
Ontological reusability in state-of-the-art semantic
languages

Michał SZYMCZAK, Maciej GAWINECKI,

Mladenka VUKMIROVIC, Marcin PAPRZYCKI

Abstract: Evolving reusable domain ontologies and information described using these
ontologies are the key aspects of the Semantic Web. In this paper, we use an example
of ontology merging to discuss ontology reusability in the context of existing semantic
languages and software tools for ontology management.

1. Introduction
Recently, we have proposed utilization of semantically demarcated data in agent-based
Travel Support System (TSS) [22, 24] and have developed ontologies of a hotel and a
restaurant [20, 21, 23]. Currently we are extending these ideas to an agent-based
airline ticket auctioning system [38] and proposed an initial version of a generalized air
travel ontology [39]. Development of these three ontologies proceeded almost without
communication between their authors. The hotel ontology was based on analysis of
hotel descriptions stored in Internet-based travel agencies. The restaurant ontology
resulted from the RDF demarcated data stored in the ChefMoz repository. Finally, the
air travel ontology originated from in-depth study of the International Air Transport
Association (IATA) manuals and information available in Global Distribution Systems
(GDS) [31, 32, 33, 37]. Note that this situation is very similar to the development of
the Semantic Web [11], where different teams create more or less comprehensive
(sub)domain ontologies that are one day to be merged (or interact with each other).
Obviously, hotels, restaurants and air travel are closely interrelated as pars of “world of
travel” and thus we decided to merge their ontologies. Initially, we have shallowly
combined ontologies of hotel and restaurant and the results were promising [21].
However, since the TSS has to deal with “all” possible travel related objects, we had to
start investigating issues involved in robustly combining travel ontologies. Therefore,
we had to start facing issues related to: (a) differences between combined hotel and
restaurant ontology and the air travel ontology, (b) size of the resulting ontology, (c)
necessary preparations to include other travel objects, such as: railroad, cinema, opera
etc., (d) robustness and flexibility of the combined ontology that has to be prepared for
further domain extensions, upgrades and modifications. Since one of the mantras of the
Semantic Web is reusability of existing ontologies, when starting our work, we have
tried to perform a simple integration of our system with a currency ontology defined in
an existing agent-based currency exchange system – Cambia service [6]. Problems we
have run into indicated that there exists a whole set of issues that are related
incompatibilities between semantic language and tools that are to operate on them.

The aim of this note is to discuss these issues. We proceed as follows. First, we
briefly examine existing semantic languages and elaborate the language choice made
for our system. Next we discuss issues involved in combining hotel, restaurant and air
travel ontologies. Lastly an attempt to integrate external Cambia agent system with our
system and problems which have occurred is described and analyzed.

2. Why Resource Description Framework?
While a number of languages for semantic content demarcation have been created,
three of them are most popular today:

• Extensible Markup Language (XML) and XML Schema (XSD),
• Resource Description Framework (RDF) and RDF Schema (RDFS),
• Web Ontology Language (OWL).

Creating general travel domain ontology for the TSS brought us to define the following
requirements for the ontology language:

1. machine and human readability;
2. support for inference rules, particularly support for “is-a” relationship, i.e.:

a. top-down inheritance of attributes,
b. bottom-up inheritance of instances;

3. means for reuse of existing ontologies.
In other words, such language should allow agents and humans to: (a) interpret
resources as a representative of particular classes, (b) define new classes and their
properties, (c) attach human readable labels, (d) organize classes in hierarchical order
and (e) reuse already defined concepts. Note that in our context precision of a language
expression is not of key importance. Let us now compare the three languages.

2.1. RDF and RDFS vs. XML and XSD
XML provides an easy formal syntax for document description, while XSD allows
defining data types and data structures [35, 12, 13, 14]. In Table 1 we present main
differences between RDF(S) and XML with XSD:

RDF(S) XML with XSD

Only basic data types from XSD Data types and structures
Ordering elements must be explicitly defined
with collection constructs; otherwise it does
not matter

Order of elements does matter, their order is
part of semantics

Semantics based on RDF graphs Semantics based on XML infosets [26]
Types of elements are classes Types of elements do not need to have any

meaning
Supports “is-a” relationship Lacks support for “is-a” relationship

Table 1 : Main differences between RDF(S) and XML with XSD [18, 19, 25, 35]

Please note that although RDF is an application of XML, it delivers triple-based
semantics. The role of each element in a statement is precisely defined and allows for
inference on described resources. Moreover, one can define range and domain of each
property in RDF(S). The latter feature enables defining constraints on properties and
delivers additional inference rules for both, object and subject, of the property. Pure
XML does not provide such rich semantics. Moreover, structure of an XML document
cannot vary from its XSD definition, while document structure flexibility is one of the
features of RDF(S). Thus XML with XSD was found unsuitable for our system.

2.2. OWL vs. RDF(S)
OWL is based on RDF and introduces the following additional features [35, 16, 17]:

• functional and inverse functional properties;
• local domain and range constraints;
• cardinality constraints;
• transitive and symmetric properties (e.g. sameAs property);
• logic-based class construction (union, intersection, complement, restriction);
• one URI for whole ontology.

Both, OWL and RDF meet our requirements. Moreover, OWL not only has all features
of RDF, but also brings richer vocabulary which improves inference and precision of
resource description. The reason for not using OWL is that we did not need all its
features, such as setting constraints and cardinalities on classes and assigning a
separate URI for each ontology. Neither the explicit declaration of external ontology
import nor similarity between concepts definition are required. Despite the fact that
RDF is less precise, it seems to provide greater reusability of ontologies, as they are
more often expected to simply conceptualize particular domain rather than express
complex constraints of concepts. What is also important is better performance of RDF
reasoners and parsers in comparison with similar OWL tools [18, 25].

3. Reuse of RDF ontologies
Originally, we created two autonomous ontologies of: hotel, restaurant. In [21] we
have presented elementary integration of hotel and restaurant ontologies. This involved
only simple reference points, such as for instance named properties for stating that a
restaurant can be placed inside of a hotel or that a particular restaurant and a particular
hotel are placed close to each other. Recently co-development of both ontologies
became more mature, air travel ontology has been introduced and some sub-ontologies
have been distinguished. These modifications forced us to re-consider integration of all
ontologies. Such integration proceeds iteratively and consists of following stages:

1. identification of intersections between ontologies that are to be integrated,
2. merging discovered common parts,
3. updating references to other concepts.

Figure 1. Hotel and Restaurant ontologies before location property integration

3.1. Location description unification
Geographical location is one of common features of restaurant and hotel ontologies.
Figure 1 presents both ontologies before integration. Each class describes geographical
location through its own set of geographical properties, such as: street address,
country, city/town, region, zip code, reference points or location description.
Consequently, a separate class called OutdoorLocation can be created and union of
location describing properties from both classes assigned to this class.

After separation of concepts, we proceed with integration. As both, Hotel and
Restaurant, classes are temporarily deprived of any geographical location description
they can become a sub-classes of OutdoorLocation. Due to the definition of sub-class
relationship both classes inherit properties which are defined for their parent classes.
Moreover, instances of a hotel or a restaurant can be perceived as instances of
OutdoorLocation class. This generalization, when implemented in RDF, does not force
us to define all geographical location properties when an instance of a hotel or a
restaurant is created. If, for example, geo-position is unknown and we want to fill only
address properties then geoPosition property can be omitted. The resulting, combined
ontology can be found in Figure 2.

Additional advantage of the proposed hierarchy is that it allows creating new
classes which represent particular geographical location in a simplified manner. It is
perfectly enough to create such a class as a sub-class of OutdoorLocation and define
the class-specific properties. This issue appeared when we wanted to develop airport
location description for the purpose of the air travel ontology (see Figure 3).

Figure 2. Hotel and Restaurants – subclasses of Outdoor Location

Figure 3. Airport – subclass of Outdoor Location

3.2. Sharing concept of a discount
Let us now consider similarity between hotel, restaurant and air travel ontologies found
in the discount concept. All three ontologies use it; containing the same information:

• code of the particular discount,
• amount of reduction of the base-price,
• short description of the discount policy.

However, IATA defined specific air travel discount codes. The question has arisen:
how to integrate these with hotel and restaurant discount codes (including both
OpenTravel Alliance (OTA) [34] specific and general discounts – omitted in the OTA
specification). For the purpose of integration we have distinguished specific discount
codes and defined those as sub classes of general DiscountCodes class (see Figure 4).

Figure 4. Discounts class and initial hierarchy of Discount Codes

Furthermore, Family, Government, Group, Military, Promotional, Senior Citizen and
Tour Conductor discount codes appear in both IATA and OTA specifications. This
allows us to proceed with a tighter integration. We can distinguish a class of common
discounts – IataOtaCommonDiscountCodes – and define the seven codes as its
instances. Defining common discount codes as a sub-class of OTADiscountCodes and

IATADiscountCodes led us to specification of concept equivalence between OTA and
IATA specifications, again, without making any explicit equivalence declaration. The
final result of integration is depicted in Figure 5. Common codes are identified as
members of the same class. The sub-class relation defines them also as instances of
both: OTA and IATA discount codes classes. Hence, a group of codes can be used
either in hotel, restaurant or air ticketing system.

AAA : OTA Discount Code

AARP : OTA Discount Code

Convention : OTA Discount Code

Corporate : OTA Discount Code

Weekday : OTA Discount Code

Weekend : OTA Discount Code

Student : IATA Discount Code

Child : IATA Discount Code

Euro26 : IATA Discount Code

Air industry elmpoyee : IATA Discount Code

Infant : IATA Discount Code

Discount Code

OTA Discount Code IATA Discount Code

IataOtaCommonDiscountCode

Family : IataOtaCommonDiscountCode

Government : IataOtaCommonDiscountCode

Group : IataOtaCommonDiscountCode

Military : IataOtaCommonDiscountCode

Promotional : IataOtaCommonDiscountCode

Senior citizen : IataOtaCommonDiscountCode

Tour : IataOtaCommonDiscountCode

Figure 5. All discount code classes with the distinguished common discount codes.

Presented examples illustrate differences in the integration process for the property and
the instance equivalence. In the first example common properties were promoted to
become properties of the super-class of classes that shared them – a general class was
defined. In the case of discount codes, equivalent instances were demoted to instances
of a new class, sub-classes of which represented types of common resources. The latter
example illustrates also a method to deal with concepts equivalence definition without
explicit statement of this relation; such as the OWL property: sameAs.

4. Reuse of external ontologies
The idea of the Semantic Web has been advocated since 1998 [9, 10]. It is based on
reuse of existing schemas, which requires less time and resources than designing and
implementing new ontologies from scratch. Existing attempts to provide methods and
utilities for ontology reusability focus mostly on deciding which concepts are similar
and do not investigate technological aspects of the process [36]. Let us therefore
illustrate technological issues involved in reusability of external ontologies.

4.1. Reusing Cambia ontology
In the world of travel, currency and payments play an important role, and thus we have
considered usage of one of existing currency conversion services:

1. CurrencyExchangeService [3],
2. Currency Conversion Demonstration Web Service [4],
3. CurrencyConvertor [5],
4. Cambia Service [6].
The first three are Web Services (written in .NET) and expose standard WSDL

definitions. Additionally, the middle two can be accessed with simple HTTP post or
get request methods. However, utilizing them in the TSS would require development
of a completely different communication approach. On the other hand, the latter
service exposes FIPA-agent compliant interface, which can be requested through a
FIPA Request Protocol [27]. Furthermore, the strength of the Cambia service lies in
the fact it provides ontology for currency conversion. Our original currency ontology
allowed only to demarcate the currency code, while the Cambia ontology provides
detailed conceptualization of the exchange rate, conversion date, currency amount and
a hierarchy between these concepts. By utilizing the Cambia ontology through a
module responsible for communication with Cambia service we could:

1. adapt rich currency ontology to our system,
2. extend our system with currency conversion functionality.

Here, we are aiming at:
1. re-using the Cambia ontology in our system,
2. specifying currency-related messages to be intelligible to the Cambia service.
Cambia ontology was created in Protégé Frames application as an RDF Schema

ontology. Interestingly, we have found that it contains also elements from the
namespace of Protégé vocabulary, such as: OverridenProperty or min-/max-
Cardinality. This introduces a substantial overhead, as these rules and restrictions are
handled outside of our TSS. Even more so, this means that Cambia ontology is
prepared specifically to be used within the context of Protégé created ontologies, which
makes it rather inflexible. This dependency can be removed by re-opening the ontology
and re-saving it using pure RDFS syntax. This operation can be done either in Protégé
Frames tool or programmatically using Protégé Java API. It reduces the size of the

ontology from 345 to 117 statements. Also, as opposed to the original currency
ontology, this modified version is compatible with the 2.3 version of the Jena
framework [30]. More specifically, Cambia ontology was implemented with an older
version of RDFS (http://www.w3.org/TR/1999/PR-rdf-schema-19990303) which
resulted in Jena Framework ignoring any RDFS concept utilized in the ontology. When
we tried to create a new model object of the original ontology we could not access any
class defined in this ontology through the standard interface OntModel. Overall, until
we have corrected the RDFS namespace, we could not access RDFS resources of
Cambia currency conversion ontology within Jena 2.3.

Let us also note that Cambia ontology was designed in order to easily generate
ontology java classes in Protégé with the BeanGenerator plugin [28]. These classes can
be then used to create FIPA SL demarcated content [29] of ACL messages which are
understandable by the Cambia service. Structure of each property in such an ontology
defines the rdfs:range to be any rdfs:Class. The specific range is defined by the
Protégé system property allowedParents. The latter property is not interpreted natively
by Jena. Moreover, when re-saving the original Cambia ontology in pure RDFS syntax
with the Protégé application, the transformation from:

:propertyA
 rdfs:range rdfs:Class;
 protegeSystemNS:allowedParents rdfs:RangeClassOfPropertyA.
to:

:propertyA
 rdfs:range rdfs:RangeClassOfPropertyA.

was not performed. As a consequence, neither the original nor the transformed
ontology has clearly defined property ranges according with the RDF(S) specification.
Let us summarize this analysis in Table 2.

Feature Cambia service ontology Transformed Cambia service
ontology

RDFS syntax recognition by Jena
2.3

No Yes

Size of the overhead 228 statements 0 statements
RDFS syntax recognition by
BeanGenerator

Yes Yes

Syntax standard RDF(S) + Protégé system
vocabulary

RDF(S)

Property ranges visible in
Protégé

Yes No

Property ranges visible in Jena
2.3

No No

Table 2. Experiment of Cambia ontology reuse summary

4.2. Reusing OWL ontology
As ontology languages are getting more and more mature and number of existing,
comprehensive ontologies grows, a need to reuse an existing OWL ontology in a
system might appear. There are two main issues that arise in the general case, when
employment of OWL ontology into as system like ours is considered: (1) whether to
extend our system with the module for operating OWL ontologies or (2) provide
semantic level translation between OWL and RDFS.

Our system can access and operate on the ontology through the OntModel interface
(from the Jena framework) using methods which refer to classes and properties, but
when one would like to refer to OWL ontology resources, different methods would
have to be used, especially to access OWL-specific properties such as: data-type,
object, ontology and annotation properties etc. [8, 9]. However, building or upgrading
a special module is time and resource consuming operation. This could also lead to lost
of consistency between ontologies written in different languages.

For efficient reuse of the existing OWL ontology we propose its translation to
RDFS. Rules for this translation should be simple and limited to translation of all types
of classes from OWL to resources defined as rdfs:Class and, similarly, different kinds
of properties defined in OWL ontology would become resources of rdf:Property type.

Simple web application which enables such a mapping can be found at [1]. It has
been tested and it produces valid RDFS ontologies which can be read and managed
through Jena. Although it is said to be based on Protégé API [2], our survey has shown
that Protégé application itself does not support mapping from OWL to RDFS.

Alternatively, transformation which is being discussed can be performed by an
adequate definition of Extensible Stylesheet Language Transformation (XSL-T).

5. Concluding remarks
In this paper we have addressed practical issues involved in ontology management. In
particular, we were interested in merging ontologies describing common aspects of the
world (e.g. world of travel); and in re-use of existing ontologies. We have discussed
how we merged ontologies of hotel, restaurant and air travel and believe that this
approach, while possibly not highly scalable (it is difficult to envision it working
smoothly with ontologies consisting of millions of concepts), can be successful. In the
case of ontology re-use we have shown that changes in the tools can easily make
ontology prepared using one tool completely unusable with another tool.

Currently we are completing the three-ontology-integration process. Our future
work includes the following: (1) introduction of ontologies of other travel objects, such
as: railroad, cinema or theatre, (2) building a currency conversion mediator agent
cooperating with Cambia service, (3) testing Protégé API in order to build translator
OWL to RDFS. We will report on our progress in subsequent publications.

References
1. OWL2RDFS, http://www.cs.vu.nl/cgi-bin/mcaklein/owl2rdfs
2. Onto-tech, http://www.cs.vu.nl/~se/onto-tech.txt
3. CurrencyExchangeService, http://services.xmethods.net:80/soap
4. Currency Conversion Demonstration Web Service,

http://www.webcontinuum.net/webservices/ccydemo.asmx
5. CurrencyConvertor, http//www.webservicex.net/CurrencyConvertor.asmx
6. Cambia Service, http://zurich.agentcities.whitestein.ch/Services/Cambia.html
7. Jena 2 Ontology API – General concepts,

http://jena.sourceforge.net/ontology/index.html#generalConcepts
8. Jena Documentation, http://jena.sourceforge.net/documentation.html
9. Semantic Web Road map, http://www.w3.org/DesignIssues/Semantic.html
10. The original proposal of the WWW, HTMLized,

http://www.w3.org/History/1989/proposal.html
11. W3C Semantic Web, http://www.w3.org/2001/sw/
12. XML Schema PART 0: Primer Second Edition, http://www.w3.org/TR/xmlschema-0/
13. W3C XML Schema, http://www.w3.org/XML/Schema
14. XML Schema Tutorial, http://www.w3schools.com/schema/default.asp
15. OWL Web Ontology Language – Use Cases and Requirements,

http://www.w3.org/TR/webont-req/
16. OWL Web Ontology Language – Overview, http://www.w3.org/TR/owl-features/
17. Introduction to OWL, http://www.w3schools.com/rdf/rdf_owl.asp
18. Davis J., Fensel D., Harmelen F.: Towards the Semantic Web: Ontology-Driven

Knowledge Management, John Wiley & Sons, (2003).
19. Fensel D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce, Springer, Berlin, (2001).
20. Gawinecki M., Gordon M., Nguyen N. T., Paprzycki M., Szymczak M.: RDF

Demarcated Resources in an Agent Based Travel Support System. In: M. Golinski et.
al. (eds.), Informatics and Effectiveness of Systems, PTI Press, Katowice, (2005), 303-
310.

21. Gawinecki M., Gordon M., Nguyen N. T., Paprzycki M., Vetulani Z.: Ontologically
Demarcated Resources in an Agent Based Travel Support System. In: R. K.
Katarzyniak (ed.) Ontologies and Soft Methods in Knowledge Management, Advanced
Knowledge International, Adelaide, Australia, (2005), 219-240.

22. Vukmirovic M., Szymczak M., Ganzha M., Paprzycki M.: Utilizing Ontologies in an
Agent-based Airline Ticket Auctioning System. In: Proceedings of the 28th ITI
Conference, (to appear).

23. Gordon M., Kowalski A., Paprzycki A., Pełech T., Szymczak M., Wąsowicz T.:
Ontologies in a Travel Support System. In: D. J. Bem et. al. (eds.) Internet 2005,
Technical University of Wroclaw Press, (2005), 285-300.

24. Vukmirovic M., Ganzha M., Paprzycki M.: Developing a Model Agent-based Airline
Ticket Auctioning System. In: Proceedings fo the IIPWM Conference (to appear).

25. Greenberg J., Sutton S., Campbell D.G.: Metadata: A Fundamental Component of the
Semantic Web. In: Bulletin of the American Society for Information Science and
Technology, 4(29), (2005), 16-18.

http://www.cs.vu.nl/cgi-bin/mcaklein/owl2rdfs
http://www.cs.vu.nl/%7Ese/onto-tech.txt
http://zurich.agentcities.whitestein.ch/Services/Cambia.html
http://jena.sourceforge.net/ontology/index.html#generalConcepts
http://jena.sourceforge.net/documentation.html
http://www.w3.org/DesignIssues/Semantic.html
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/2001/sw/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/XML/Schema
http://www.w3schools.com/schema/default.asp
http://www.w3.org/TR/webont-req/
http://www.w3.org/TR/owl-features/
http://www.w3schools.com/rdf/rdf_owl.asp

26. XML Information Set (Second Edition), http://www.w3.org/TR/xml-infoset/
27. FIPA Request Interaction Protocol Specification,

http://www.fipa.org/specs/fipa00026/PC00026D.pdf
28. Beangenerator, http://acklin.nl/beangenerator/
29. FIPA SL Content Language Specification,

http://www.fipa.org/specs/fipa00008/SC00008I.html
30. Jena Semantic Web Framework, http://jena.sourceforge.net/
31. International Air Transport Association, http://www.iata.org/
32. IATA Airline Coding Directory – Airline Destignators, Dec 1, 2005 until Dec 1, 2006
33. IATA Standard Schedules Information Manual, Mar 1, 2006 until Sep 30, 2006
34. OpenTravel Alliance, http://www.opentravel.org/
35. Baclawski K.: Versatile Information Systems - Tutorial on the Semantic Web
36. Fernández M., Cantador i., Castells P.: CORE: A Tool for Collaborative Ontology

Reuse and Evaluation. In: 4th International Workshop on Evaluation of Ontologies for
the Web (EON 2006) at the 15th International World Wide Web Conference (WWW
2006). Edinburgh, UK, (2006).

37. IATA Reservations Service Manual, 23rd Edition, Effective 1st June, 2006.
38. Vukmirovic M., Szymczak M., Ganzha M., Paprzycki M.: Utilizing Ontologies in an

Agent-based Airline Ticket Auctioning System. In: Proceedings of the 28th ITI
Conference (to appear)

39. Vukmirovic M., Ganzha M., Paprzycki M.: Developing a Model Agent-based Airline
Ticket Auctioning System. In: Proceedings of the IIPWM Conference (to appear)

Maciej Gawinecki
Systems Research Institute, Polish Academy of Science
Newelska 6, 01-447 Warsaw, Poland
e-mail: maciej.gawinecki@ibspan.waw.pl

Michał Szymczak
Department of Mathematics and Computer Science, Adam Mickiewicz University
Umultowska 87, 61-614 Poznań, Poland
e-mail: d124124@wmid.amu.edu.pl

Mladenka Vukmirovic
Industry Development Department, Montenegro Airlines
Beogradska 10, 81000 Podgorica, Montenegro
e-mail: mladenka.vukmirovic@mgx.cg.yu

Marcin Paprzycki
Computer Science, SWPS
Chodakowska 18/31, 03-815 Warszawa, Poland
e-mail: marcin.paprzycki@swps.edu.pl

http://www.w3.org/TR/xml-infoset/
http://www.fipa.org/specs/fipa00026/PC00026D.pdf
http://acklin.nl/beangenerator/
http://www.fipa.org/specs/fipa00008/SC00008I.html
http://jena.sourceforge.net/
http://www.iata.org/
http://www.opentravel.org/
http://www.ganzha.euh-e.edu.pl/
http://www.ganzha.euh-e.edu.pl/
mailto:dzieciou@wmid.amu.edu.pl
mailto:d124124@wmid.amu.edu.pl
mailto:mladenka.vukmirovic@mgx.cg.yu
mailto:marcin.paprzycki@swps.edu.pl

