x1 is large and x2 is small then filar with 1.0, 
R8: If x1 is large and x2 is medium then non-defined with 1.0, 
R9: If x1 is large and x2 is large then non-defined with 1.0. 

The winner is the rule for which the product operator is 
maximum (cf. (2)), as follows: 

3Rμ (xp) = smallμ (x1) × largeμ (x2) = 
 = smallμ (3.2383) × largeμ (0.1806) = 1×1 = 1  

The fuzzy rule-based classifier is stable, irrespective of 
attribute selection. Fig. 4 presents a classification of the next 
object. In this case, there are different attributes (x1 is 
orientation and x2 is the real part of Zernike’s moment) and 
there are different classes in comparison with the example 
from Fig. 3. Hence, in this case, there is the construction of 
classifier S3 as follows: 

 
Figure 4. Classification example. The new element marked by the full green 
square is recognized as a frame among classes: frame, horizontal lines and 
roof. Membership functions are represented by solid colour lines and 
linguistic intervals are drawn in dashed lines. 

S3: fuzzy rule-based classifier with nine fuzzy rules 

R1: If x1 is small and x2 is small then non-defined with 1.0, 
R2: If x1 is small and x2 is medium then roof with 1.0, 
R3: If x1 is small and x2 is large then horizontal lines with 1.0, 
R4: If x1 is medium and x2 is small then non-defined with 1.0, 
R5: If x1 is medium and x2 is medium then roof with 1.0, 
R6: If x1 is medium and x2 is large then non-defined with 1.0, 
R7: If x1 is large and x2 is small then frame with 1.0, 
R8: If x1 is large and x2 is medium then frame with 1.0, 
R9: If x1 is large and x2 is large then non-defined with 1.0. 

We treat a fuzzy rule-based classifier as a “decisive vote” 
in the case of differences between Euclidean, decision tree or 
Naïve Bayes classifiers. 

IV. RESULTS 
Our learning set consists of 672 objects, which gives about 

20 objects per each of the 32 classes. Based on it we classified 
2547 new objects of all classes and we obtained the total 
precision of 21.5% for the similarity to the pattern algorithm, 
68.6% for decision trees, 53,8% for the Naïve Bayes classifier 
and 88% for the fuzzy rule-based classifier FRBC (see Tab. I). 

TABLE I.  CLASSIFICATION PRECISION 

Precision Similarity to 
pattern 

Naïve 
Bayes 

Decision 
trees FRBC 

Total  
(for 32 classes) 21.5% 53,8% 68.6% 88% 

Window-pane 16.1% 31,3% 72% 89.7% 

Window 46.7% 82,2% 61% 57.6% 

Brick wall 9% 32% 45.5% 90.9% 

Arc 63.6% 65% 68.2% 58% 

Roof edge 8.4% 61,4% 86.7% 93.9% 
 

The high rate of false classification in the similarity to 
pattern algorithm results from extensive aggregation of 
information. Although the weights are used, all the features are 
involved in the eventual class assignment, whereas in the case 
of trees, only the most informative features are selected. Our 
classification process is divided into four trees due to the 
number of meta-classes which also reduces error rates.  

The FRBC has the easiest job because it is used to 
distinguish only among tree classes that have been pre-
classified earlier by the three simpler classifiers. 

An additional problem, which we avoided in the learning 
set construction, arises from imbalanced classes. In proper 
classification, however, it is inevitable. 

V. EXAMPLE OF USING CLASSIFICATION FOR THE SPATIAL 
OBJECT LOCATION 

In our system spatial object location in an image is used as 
the global feature. Firstly, it is easy for the user to recognize 
this spatial location visually. Secondly, it supports full 
identification based on rules for location of graphical 
elements. Let us assume that we analyse a house image. Then, 
for instance, an object which is categorized as a window 
cannot be located over an object which is categorized as a 
chimney. For this example, rules of location mean that all 
architectural objects must be inside the bounding box of a 
house. For an image of a Caribbean beach, an object which is 
categorized as a palm cannot grow in the middle of the sea, 
and so on. Thirdly, object location reduces the differences 
between high-level semantic concepts perceived by humans 
and low-level features interpreted by computers.  

For the comparison of the spatial features of two images an 
image Ii is interpreted as a set of n objects composing it: 

Ii = {oi1, oi2, …, oin} (4) 

Each object oij is characterized by a unique identifier and a 
set of features discussed earlier. This set of features includes a 
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centroid ),( ijijij yxC =  and a class label Lij indicating the class 
of an object oij (such as window, door, etc.), identified in the 
process described in [20]. For convenience, we number the 
classes of the objects and thus Lk’s are just numbers. 

Formally, let I be an image consisting of n objects and k be 
a number of different classes of these objects, k ≤ N, because 
usually there are some objects of the same type in the image, 
for example, there can be four windows in a house.  

Let us assume that there are, in total, M classes of the 
objects recognized in the database, denoted as class labels 
L1, L2, …, LM. Then, by the signature of an image Ii (4) we 
mean the following vector: 

Signature(Ii) = [nobci1, nobci2, …, nobciM] (5) 

where: nobcik denotes the number of objects of class Lk present 
in the representation of an image Ii, i.e. such objects oij. 

Additionally, for an image Ii we consider a representation 
of spatial relationships of the image objects. The objects’ oij 
mutual spatial relationship is calculated based on the 
algorithm below. Now we consider one image; let Cp and Cq 
be two object centroids with Lp < Lq, located at the maximum 
distance from each other in the image, i.e.,  

dist (Cp ,Cq) = 
= max{dist (Ci ,Cj) ∀i,j ∈{1,2,…,k} and Li ≠ Lj}       (6) 

where: dist(•) is the Euclidean distance between two centroids 
(see fig. 5 middle). The line joining the most distant centroids 
is the line of reference and its direction from centroid Cp to Cq 
is the direction of reference for computed angles θij between 
other centroids. This way of computing angles makes the 
method invariant to image rotation.  

Hence, we received triples (Li , Lj, θij) where the mutual 
location of two objects in the image is described in relation to 
the line of reference (see Fig. 5 middle). Thus, there are 
T=m(m-1)/2 numbers of triples, generated to logically 
represent the image consisting of m objects. For a set of all 
triples we apply the concept of principal component analysis 
(PCA) proposed by Chang and Wu [6] and later modified by 
Guru and Punitha [14]) to determine the first principal 
component vectors (PCVs). The examples of results are shown 
in Tab. II. 

TABLE II.  EXAMPLES OF PRINCIPAL COMPONENT VECTORS  

Image name Component 1 Component 2 Component 3 
House-front -0,001786 -0,003713 0,999992 

Domy-banino-1 0,000206 0,003988 0,999992 
Houselawn I1 0,000388 0,001869 0,999998 

Houselandscape I2 0,004109 0,001557 0,999990 

VI. CONCLUSIONS 
The results presented here seem to be encouraging to move 

forward to the next stages of the CBIR system preparation, 
namely, to the GUI and the completion of the search engine. 
The methods already implemented will be also evaluated in 
terms of the addition of new classes to the system. GUI 

development will also enforce introducing subclasses to some 
of the most numerous classes. 

Intensive computational experiments are under way in 
order to draw some conclusions regarding the choice of 
parameters for the search engine. The results we have obtained 
so far, using the simplest configuration, are quite hopeful. 

 
Figure 5. The main stages of the PCV applied to determine the unique object 

spatial location in an image 

As for the prospects for future work, the introduction of 
iterative classification in respect of object neighborhood 
should be implemented, as well as the option of the 
presentation of similar objects to the user’s previous choice. 

If the classification precision is found insufficient, we will 
have to apply fuzzy decision trees [4] or other more 
sophisticated methods.  

APPENDIX A 
COMPARISON OF REAL AND COMPLEX FEATURE VECTORS 
Technically, patterns can be created in different ways. The 

simplest method is the calculation of the average value of each 
component of a feature vector xi. The subsets of objects used 
to define particular patterns are also used as learning subsets. 
In order to compare the object vector with a pattern we apply 
the Euclidean metrics: 

 ∑
=

−=
r

i
ikiikPk xPxxPD

1

2)()x()(),( ξx  (7) 
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where: k– pattern number, 1 ≤ i ≤ n and weights 
)(/)()( ixii

kP σξ = (where σ – standard deviation and ݔҧ  - mean value for each feature). Weights reflect the 
dispersion of each feature in the subset selected as a pattern 
(Pk). All the pattern vectors are normalized. A new object is 
classified to a class for which D is the minimum [20]. 

Another problem which we encountered when we built a 
classifier for this set of data was the existence of complex 
features. As we mentioned above, Zernike’s moments are 
complex features, hence to obtain the real weight we apply the 
formula [1]:  

 2
Im

2
Re

2
Im

2
Re)(

xx
i

+

+= σσξ  (8) 

where standard deviations and means are calculated separately 
for real and imaginary parts of complex moments. 

For all these classes we have created a pattern library (also 
stored in the DB) which contains information about pattern 
types, weights and objects belonging to learning subsets [20]. 
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