
Utilizing agent teams in grid resource management—preliminary
considerations

Mateusz Dominiak
Department of Mathematics and Computer Science, Warsaw University of Technology

Wojciech Kuranowski
Wirtualna Polska, Software Development Department

Maciej Gawinecki
Systems Research Institute, Polish Academy of Science

Maria Ganzha
Department of Administration, Elbląg University of Humanities and Economy

ganzha@euh-e.edu.pl

Marcin Paprzycki
Computer Science Institute, SWPS

Abstract

Recently it was suggested that (mobile) software
agents can provide an infrastructure for resource man-
agement in grids. In this note we introduce an approach
based on agent teams, and discuss how it can be used
in grid resource management. Details of initial imple-
mentation of one of its functionalities are discussed.

1. Introduction

Grid computing has emerged as a promising
approach to utilizing heterogeneous, geographically
distributed, multi-domain computer resources. Virtu-
alization of computing resources by grid computing
is expected to provide its users with highly available
and adaptable computing utilities. It is also expected
to have a broad impact in science, businesses and
industries. Unfortunately, the uptake of the grid, while
speeding-up recently, is still unsatisfactory. One pos-
sible reason for this situation is an overly complicated
support for resource management provided by current
grid software infrastructure.

At the same time it has been suggested that
software agents combined with ontologies may provide

the necessary infrastructure, by infusing grid with
intelligence [5, 12]. Accepting arguments presented
there, we have searched for the existing solutions that
match this vision. While the results of our search are
summarized in the next section, we can say that in
our view all found solutions were somewhat limited in
scope and not robust enough. Therefore we propose
a different approach that is based on agent teams that
collaborate to fulfill user requirements. Due to the
lack of space we are only able to introduce the general
framework of our proposed solution. In the next section
we briefly summarize the state of the art in agent-based
grid resource management. We follow with the descrip-
tion of our system. We complete this note presenting
how we implemented a resource discovery service.

2. Agents in grids today

The initial work on agents in grids can be traced
at least to [2], where J. Cao and colleagues adress the
question of resource discovery in grids. They propose
a hierarchical agent-based structure and experimentally
evaluate various optimizing strategies for information
distribution. Obviously, while very interesting, this
work addresses only a small sub-area of usage of agents

in grids. Furthermore, the proposed framework was to
be anchored in the PACE infrastructure, which by now
seems to be extinct.

More recently B. Di Martino and O. Rana have
proposed MAGDA (Mobile AGent Distributed Appli-
cation), a mobile agent toolkit designed to support (1)
resource discovery, (2) performance monitoring and
load balancing, and (3) task execution within the grid
[4]. Here, a dedicated mobile agent visits servers in the
grid and collects local system information that is used
to optimize distribution of application workload among
agents or to move an agent from a heavier loaded
node to a less loaded one (computational tasks are
carried by mobile agents to nodes where they will be
executed). However, the proposed system does not have
an economic model associated with it. Furthermore,
it was implemented in Aglets which, though recently
becoming an open source product, seem to be slowly
turning into a historical reference.

Last year S. S. Manvi and colleagues proposed
somewhat different approach to agents in grids [9].
They started from an economic model and utilized
mobile agents which traverse the network to complete
a user defined task. At each visited node agents finds
out what are local conditions for job execution and
if acceptable, execute their job there (if they are not,
they move on). In their work, among others, authors
consider a number of pathway selection scenarios.

Also last year, Ouelhadj and colleagues considered
negotiation (and re-negotiation) of a Service Level
Agreement between agents representing resources and
resource users [10]. Negotiations were to be based
on Contract Net Protocol, however their paper was
focused on higher level functionalities of the system.
Again, this work considers only a specific sub-area of
utilization of agents in grids.

While interesting, we can see some problems with
the proposed approaches. (1) Most of them are limited
in scope and functionality and do not involve eco-
nomical foundations. (2) Some of them rely on agent
mobility, while not considering its cost—since agents
carry tasks, their size depends on the size of transported
code and data and thus agent mobility should be used
very judiciously. (3) Proposed infrastructures do not
take into account full effect of grids highly dynamic
nature and use single service providers—this leaves
users vulnerable to (sometimes) rapid fluctuations
of workload of individual nodes, as well as nodes
disappearing and reappearing practically without
warning. (4) Finally, reliance on “barely known”
service providers should involve trust (reputation)
management. To address these issues we propose
solution that is based on utilization of agent teams.

3. Proposed approach

Let us start from very basic considerations. Com-
putational grid can be viewed as an environment in
which workers (in our case agent workers) that want to
contribute their resources, and be remunerated for their
usage, meet and interact with users (in our case agent
users) that want to utilize offered services to complete
their tasks. Obviously, we assume that at any moment
worker may turn into a user and vice-versa. To be able
to successfully facilitate needs of workers and users we
propose an agent-centered infrastructure that is based
on following general assumptions:

• agents work in teams (groups of agents)

• each teams has a single leader—LMaster agent

• each LMaster has a mirror LMirror agent that can
take over its job in case when it “goes down”

• incoming workers (worker agents) join teams
based on individual set of criteria

• teams (represented by their LMasters) accept
workers based on individual set of criteria

• decisions about joining and accepting involves
multicriterial analysis (performed by so-called
MCDM modules)

• each worker agent can (if needed) play role of an
LMaster

• matchmaking is provided through yellow pages
[13] and facilitated by the CIC agent [1]

Combining these assumptions we can develop sys-
tem represented in Figure 1 as a Use Case diagram.

Let us now describe briefly dynamic processes that
are depicted in their static form in Figure 1. To do this
let us assume that the system is already running for
some time, so that there already exist agent teams and
their “advertisements” (both describing what resources
they offer and/or what jobs they would like to execute;
as well as what “types” of agents they would like to join
their team) are posted with the CIC (while currently
we use a single CIC in the future we may utilize an
approach similar to that reported in [2]). First, observe
that the User, represented in Figure 1, can either be
someone who tries to contribute services to the grid, or
someone who would like to utilize services available
there. Interestingly, the Use Case diagram shows
that both situations can be modeled in a “symmetric”
way. Let us start from the case of “User-contributor”
(processes that take place here are very similar to these
described in [1] that provides further details).

Mirror
LMaster
Recreation

LMaster
Recreation

DB Agent

Negotiation

Collaboration

Request
information/
propositions

Proposition
creation/ update

CIC

Gathering
knowledge

Job Joining <<extend>>

<<extend>>

Mirror LMaster

<<extend>><<extend>>

LMasterUser

LMaster MCDM

Definition
conditions

Communication

LAgent

Gathering
Knowledge

LDB Agent

LAgent
MCDM

Figure 1. Use Case diagram of the proposed system

User who wants to contribute resources to the grid
communicates with its agent (the local agent LAgent
which, starts playing role of a worker agent) and formu-
lates conditions for joining an agent team. Note that she
may also request that a new team is to be created and her
LAgent is to become its LMaster. The LAgent requests
from the CIC list of agent teams that satisfy its prede-
fined criteria. Upon receiving such a list, due to trust
considerations (see [6] for more details) it may remove
certain teams from the list. For instance, if it worked
with a given team in the past and was “unhappy” with
“rewards,” it may not want to work with it again. For
all the teams remaining on the list, the LAgent com-
municates with their LMasters utilizing Contract Net
Protocol based negotiations and Saaty-type multicrite-
rial analysis to evaluate obtained proposals. The result
of interactions between the LAgent and LMasters may
be twofold: (1) it finds a team that it would like to work
with and joins it, (2) no such team is found (either it is
not interested in any offer from LMasters or no LMaster
sent it an offer). In this situation the LAgent may de-
cided to abandon the task and inform about it its User.
It is also possible that the LAgent decides to become the
LMaster of a new team itself. In this case, it prepares
an offer describing (1) who it would like to invite to
join its team, and (2) what resources it can contribute
(what kind of jobs it is willing to work on); and send

these two “advertisements” to the CIC to be “posted.”
Let us now consider what happens when the

“User” requests that its LAgent arranges execution of
a task and specifies conditions of that operation (e.g.
maximal price or maximum time length during which it
has to be completed). As mentioned above, in this case
the scenario is very much the same. The LAgent queries
the CIC to find out which teams can execute its task.
Upon receiving a list of teams that match the query, the
LAgent may adjust it by removing from it these teams
that cannot be trusted. It then communicates with the
remaining teams (their LMasters) and negotiates the
best place to execute its job. It is assumed that Contract
Net Protocol based negotiations (similar to these de-
scribed in [10]) and multicriterial analysis of available
offers will be utilized. Specifically, a well-known
Saaty-approach will be utilized here to compare offer
details (e.g. price, time, resources, warranty etc.), as
it is one of the best methods to deal with quantifiable
multicriterial decisions. Note that if no team will
satisfy conditions imposed by the User then no deal
will be reached. In this case the LAgent will report this
situation to its User and await further instructions.

Let us now describe the relationships between the
LMaster and the LMirror. When a new team is created,
then the “founding agent” becomes its LMaster. The
first agent that joins that team becomes the LMirror

(agent that can take over the team-lead in case when
anything happens to the LMaster). Subsequent agents
joining the team will become worker agents. We have
not decided yet if the LMirror should be also working
as a worker agent or if its role should be limited to
mirroring the LMaster; this decision will based on
experimental analysis of LMirrors workload and will
be performed when the initial feature-complete version
of the system will be implemented. The LMaster and
the LMirror share all information that is pertinent to
the existence of the team; e.g. list of workers and their
characteristics, list of tasks that have been contracted
and have to be executed, knowledge base that stores
information about all past interactions with incoming
users etc. It is assumed that the LMaster and the
LMirror check each-others existence regularly in short
time intervals. In the case when the LMaster does not
respond to a ping-type ACL message the LMirror con-
tacts the agent environment infrastructure (Directory
Facilitator service) to check the status of the LMaster.
If the LMaster is “gone” it takes over its role. Its first
action is to promote one of worker agents to become its
LMirror and pass to it all necessary information. Then
it informs all necessary agents about the change (the
fact that it is now the LMaster of the team). Similarly,
the LMaster upon finding that the LMirror agent is
“gone” immediately promotes one of worker agents to
its role and passes to it all necessary information. In
both cases, promotion of a worker to a role of an LMas-
ter or an LMirror may require dealing with the task
that the selected worker was executing at the time of
its promotion. Let us note that the proposed solution is
not bullet-proof. It is conceivable that both the LMaster
and the LMirror will go down “almost simultaneously”
(e.g. the LMaster realizes that the LMirror is gone, but
before it promotes one of its workers to become its new
LMirror it will go down itself) and thus the team will
be “destroyed.” However, such a situation should be
relatively rare and our goal is not to create a completely
bullet-proof infrastructure. Rather, our aim is to
provide the proposed infrastructure with a reasonable
level of resilience against common failures. Obviously,
in a production environment further levels of defense
against team destruction would have been developed.

Finally, let us briefly mention a few additional
objects that appear in Figure 1. The Gathering knowl-
edge functions denote collection of information about
processes happening in the system. The LMaster col-
lects information about all interactions with incoming
task-carrying agents as well as about members of its
team. In this way it may later decide to not to interact
with certain clients or remove certain workers from its
team. Similarly, the LAgent collects knowledge about

what happened when it utilized services of various
teams, as well as when it was a worker for various
teams. Interestingly, since Lagent can play any role
in the system, it is quite possible that an LMaster will
turn into an LAgent who represents its User trying to
find location to execute its task. Will it turn to its own
former team to do it? Questions like this are going to
be answered within the LAgent MCDM module and the
LMaster MCDM module.

4. LAgent — CIC interactions

For the remaining part of this note let us focus our
attention on how the interactions between the LAgent
and the CIC have been implemented. In particular, we
will discuss the interactions that take place when the
LAgent is querying the CIC where to execute its task.

We have assumed that data in our system is to be
stored in semantically demarcated form. In this context,
an ideal situation would be if there existed an all-agreed
“ontology of the grid.” Unfortunately, while there ex-
ists a number of (separate and incompatible) attempts
at designing such an ontology, at this stage they can
be treated only as a “work in progress.” Therefore we
focus our work on designing and implementing agent
system skeleton, while using a simplistic ontology. Ob-
viously, when the grid ontology will be agreed on, our
system will be ready for it. Currently, our ontology of
grid resources is focused on their “computational” as-
pects, e.g. processor, memory and available disk space.
What follows is a snippet of our OWL Lite based ontol-
ogy:

: Computer
: a owl : C l a s s .

: hasCPU
: a owl : O b j e c t P r o p e r t y ;
r d f s : r a n g e :CPU ;
r d f s : domain : Computer .

:CPU
: a owl : C l a s s .

: hasCPUFrequency
: a owl : D a t a P r o p e r t y ;
r d f s : comment " i n �GHz" ;
r d f s : r a n g e xsd : f l o a t ;
r d f s : domain :CPU .

: hasCPUType
: a owl : O b j e c t P r o p e r t y ;
r d f s : r a n g e : CPUType ;
r d f s : domain :CPU .

: CPUType
: a owl : C l a s s .

I n t e l : a : CPUType .
AMDAthlon : a : CPUType .

: hasMemory
: a owl : D a t a t y p e P r o p e r t y ;
r d f s : comment " i n �MB" ;
r d f s : r a n g e xsd : f l o a t ;
r d f s : domain : Computer .

: hasUse rDiskQuota
: a owl : D a t a t y p e P r o p e r t y ;
r d f s : comment " i n �MB" ;
r d f s : r a n g e xsd : f l o a t ;
r d f s : domain : Computer .

: LMaster
: a owl : C l a s s ;

: hasContactAID
: a owl : O b j e c t P r o p e r t y ;
r d f s : r a n g e xsd : s t r i n g ;
r d f s : domain : LMaster .

: hasUse rDiskQuota
: a owl : D a t a t y p e P r o p e r t y ;
r d f s : comment " i n �MB" ;
r d f s : r a n g e xsd : f l o a t ;
r d f s : domain : Computer .

Let us now assume that the LMaster3 agent has in its
team worker PC2929 which has a 3.7 GHz Intel pro-
cessor, 512 Mbytes of memory and 400 Mbytes of disk
space available as a “grid service.” In our ontology it
would be represented as:

: LMaster3
: hasContactAID

" monster@e−p l a n t : 1 0 9 9 / JADE" ;
: hasWorker : PC2929 .

: PC2929
: a : Computer ;
: hasCPU
[

a :CPU;
: hasCPUType : I n t e l ;
: hasCPUFrequency " 3 . 7 " ;

] ;
: hasUse rDiskQuota " 400 " ;
: hasMemory " 512 " .

Ontologically demarcated data will be stored (by the
CIC) in a Jena repository [8]. To query Jena persisted
data we have decided to use the SPARQL language
[11]. Let us now assume that the LAgent is looking for
a machine with an Intel processor of at least 3.2 GHz,
at least 256 MB of RAM, and at least 350 MB of disk
space. Then the SPARQL query will have the form:

PREFIX : < h t t p : / /www. i b s p a n . waw . p l / mgrid#>

SELECT ? c o n t a c t
WHERE
{

? l m a s t e r
: hasContactAID ? c o n t a c t ;
: a : LMaster ;
: hasWorker

[
: a : Computer ;
: hasCPU

[a :CPU ;
: hasCPUType : I n t e l ;
: hasCPUFrequency ? f r e q ;

] ;
: hasUserDi skQuota ? q u o t a ;
: hasMemory ?mem ;

] .
FILTER (? f r e q >= 3 . 2)
FILTER (? q u o t a >= 350)
FILTER (?mem >= 256)

}

and the response that points to the above
described machine would look as follows:
monster@e-plant:1099/JADE. Specifically, it
points to the LMaster that has that machine (worker) in
its team. Obviously, a complete response would consist
of a list of all teams that have among them at least one
machine that satisfies the above described criteria.

When implementing the CIC we have decided to
use multiple database accessing agents (CICDB). In
this way we follow the results of our experiments re-
ported in [3], where we have shown that using multiple
DB agents can improve throughput of database access.
Our system is being implemented in JADE [7] and in
our current implementation we are using up to 5 CICDB
agents that are utilized using a “push” method—the CIC
knows which CICDB is free and pushes to it the next
query to be handled. In Figure 2 we present results col-
lected by the JADE Sniffer agent that depict interactions
between LAgents and the CIC. There we can see 5 dif-
ferent LAgents (named user–agent(1–5)) and the CIC
that utilizes its CICDB agents (named ICDB0, CICDB1
and CICDB2) to respond to their queries.

5. Concluding Remarks

In this note we have introduced our agent-team-
based approach to grid resource management. We have
sketched the overall system design and presented in
some detail the way that a resource query has been
implemented. Currently we proceed with implementa-
tion of the complete agent-based skeleton of the system,

Figure 2. CIC and User interaction

while simplifying (though keeping as realistic as possi-
ble) its non-agent parts. An example of this approach is
our utilization of an extremely limited ontology of grid
resources, while utilizing robust tools like SPARQL and
Jena to operate on it. Furthermore, while recognizing
the importance of security, since this is a large research
issue in its own right, we omit it in this stage of system
development. We are implementing the system and will
report on our progress in subsequent papers.

References

[1] C. Bádicá, A. Báditá, M. Ganzha, M. Paprzycki, Devel-
oping a Model Agent-based E-commerce System. In: Jie
Lu et. al. (eds.) E-Service Intelligence - Methodologies,
Technologies and Applications, Springer, in press

[2] J. Cao, D. J. Kerbyson, G. R. Nudd, Performance eval-
uation of an agent-based resource management infras-
tructure for grid computing, in: Proceedings of the First
IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, 2001, 311-318

[3] K. Chmiel, D. Tomiak, M. Gawinecki, P. Kaczmarek,
M. Szymczak, M. Paprzycki, Testing the Efficiency of
JADE Agent Platform. In: Proceedings of the ISPDC
2004 Conference, IEEE Computer Society Press, Los
Alamitos, CA, 2004, 49-57

[4] O. F. Rana, B. Di Martino, Grid performance and re-
source management using mobile agents, in: Perfor-
mance analysis and grid computing, 2004, 251-263

[5] I. Foster, N. R. Jennings, C. Kesselman, Brain
Meets Brawn: Why Grid and Agents Need Each
Other, AAMAS’04, July, 2004, ACM Press, 2004,
http://www.semanticgrid.org/documents/
003-foster_i_grid.pdf.

[6] M. Ganzha, M. Gawinecki, P. Kobzdej, M. Paprzycki,
C. Bádicá, Towards trust management in an agent-based
e-commerce system – initial considerations, in press

[7] JADE: Java Agent Development Framework. See
http://jade.cselt.it.

[8] Jena—A Semantic Web Framework for Java. See
http://jena.sourceforge.net/

[9] S.S. Manvi, M.N. Birje, Bhanu Prasad, An Agent-based
Resource Allocation Model for computational grids,
Multiagent and Grid Systems, 1(1), 2005, 17-27

[10] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou,
K. Krishnakumar, A. and Meisels, A multi-agent infras-
tructure and a service level agreement negotiation proto-
col for robust scheduling in Grid Computing. In: Peter
M. A. Sloot et. al. (eds.), Advances in Grid Computing-
EGC 2005, Springer-Verlag, 2005, 651-660

[11] SPARQL Query Language for RDF. See:
http://www.w3.org/TR/rdf-sparql-query

[12] H. Tianfield, R. Unland, Towards self-organization in
multi-agent systems and Grid computing, Multiagent
and Grid Systems, 1(2), 2005, 89-95

[13] D. Trastour, C. Bartolini, C. Preist, Semantic Web Sup-
port for the Business-to-Business E-Commerce Lifecy-
cle, Proceedings of the International World Wide Web
Conference, ACM Press, New York, USA, 2002, 89-98

