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Abstract. Centralized yellow pages-based approach is one of well-known methods of facilitating
resource discovery in distributed systems. Due to its conceptual simplicity, it became our choice in
two recent research projects: agent-based model e-commerce system and agent system for resource
brokering in a grid. It is the latter project that is used as a background to study efficient ways
of implementing agent-based yellow page service. Results of actual experiments provide us with
guidelines how to maximize its throughput.

1 Introduction

In [1] we have presented a conceptual framework for an agent team-based approach to resource brokering
in a grid. This work follows and expands results presented in [7, 8]. In all cases grid is conceived as a
dynamic environment, in which worker agents contribute their resources and are remunerated for their
usage, while user agents locate resources to execute jobs supplied by their owners. Therefore, we deal
with a standard situation where matchmaking (between resources and users) has to take place. In [9],
authors have discussed four approaches to matchmaking in distributed systems. Since each one of them
has its advantages and disadvantages, in our earlier work (see [3] and references collected there) we have
decided to utilize a “yellow page” based approach. In our present work matchmaking is also facilitated
by the Client Information Center (CIC ) service—implemented as a CIC agent infrastructure. The aim
of this paper is to discuss the way in which the CIC service can be efficiently implemented to prevent it
from becoming a bottleneck of the system.
We proceed as follows, in the next section we summarize the design of our system. We follow with the

description of three basic CIC agent infrastructures and their experimental performance. In Section 4
we introduce an improved version of the best of the three infrastructures and report its performance.
There we also discuss a number of auxiliary topics related to the way in which the yellow page service
is to be implemented.

2 Agent-team-based grid resource brokering

Let us start by briefly summarizing main ideas behind the proposed agent team-based grid resource bro-
kering system (its complete description can be found in [1]). Our most basic assumption is that a single
worker agent, for example representing a typical “home-user”, has limited value in real-life open-grid
applications. While we recognize success of applications like SETI@home that is based on harnessing
power of millions of “home-PC’s,” this application (and a number of similar ones) has very specific na-
ture. There, the fact that a particular resource “disappears” during calculations is rather inconsequential,
as any data item can be processed at any time and in any order. Furthermore, data item that was not
completed due to the “vanishing PC” can be completed in the future by another resource. This, however,
is not the case in realistic (e.g. business-type) applications, where calculations have to be completed in a
specific order and, usually, within a well-defined time-frame. In other words, in most applications some
form of a service-level agreement (SLA), that assures conditions of job completion has to be involved.
Assuring such SLA in the case of a “home-PC” that, for instance, does not have a UPS (which is typically
the case), can be rather difficult. Therefore, to address this problem, we introduce virtual organizations,
called agent teams. Each team consists of a number of worker agents and a leader, the LMaster agent.
It is the LMaster with whom user agents negotiate terms of task execution, and who decides whether
to accept a new worker agent to the team.
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For an agent team to be visible to potential users or team members, it must post its team advertise-
ment in an easily reachable way. As described in [9], there are many ways in which information used in
matchmaking can be posted in a distributed system and each one of them has advantages and disadvan-
tages. In our work we have decided to utilize a yellow page-type approach and thus LMaster agents post
their team advertisements within the Client Information Center (CIC ). Such advertisements contain
both information about offered resources (e.g. hardware capabilities, available software, price etc.) and
“team metadata” (e.g. terms of joining, provisioning, specialization etc.). In this way yellow pages can
be used: (1) by user agents looking for resources satisfying their task requirements, and (2) by worker
agents searching for a team to join. For example, worker agent representing a computer with installed
Maple software, may want to join a team specializing in solving problems utilizing Maple. Note that an
agent team may assure the SLA, as in the case when one PC goes down it will be able to immediately
run the job on another and complete it in time or almost in time.
In our system, the user initiates the execution of the job by providing its user agent with specific

requirements such as: resource requirements—for completing the task, and execution constraints—time,
budget etc. From this moment on, the user agent autonomously acts on behalf of its owner. First, it
queries the CIC for resources matching specified requirements. In response it obtains a list of query-
matching teams. Then it negotiates with their LMasters, taking into account its execution constraints,
to find the best team for the job.
Similarly, the user can specify that its agent joins a team, and provide it with conditions for joining

(e.g. frequency of guaranteed jobs or share of generated revenue). In this case the user agent queries
the CIC and obtains list of teams of possible interest; negotiates with them, decides which team to join
and starts working for it. Observe that in all situation involving agents initiating interactions with the
system, they have to interact with the CIC first. Note also that, since our system follows the general
tenets of agent-system design, the CIC service has to be designed and implemented as a CIC agent
(possibly supported by auxiliary agents). This being the case, the question arises: how can we make
this agent-infrastructure as efficient as possible? To find an answer, we introduce a number of possible
architectures of the CIC agent and its co-workers and empirically establish their performance.

3 CIC architecture and implementation

As indicated above, the CIC infrastructure is one of key components of our system. Therefore, it must
be capable of efficiently handling large number of requests. Specifically, since interactions between user
agents and the CIC are the key part of early stages of job execution, or user agent joining an agent
team, long delays in CIC responses would become a major bottleneck of the system.
In this context, let us note first, that in our system the yellow page information is stored in an onto-

logically demarcated form [1]. To facilitate it we use Jena 2.3 [5] and its database persistency mechanism
(see [6] for a report on using Jena with massive store of ontological triples). Second, the main goal of
our work is a very practical and follows our earlier studies in efficiency of our agent platform of choice—
JADE [4]. In [2] we have shown, among others, that tasks involving database access can be efficiently
distributed to multiple database-access agents (SQLAgents). Specifically, in the reported experiment, a
single agent was receiving and enqueuing client-requests, and multiple SQLAgents were dequeuing re-
quests and executing them on the database. All query-processing agents and the database were running
on separate computers. Multiple tests with different number of SQLAgents have been executed and have
shown that as the number of SQLAgents increases to 5, the total query-processing time decreases by
almost 33%. Obviously, we could try utilizing such agent-based database access mechanism in our sys-
tem. More generally, we have decided to look for the most efficient agent-based architecture for the CIC
service and as the first step implemented the following three basic architectures:

1. multi-threaded CIC, see figure 1.
2. multi-agent CIC with local database agents (CICDbAgents), see figure 2.
3. multi-agent CIC with distributed database agents—located on separate computers (based on the
idea from [2]), see figure 3

In (1) we utilize the well-known task-per-thread paradigm. We have used Java threads and made
them accessible to the CIC agent within its container. Each worker thread has its own connection to
the database and its instance of the Jena model. Initialization of these resources is computationally
expensive and that is why instead of spawning new threads, we use preinitialized threads in the worker
thread pool. The CIC agent picks requests (query-requests or yellow-pages-update-requests) from the
JADE-provided message queue (storing incoming standard ACL messages) and enqueues them into the
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Fig. 1. Request/result flow in a multi-threaded CIC architecture.

request queue (which we have implemented). It is this request queue from which free worker threads pull
requests for execution. After executing the query they send obtained responses to their originators.
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Fig. 2. Request/result flow in multi-agent CIC architecture with local CICDbAgents.

In the second approach we use local (residing in the same agent container) CICDbAgents—instead
of worker threads. The CIC agent picks requests from the JADE-provided message queue and enqueues
them into, implemented by us, internal request queue. This queue acts as a buffer between the CIC
agent and the CICDbAgents and, furthermore, reduces the number of messages stored in the JADE
message queue. Note that this queue is the only way for the CIC to receive ACL messages. Incoming
requests are delegated (in the form of ACL messages) to “free” CICDbAgents by the CICAgent. Each
database agent completes one task (request) at a time. Upon completion, results are sent (also as an
ACL message) back to the CICAgent. As a result they are placed in the same JADE message queue as
the incoming query-requests. There are two behaviors within the CICAgent that are servicing the JADE
message queue. One of them checks for incoming query-requests, while the other checks for incoming
query-results. Since both behaviors operate within a single thread (JADE utilizes a one-thread-per-agent
paradigm), it can be assumed that (except when there is nothing to do for one of them) they take turns
removing messages of a given type from the JADE message queue. As we will see in the next section,
this has very important consequences for the performance of this approach.

The last approach (3), is almost exactly the same as the previous one (2). The only difference is
that database agents are located on remote machines contributing additional computational power and
allowing CICDbAgents to work without stealing resources from the CICAgent.
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Fig. 3. Messages flow in multi-agent CIC architecture with distributed CICDbAgents.

Overall, in the multi-threaded approach (1) we utilize a “pull architecture”, where worker threads pick
requests from request queue, while in multi-agent solutions (2,3) requests are delegated by the CICAgent
to CICDbAgents—“push architecture”.

3.1 Experiments with the three basic architectures

In our experiments, to simulate a flow of incoming requests from user agents we used 4 Querying Agents
(QA), requesting the CIC to perform SPARQL [10] resource queries. It should be noted that the form of
the SPARQL query can change performance of the system. The ARQ engine used in Jena, is responsible
for executing the query on RDF resources persisted in the database. It translates only parts of the
SPARQL query into SQL. The remaining parts (e.g. FILTER operations) of the SPARQL query are not
performed through the SQL query, but locally by the ARQ engine, utilizing local JVM resources. In our
case queries had the following form:

PREFIX gr id : <http :// gr idagent s . s ou r c e f o r g e . net /Grid#>
SELECT ?master
WHERE {

?comp gr id : cpuClockSpeedMhz ?cpu .
FILTER (? cpu > ”1000”ˆ xsd : i n t e g e r ) .
?master gr id : o f f e r sRe sou r c e ?comp .

}

Each QA was running concurrently on a separate machine, and was sending 2, 500 requests and receiv-
ing query-results. Thus in each experiment 10, 000 queries have been processed by the CIC. Since we
have been running multiple experiments (especially when attempting at performance tuning), we have
developed an experimental framework for running tests automatically, while varying their parameters
(e.g. number of worker threads, number of CICDbAgents etc.). All experimental runs were coordinated
by the Test Coordinator Agent (TCA). Before each test, remote JADE agent containers were restarted
to provide equal environment conditions. Experiments were performed using up to 11 Athlon 2500+,
512MB RAM machines running Gentoo Linux and JVM 1.4.2. Computers were interconnected with a
100Mbit LAN. The MySQL 4.1.13 database used by Jena persistence mechanism for storing yellow pages
data was installed on a separate machine. In all cases the experimental procedure was as follows:

1. Restart of remote agent containers
2. Experiment participants send ready message to the TCA—just after they are set-up and ready for
their tasks

3. On receiving the ready signal from all agents, the TCA sends start message to all QAs, triggering
start of the experiment

4. When QAs receive all results back, they send a finish message to the coordinator (the TCA)
5. Reception of all finish signals ends the experiment
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Fig. 4. Experimental results of different CIC architectures: multi-threaded, multi-agent with local CICDbAgents
and multi-agent with distributed CICDbAgents; processing time of 10, 000 queries for varying number of worker
threads in multi-threaded architecture/number of CICDbAgents in multi-agent architectures.

In figure 4 we represent the total processing time of 10, 000 requests by each CIC architecture, when
the number of agents/worker threads increases from 1 to 6. Obtained results are as expected for the
first approach (worker-threads): as the number of threads increases from 1 to 3 we can see a total time
reduction of about 11%. Further increase of the number of threads does not result in performance increase
indicating, that all local resources have been consumed when 3 threads were used.

What is somewhat surprising is the fact that the architecture with local CICDbAgents does not scale
at all. In order to understand this situation we have to refer to the mechanics of messaging in JADE,
which provides each agent with its own message queue managed by the JADE Message Transport System
(MTS). In this context let us recall that as the system works, query-request messages are intermixed with
response messages. At the same time, we have two message retrieving behaviors that take turns trying
to retrieve their types of messages from the queue. Let us now observe what happens in early stages
of our experiment, when the response-message retrieving behavior tries to retrieve a response-message.
This process involves iterative filtering through messages stored in the message queue. Thus, if there
are 1, 000 request messages stored in the queue when the first response message was received from the
CICDbAgent, it will be placed at the end of the queue. In order to get to that message, all 1, 000 request
messages have to be checked first, and finally the result message will be found at the end of the queue.
Obviously, as time passes, and request messages become intermixed with result messages, the situation
becomes less radical, but still this approach turns out to be relatively inefficient. Further support for our
explanation can be found in figure 8 (even though this figure represents performance of the last approach,
behavior noted in the case of local agents was very similar). There we can observe that, as the number of
request messages decreases, throughput increases. Obviously, this effect is somewhat biased by the way
in which our experiment was set-up; all query-request messages were send at once at the beginning and
then Querying Agents were just waiting for responses. Note also that this situation cannot be changed
programmatically, since this is how JADE works internally.

As it turns out, the best performance can be observed in the case of the multi-agent approach with 3
distributed CICDbAgents. In this case, reduction of time of order 2.5 is observed. Since the starting point
is well above the case of the local architecture (caused by the cost of computer-to-computer communica-
tion), the maximum reduction of time against the threaded solution is of order 18%. Unfortunately, as the
number of agents becomes larger than 3, the same effect as in the case of local agents can be observed—
performance decreases due to the way in which the CICAgent removes data from the message queue.

Overall, as the result of our initial set of tests, we were able to establish importance of the way that
the messaging is handled. Specifically we have found that (a) when only a single machine is available
for facilitating the yellow page service, a threaded solution should be used, and (b) the additional com-
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putational power available in the case when CICDbAgents are located on multiple separate machines
plays an important role and makes this particular approach the best candidate for further performance
improvement.

4 Performance tuning and auxiliary topics
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Fig. 5. Request/result flow in distributed multi-agent CIC with CICIA.
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Based on results collected thus far we have decided to attempt at improving the performance of the
third CIC architecture—the multiagent approach with agents located on separate machines. To overcome
the way that query and response messages are handled, we have added the CIC Internal Agent (CICIA)
(see figure 5). This agent plays a role of an intermediary between the CICAgent and CICDbAgents. More
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precisely, processing request messages starts in the same way as in the previous solution—these messages
are stored in JADE-provided message queue. The CICAgent removes messages from the message queue
and stores them in the internal request queue and, later, delegates them to the CICDbAgents (sending
them as ACL messages). CICDbAgents query the database and send results of their queries to the CICIA
(as ACL messages—to be stored in the JADE message queue of the CICIA). Upon reception of such
messages, CICIA enqueues them into a synchronized result-queue, from which they are dequeued by the
CICAgent and send back to requesters. In other words, the intercommunication between the CICIA and
the CICAgent is accomplished through a shared result-queue instead of ACL messaging. As it is easy
to see, this is also why these agents (CICIA and CICAgent) must run within the same agent container
(the Main CIC Container). The CICAgent has now three behaviors: (1) receive request-message from
the JADE message queue and enqueue it in the request-queue, (2) dequeue request from the request-
queue and send it to the CICDbAgent, and (3) dequeue message from the result-queue and send it to
the requester. The sequence diagram of handling the request is presented in figure 6. Observe that, in
the modified approach, database query results are not intermixed with query requests and hence we
eliminate the above mentioned overhead of filtering results form the JADE message queue.
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Fig. 7. Comparison of multi-threaded CIC with distributed multi-agent architecture with and without CIC
Internal Agent ; processing time of 10,000 queries varying number of worker threads/number of CICDbAgents.

In Figure 7 we compare performance of the CIC service implemented using worker threads and two
versions utilizing non-local CICDbAgents—with and without the CICIA.
As can be seen, the performance of both non-local CICDbAgent -based approaches, when the total

number of CICDbAgents is between 1 and 3 is quite similar (the architecture with the CICIA is slightly
better). However, as the number of CICDbAgents increases up to 6, the performance improves steadily.
We can also observe a leveling-off effect. Therefore, the fact that we were not able to run experiments
with more than 11 computers (and thus the largest number of CICDbAgents was 6), seems rather
inconsequential. Specifically, it can be predicted that if the number of CICDbAgents was to increase
further, then the performance gain would be only marginal. Overall, with 6 CICDbAgents the performance
gain over the system with only a single CICDbAgent is of order of 3. Furthermore, the performance gain
over implementation based on threads is of order 2 (here we compare the best threaded solution—with
3 threads—with the distributed agent solution with CICIA, for 6 CICDbAgents).
Finally, in Figure 8 we present the throughput of the two systems with non-local CICDbAgents (with

and without the CICIA). These results were collected using another CICAgent behavior which was
controlling the state of the CICAgent and logging appropriate variables for post-processing. The results
confirm our earlier understanding of processes taking place in the system working under conditions of
our experiment. In the case of the system without CICIA, throughput is slowly increasing as more and
more response messages are intermixed in the queue with request messages. In this way, time to retrieve
a response message decreases (these messages move closer and closer to the front of the JADE message-
queue). When all request messages have been processed (e.g. have been removed from the CICAgent
JADE message-queue), the request retriever behavior blocks and the response message retriever starts
to “continually” retrieve results form the message queue and send them to the requesters. This situation
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can be observed in the form of the throughput spike near the end of the process. In the case of the
architecture with the CICIA we observe (after a brief start-up period) a steady performance of the order
of 400–500 processed requests per second.

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70

th
ro

ug
hp

ut
 (

se
rv

ed
 r

eq
ue

st
s/

se
c)

time (s)

without CICIA
with CICIA

Fig. 8. Comparison of distributed multi-agent architecture (6 CICDbAgents) with and without CIC Internal
Agent. Throughput (served requests per second) vs. time.

It should be mentioned that we have also evaluated a modification of the above architecture, where
the CICIA becomes both the delegator of requests and receiver of results. This architecture proved to
be slightly faster, however it was more complicated from the conceptual point of view. Therefore, for the
sake of design readability we have abandoned that idea as the final solution to our problem.

4.1 Additional performance tuning

After establishing candidate architecture, we have proceeded with further performance tuning. In the
multi-agent architecture, the CICDbAgent is requested to perform a single action, and once it returns
result of it there is another request delegated to it. Obviously, proceeding in this way results in CICD-
bAgents being idle for some time—between sending result to the CICIA and receiving a new request.
We have found that by adding local request queues of size 10 to CICDbAgents, the overall performance
of the CIC increases by approximately 3%.

4.2 CIC reliability

Introduction of additional database agents to the CIC architecture reduces its reliability. In the case of
failure of the CICDbAgent, requests owned by that agent would be lost without any notification to the
client. Therefore, we have decided to provide a recovery mechanism. Since all requests and results flow
through the CICAgent we are able to continually store and maintain two snapshots: (1) one with recent
requests delegated to database agents, and (2) one with recently received results. These snapshots have
reasonably bounded size that depends on the number of database agents and sizes of their local queues.
In the case of a crash of a CICDbAgent, recovery procedure finds requests (delegated to that agent)
without matching results (in the second snapshot). These requests are put back to the request queue for
subsequent execution.

4.3 Introducing prioritized requests

Let us observe that it is extremely important to keep grid yellow pages up-to-date as this allows us
to limit number of missed query results. Therefore, requests are differentiated according to their type,
and any team advertisement modification has precedence over querying actions. To facilitate this, we
changed implementation of request queue into priority request queue, which queues requests according to
their priority and delegates modification actions for execution first. For example, having 1, 000 pending
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query-requests, incoming team modifications will be placed in priority queue before queries, so that the
pending queries are “assured” to be served with the most up-to-date information. It should be noted
that here we assume that the overall number of modifications of yellow pages is negligible with respect
to the number of query requests, otherwise starvation of querying actions could occur.

5 Concluding remarks

In this paper we have considered architectural design of the yellow page service to be used in an agent
team-based grid resource brokering system. We have considered three basic architectures and, on the
basis of experimental performance analysis, have selected one for further performance tuning. We have
shown, that the best solution for yellow page service is either: (1) in the case when only a single computer
is to run the yellow page service—CICAgent and a limited number of worker threads, and (2) in the case
when at least four computers can be used to run the yellow page service—architecture in which at least
3 (in our case) CICDbAgents run on separate machines and where an additional CICIA is used to handle
completed requests. Furthermore, the later architecture can be slightly improved by sending multiple
requests send for CICDbAgents to process. This is the architecture that we plan to utilize in our system.
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