
Implementing message exchange between airlines’ GDSs and travel systems
with ontologicaly demarcated data

Mladenka Vukmirović

Montenegro Airlines, Podgorica, Montenegro
Maciej Gawinecki, Paweł Kobzdej

Systems Research Institute, Polish Academy of Science
 Maria Ganzha,

Elbląg University of Humanities and Economics, Elbląg, Poland
Marcin Paprzycki

SWPS, Warsaw, Poland

Abstract. The development of airlines’ global
distribution systems is in an interesting stage of
evolution. Currently airline industry is defining
new protocols that are to profit from utilization
of the state-of-the-art technology such as agent
systems. In the meantime we are developing an
agent-based Travel Support System (TSS), with a
goal of providing passengers with more
personalized information in regard to the desired
journey. Obviously, the TSS, to realize its goals
must be able to communicate with various
(airline) global distribution systems (GDS)s. In
this paper we are presenting our initial attempt
of utilizing new trends emerging in the airline
industry while developing a communication
channel between the TSS and GDSs.

Keywords. software agents, air-travel ontology,
travel support system, message exchange.

1. Introduction

Our current work is focused on providing
comprehensive support for informational needs
of a traveler. This work followed two concurrent
paths. In one of them we proposed a novel
approach to selling airline tickets. Here, we
started from a model agent based e-commerce
system (see [7, 8] and references collected there).
We have utilized its modified infrastructure to
incorporate airline ticket auctioning capabilities.
Obviously such a service requires interfacing it
with global distribution systems (GDS)s used by
the airline industry, among others, to manage air
travel schedules, reservations and ticket sales [4,
10, 17, 25, 28]. The aim of the second project
was development and initial implementation of
an agent based travel support system (TSS). In
the TSS, travel-related data is represented as
instances of an RDF demarcated travel ontology
(of hotel and restaurant) and used to deliver
personalized information to the users (see

[15,16] and references collected there). The next
necessary step is to merge these two projects and
when conceptualizing the merger we have
realized the need of resolving different data
representations existing in both systems. Since
the TSS utilizes ontologically demarcated data, a
natural solution was to create air travel ontology
to be fully integrated with hotel and restaurant
ontologies developed for the TSS [9, 10, 16]. We
have designed such an ontology by utilizing
industry standards that are in detail given in
International Air Travel Association (IATA)
Manuals [1, 6, 21, 22], and other industry
indicatives, among which our focus was set on
the Open Travel Alliance (OTA) messaging [19,
20, 22], together with reuse of best practices of
existing ontologies. Results of this work have
been reported in [17, 18, 25, 28]. Obviously,
development of a unified travel ontology that
includes air travel ontology solved only a part of
the problem – the internal representation of air
travel data within the TSS. What still needs to be
addressed is communication of the TSS with
other entities servicing needs of travelers and in
this paper we discuss how this goal can be
achieved. Due to space limitation we focus our
attention only on communication between
airlines’ GDSs and the TSS.

Let us start from a bit of history.
Contemporary global distribution systems were
developed in 1970s and were based on host-
terminal technology that involves extensive
message exchange (such as TypeB messages,
EDIFACT etc.) between GDSs and inventory
systems of various airlines as well as different
GDSs among themselves. These exchanges of
messages were strictly defined by a set of
detailed industry rules governed by IATA.
Currently, a new trend can be observed, which
will result, over time, in message exchanges
being re-deployed utilizing modern technologies,

which are currently being widely explored in the
industry (see [23, 24, 26], for more details). This
move is necessary since advances of computer
technology that took place since 1970s have to
be effectively utilized with a goal of simplifying
business practices.

In this context, for the airline industry, IATA
has recently taken a lead in defining a new set of
standards that are to employ modern
technologies such as XML, SOAP, and even
ontologies and agent systems [2, 3, 23, 24, 26].
ARINC and SITA (which contributed a great
deal to the existing message exchange solution in
the aviation business) followed the lead and
joined forces with IATA in an on-going project
with the goal of implementation of a standard for
messaging using XML, called TypeX messaging.
This standard is to be an evolution of the IATA
TypeB messaging [26]. However our attention
has been focused on a concurrent stream of
development – the OTA messaging system [20].
This is because IATA intends to include OTA
messages into TypeX message definitions. In
other words, OTA messages already exist as a
standard and will be utilized by IATA, while
TypeX messages are still being worked on.
Summarizing, in our work we are following
initiatives undertaken by the travel industry and
try to reuse as much as possible from these
emerging standards.

This being the case we can make our goal
more specific: we are interested in facilitating
message exchange between our system and
OTA-utilizing entities. Furthermore, in this
paper, our focus is on air-travel-related OTA
messages. We start with a brief description of the
TSS and the air-travel ontology used in it. We
follow with a description of scenarios where our
system could be contacted or had to
communicate with OTA understanding entities.
We complete the paper by describing how the
translation process between the TSS understood
content and the OTA messaging looks like.

2. Travel Support System travel ontology

Our travel ontology was created by merging
two ontologies – one created for the TSS (and
consisting of hotel and restaurant ontologies [9,
10, 15, 16]) and the second created for agent-
based airline ticket auction system [17, 18, 25,
27, 28]. While developing the latter one, we have
established that existing air-travel ontologies are
“academic” in nature – and this explains the lack
of important features when it comes to dealing
with actual air travel data [28]. Therefore, we

decided to create a new ontology that would: (1)
utilize IATA mandated data; (2) utilize as much
as possible from the existing travel ontologies –
provided that applicable IATA resolutions and
recommended practices are followed, (3) match
features included in the OTA specification, and
(4) be ready to be merged with our existing
travel ontology. Hence, we applied a bottom-up
approach and our initial goal was to model
reservations occurring in the AMADEUS global
distribution system. Let us stress once more that
at the beginning of our work we have decided
that to establish communication between our
system and other travel-related entities we will
use OTA messaging (which fast becomes an
industry standard [23, 26]). Thus, integration
with the OTA messaging system was one of
important goals of our endeavor and heavily
influenced the resulting shape of air-travel
ontology [18].

To illustrate the structure of the air-travel
ontology we present our AvailabilityDisplay
class (and later we will use it when discussing
exchanges of messages). This class presents
availability of seats on plains for a selected route
and carriers offering flights. What follows is a
fragment of its N3 described definition (complete
definition may be found in [11]).

@prefix flt: <AirTravel/Flight#>.
@prefix cls:
 <AirTravelCodes/IATAClasses#>.
@prefix :
 <AirTravel/AvailabilityDisplay#>.

:AvailabilityDisplay a rdfs:Class.

:details a rdf:Property;
 rdfs:domain :AvailabilityDisplay;
 rdfs:range :AvailableFlights.

:AvailableFlightElement a rdfs:Class.

:flight a rdf:Property;
 rdfs:domain :AvailableFlightElement;
 rdfs:range flt:Flight.

:classAvail a rdf:Property;
 rdfs:domain :AvailableFlightElement;
 rdfs:range :AvailableClasses.

:AvailableClasses a rdfs:Class.

:classavailable a rdf:Property;
 rdfs:domain :AvailableClasses;
 rdfs:range :AvailableClassElement.

:AvailableClassElement a rdfs:Class.

:class a rdf:Property;
 rdfs:domain :AvailableClassElement;

 rdfs:range cls:BookingClass.

:noAvailableSeats a rdf:Property;
 rdfs:domain :AvailableClassElement;
 rdfs:range xsd:integer.

3. Message exchange scenarios

Let us now discuss sample scenarios that
involve message exchanges between our system
and other travel entities.

3.1. Scenario 1
In the first scenario let us consider a tourist who
is looking for a complete package consisting of
air ticket + hotel + restaurant (we selected these
three entities as they currently “exist
ontologically” in our system, however this
request could also involve golf + opera +
archeological museum). This request from the
user has a form of a query-string and is
transferred from the user-device into the TSS
through a somewhat involved mechanism
described in [29, 30, 31]. The Personal Agent
would transform this request into SPARQL
query [29, 30, 31] that would then be executed
by the Database Agent on the Jena [13, 14]
persisted central repository. This translation
would work easily for the restaurant and hotel
parts of the query as information about these
entities was assumed to be stored in the system
(though as soon as an actual reservation process
is to be involved this assumption has to be
relaxed and an OTA exchange like the following
one has to take place). However, air travel
information cannot be stored in the system.
Specifically, it is possible to store selected
“static” parts of the information (e.g. airport
codes and addresses and their amenities) and the
parts that changes only periodically (e.g. carriers
that fly between given airports), but one cannot
store actual flight schedules and seat availability
information. Therefore the incoming user-query
has to be split into two parts: (1) part to be
executed internally (involves only query-string
into SPARQL translation as described in [29, 30,
31]), and (b) part of the query sent to the GDS. It
is the latter part that is of interest to us. Here the
query-string has to be translated into an
appropriate OTA RQ message ([19]). This
message is then to be send to the GDS. The GDS
will respond with an OTA RS message that
contains the requested information. Content of
this message has then to be translated into
instance(s) of our travel ontology. Let us stop
here for a moment and argue why the latter
translation is needed. Why not simply send the

response back to the user (the way that travel
agents often do). The reasons are the following:
(1) the main goal of our system is to deliver
personalized information. This is achieved
through representing user preferences as special
instances of our travel ontology using an overlay
model [32-35]. Therefore, to be able to apply
user preferences to data obtained form the GDS
(even in the simple case when only travel
Warsaw to Podgorica is to be facilitated), we
need to have travel data as instances of air travel
ontology. Only then we will be able to apply
weight representing user preferences to find out
that she loves to travel on airlines representing
“SkyTeam” alliance and definitely hates flying
“BA” and (2) in the case of a more complicated
query that involves several entities, the TSS
needs to be able to apply reasoning involving
their (multiple) instances. Therefore it is
absolutely necessary to transform the incoming
OTA carried information into instances of our
TSS travel ontology and further process them in
this form.

3.2. Scenario 2

In the TSS we expect to develop a number of
data management agents [15]. One of important
roles of these agents will be to keep data stored
in the system correct and up to date. While it will
not be possible to keep the actual schedule of
airlines available, we can easily assume that TSS
will store information about airlines that fly
between two airports; as it usually changes only
a few times a year. This being the case, it has to
be considered that data management agents will
occasionally request an update on the list of the
airlines that fly between given two airports, or
information how one can reach certain
destination flying out of given airport (e.g.
Hattiesburg, Mississippi) with certain carrier on
a given day of the week. It will be the GDS that
will be the best source of such information.
Therefore the data management agent has to be
able to formulate an appropriate OTA query and
then translate the OTA response into instances of
our travel ontology to update the information in
the system.

3.3. Scenario 3

This scenario is most far fetched, but also
should be considered. Let us assume that our
TSS becomes a service that is available to other
travel related entities. In this case the question
has to be asked, what language can these entities
use to “converse” with our system. One of

obvious answers that should be clear by now is:
by utilization of OTA messaging. Let us note
that OTA messages, being a standard for travel
related communication, actually separate the
internal representation of data from the way that
the conversation about this data takes place. Let
us assume that a “Worldwide Travel Agency”
(WTA) decided to utilize our TSS as their way of
supporting clients, but also opened its services to
other (smaller) travel agencies (this would be an
example of service oriented architecture). We
can now assume that the other travel agencies
will send requests to the WTA’s TSS system
using OTA messaging, without any knowledge
as to how the actual data is represented inside of
the TSS that the WTA uses.

To service these requests, the TSS has to be
able to accept OTA messages and to translate
them into an appropriate form to retrieve
information from ontologicaly demarcated data.
Hence, the translation between incoming OTA
messages and queries that have to be executed in
our system has to be provided. Following
Scenario 2 let us assume that an OTA message
arrives to the TSS, requesting a list of carriers
that fly from Tulsa, Oklahoma to Baltimore,
Maryland. Since this data is stored internally, the
TSS does not have to forward this query to the
GDS, but can translate the received OTA
message into a SPARQL query. This query will
then be executed on the internal Jena database
and response packed into an OTA message and
send back to the requestor.

Summarizing, we have argued that in the
proposed TSS at least the following translations
between the internal functions and
representations used in the system and the OTA
messages are required:

(a) HTTP query-string into an OTA request,
(b) OTA response (OTA RS) into an
instance of an ontology,
(c) instance of an ontology into an OTA
response message (OTA RS),
(d) OTA request message (OTA RQ) into a
SPARQL query,
(e) response to a SPARQL query into an
OTA response message (OTA RS)

We are following with an example that
illustrates one of these translations.

4. Translation example

Due to limited space we will focus our
attention on description of equivalency between
OTA response messages and instances of our
ontology. Following examples provided in

previous sections, let us assume that the WTA
agency has received request for all direct flights
and their availability for the route from Paris
(PAR) to Warsaw (WAW) operated by Air
France (AF). Hence, in Figure 1 we depict the
received OTA RQ message for requested route
and specified date and carrier as well as the
number of passengers traveling together (with
their preferences). This message is then
translated into a following SPARQL query:

PREFIX flt: <AirTravel/Flight#>.
PREFIX trv:
 <AirTravel/AvailabilityDisplay#>.
PREFIX arc:
 <AirInfrastructureCodes/AirportCode#>.
PREFIX arl:
 <AirInfrastructure/Airport#>.
PREFIX alc:
 <AirInfrastructureCodes/AirlineCode#>.
SELECT ?display
WHERE
{
 ?display a trv:AvailabilityDisplay;
 trv:details ?flight.
 ?flight flt:origin ?origin;
 flt:destination ?dest;
 flt:departureTime;
 flt:smokingAllowed false;
 flt:flightDate 2007-03-20;
 flt:mcarrier alc:AF.
 ?origin arl:airportCode arc:PAR.
 ?dest arl:airportCode arc:WAW.
}

When executed against data in our system the
following instances are returned as a result; due
to space limitation instances are given in N3
notation and with only partial information
(complete code may be found in [12]).

@prefix:
<http://www.ibspan.waw.pl/travel/tmp>.
@prefix
trv: <AirTravel/AvailabilityDisplay#>.
@prefix flt: <AirTravel/Flight#>.
@prefix
cls: <AirTravelCodes/IATAClasses#>.

:avlDispPARWAW
 a trv:AvailabilityDisplay;
 :details [
 a trv:AvailableFlightElement;
 trv:flight flt:AF2046;
 trv:classAvail [
 a trv:AvailableClasses;
 trv:classavailable [
 a trv:AvailableClassElement;
 trv:class cls:C;
 trv:noAvailableSeats "9".
] ;
] ;
] ;
 trv:agtndata trv:agtnsign.

<?xml version="1.0" encoding="UTF-8" ?>
<OTA_AirRulesRQ xmlns="http://www.opentravel.org/OTA/2003/05" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05 OTA_AirRulesRQ.xsd" EchoToken="36732"
TimeStamp="2007-02-15T11:00:00" Target="Production" Version="2.001" SequenceNmbr="293" PrimaryLangID="en"
DirectFlightsOnly="true">

<POS>
<Source AgentSine="102" PseudoCityCode="TGD" ISOCountry="ME" ISOCurrency="EUR" AirlineVendorID="1A">

 <RequestorID Type="5" ID="35896241" />
 <BookingChannel Type="1" />

</Source>
</POS>
<RuleReqInfo NegotiatedFare="false">

 <FareReference>QPROYM</FareReference>
 <RuleInfo />
 <FilingAirline Code="YM" />
 <DepartureAirport LocationCode="TGD" />
 <ArrivalAirport LocationCode="VIE" />

 </RuleReqInfo>
 </OTA_AirRulesRQ>

Figure 1. OTA RQ message requesting availability with passenger preferences.

<?xml version="1.0" encoding="UTF-8" ?>
<OTA_AirAvailRS xmlns="http://www.opentravel.org/OTA/2003/05"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.opentravel.org/OTA/2003/05
OTA_AirAvailRS.xsd" EchoToken="12354" TimeStamp="2007-02-
24T09:30:47-05:00" Target="Production" Version="1.002"
SequenceNmbr="1">

 <Success />
<OriginDestinationOptions>
 <OriginDestinationOption>
 <FlightSegment DepartureDateTime="2007-03-20T09:35:00"
 ArrivalDateTime="2007-03-20T11:50:00" StopQuantity="0"
 FlightNumber="2046" JourneyDuration="P0Y0M0DT02H15M"
 SmokingAllowed="false" OnTimeRate="90" Ticket="ET">
 <DepartureAirport LocationCode="PAR" />
 <ArrivalAirport LocationCode="WAW" />
 <MarketingAirline CompanyShortName="AF" />
 <MarketingCabin CabinType="Business" RPH="2" />
 <MarketingCabin CabinType="Economy" RPH="3" />
 <BookingClassAvail ResBookDesigCode="C"
 ResBookDesigQuantity="9" RPH="2" />
 <BookingClassAvail ResBookDesigCode="D"
 ResBookDesigQuantity="5" RPH="2" />
 <BookingClassAvail ResBookDesigCode="F"
 ResBookDesigQuantity="9" RPH="2" />
 <BookingClassAvail ResBookDesigCode="Y"
 ResBookDesigQuantity="7" RPH="3" />
 <BookingClassAvail ResBookDesigCode="W"
 ResBookDesigQuantity="7" RPH="3" />
 <BookingClassAvail ResBookDesigCode="E"
 ResBookDesigQuantity="3" RPH="3" />
 <BookingClassAvail ResBookDesigCode="G"
 ResBookDesigQuantity="R" RPH="3" />
 </FlightSegment>
 </OriginDestinationOption>
 <OriginDestinationOption>
 <FlightSegment DepartureDateTime="2007-03-20T12:25:00"
 ArrivalDateTime="2007-03-20T14:45:00" StopQuantity="0"
 FlightNumber="2346" JourneyDuration="P0Y0M0DT02H15M"
 SmokingAllowed="false" OnTimeRate="90" Ticket="Paper">
 <DepartureAirport LocationCode="PAR" />
 <ArrivalAirport LocationCode="WAW" />
 <MarketingAirline CompanyShortName="AF" />
 <MarketingCabin CabinType="Business" RPH="2" />
 <MarketingCabin CabinType="Economy" RPH="3" />
 <-- booking classes for this flight -->
 </FlightSegment>
 </OriginDestinationOption>
 <OriginDestinationOption>
 <FlightSegment DepartureDateTime="2007-03-20T16:00:00"
 ArrivalDateTime="2007-03-20T18:15:00" StopQuantity="0"
 FlightNumber="1046" JourneyDuration="P0Y0M0DT6H30M"
 SmokingAllowed="false" OnTimeRate="90" Ticket="Paper">
 <-- availability details for this flight -->
 </FlightSegment>
 </OriginDestinationOption>
 <OriginDestinationOption>
 <FlightSegment DepartureDateTime="2007-03-20T18:35:00"
 ArrivalDateTime="2003-08-13T20:50:00" StopQuantity="0"
 FlightNumber="1246" JourneyDuration="P0Y0M0DT4H30M"
 SmokingAllowed="false" OnTimeRate="90" Ticket="Paper">
 <-- availability details for this flight -->
 </FlightSegment>
 </OriginDestinationOptions>
</OTA_AirAvailRS>

Figure 2. OTA RS message containing the

response to the request.

Based on the instance of AvailabilityDisplay
class shown above and related classes from our
ontology the OTA RS message, presented in
Figure 2, is created. This OTA RS message may
be forwarded to the agency that originally
requested the information.

5. Concluding remarks

Expanding on results of our earlier research,
here we have described our initial attempt at
creating an interface between the Travel Support
System and the AMADEUS GDS. Trying to

keep pace with changes taking place in the
airline industry, we have based our work on new
technologies being currently considered for
communication in airlines’ systems. This
resulted on definition of initial framework for
message exchange between two noted systems.
Here, we have proposed several message
exchange scenarios and presented an example of
messages exchanged to facilitate one of them.
Results presented constitute a basis on which we
are developing a complete parser that is going to
support the six necessary translations specified at
the end of Section 3. We will report on our
progress in subsequent publications.

References
[1] Airline Coding Directory, Effective
1December 2006 – 31 May 2007, 71st Edition –
Airline Destignators, IATA
[2] ARINC, http://www.arinc.com/
[3] ARINC-SITA Industry Technical Work
Group On AIRLINE XML STANDARDS,
ATI’s TypeX DXF Specifications Document
Solution Presentation “TXSpecs”
[4] Badica, C., Ganzha, M., Paprzycki, M.:
UML Models of Agents in a Multi-Agent E-
Commerce System. In: Proceedings of the IEEE
Conference of E-Business Engineering. IEEE CS
Press, Los Alamitos, CA, 56-61, 2005.
[5] Badica, C., Ganzha, M., Paprzycki, M.,
Pirvanescu, A.: Experimenting With a Multi-
Agent E-Commerce Environment. In: V.
Malyshkin (Ed.): Proceedings of PaCT’2005,
LNCS 3606, Springer-Verlag, 393-402, 2005.
[6] City Code Directory, 43th Edition, Effective
9 December 2005 – 31 December 2006
[7] C. Bădică, A. Bădită, M. Ganzha, M.
Paprzycki, Implementing Rule-Based Automated
Price Negotiation in an Agent System. Journal of
Universal Computer Science (to appear)

[8] C. Bădică, A. Bădită, M. Ganzha, M.
Paprzycki, Developing a Model Agent-based E-
commerce System. IJie Lu et. al. (eds.) E-Service
Intelligence-Methodologies, Technologies and
Applications, Springer, Berlin, 2007, 555-578
[9] Gawinecki M., Gordon M., Paprzycki M.,
Szymczak M., Vetulani Z., Wright J., Enabling
Semantic Referencing of Selected Travel Related
Resources. In: W. Abramowicz (ed.) Proceedings
of the 8 th International Conference on Business
Information Systems (BIS 2005), Poznań
University of Economics Press, Poznań, Poland,
2005, 271-288
[10] Gordon M., Kowalski A., Paprzycki M.,
Pełech T., Szymczak M., Wąsowicz T.,
Ontologies in a Travel Support System. In: D. J.
Bem et. al. (eds.) Internet 2005, Technical
University of Wroclaw Press, 2005, 285-300
[11] http://e-travel.sourceforge.net/
[12] IATA SSIM, Mar 1, 2006 until Sep 30, 2006
[13] Jena 2 Ontology API – General concepts,
http://jena.sourceforge.net/ontology/index.html#
generalConcepts
[14] Jena, http://jena.sourceforge.net/
[15] M. Ganzha, M. Gawinecki, M. Paprzycki, R.
Gasiorowski, S. Pisarek, W. Hyska (2006)
Utilizing Semantic Web and Software Agents in
a Travel Support System. In: A. F. Salam and
Jason Stevens (eds.) Semantic Web Technologies
and eBusiness: Virtual Organization and
Business Process Automation, Idea (to appear)
[16] Minor Gordon, M. Paprzycki (2005)
Designing Agent Based Travel Support System.
In: Proceedings of the ISPDC 2005 Conference ,
IEEE Computer Society Press, Los Alamitos,
CA, 2005, 207-214
[17] M. Vukmirović, M. Paprzycki, M. Szymczak
(2006) Designing ontology for the Open Travel
Alliance Airline Messaging Specification, In: M.
Bohanec et. al. (eds.), Proceedings of the 2006
Information Society Multiconference, Josef
Stefan Institute Press, 101-105
[18] M. Vukmirović, M. Szymczak, M.
Gawinecki, M. Ganzha, M. Paprzycki, Designing
new ways for selling airline tickets, Informatica
(to appear)
[19] OpenTravelTM Alliance, Message Users
Guide. 2006B Version 1.0, December 2006
[20] OTA, http://www.opentravel.org/
[21] PSC Resolutions Manual, Effective 1 June
2006 – 31 May 2007, 26th Edition
[22] Passenger Tariff Coordination Conferences
Manual, Composite, Dec 9, 2005 until Dec 31,
2006

[23] Passenger XML Working Group (XMLWG),
http://www.iata.org/workgroups/xmlwg.htm/
[24] SITA, http://www.sita.aero/default.htm/
[25] Szymczak M., Gawinecki M., Vukmirović
M., Paprzycki M., Ontological reusability in
state-of-the-art semantic languages, Proceedings
of the XVIII Summer School of PIPS (to appear)
[26] TypeX, http://www.typex.aero/YACS/
[27] Vukmirović M., Ganzha M., Paprzycki M.:
Developing a Model Agent-based Airline Ticket
Auctioning System. In: Proceedings for the
IIPWM Conference, LNAI
[28] Vukmirović M., Szymczak M., Ganzha M.,
Paprzycki M.: Utilizing Ontologies in an Agent-
based Airline Ticket Auctioning System. In:
Proceedings of the 28th ITI Conference, IEEE
Computer Society Press, Cavtat, Dubrovnik,
Croatia, 385-390
[29] Gawinecki M., Gordon M., Paweł
Kaczmarek, Paprzycki M. The Problem of
Agent-Client Communication on the Internet.
Scalable Computing: Practice and Experience ,
6(1), 2005, 111-123
[30] Paprzycki M., Kaczmarek P., Gawinecki M.,
Vetulani Z. (2005) Interakcja Użytkownik -
Agentowy System Wspomagania Podróży. In: J.
Kisienicki et. al. (eds.) Informatics and Modern
Management , PTI Press, Katowice, 2005, 189-
198
[31] Kaczmarek P. (AMU, 2005) Multimodal
Communication Between Users and Software
Agents
[32] Gawinecki M., Kruszyk M., Paprzycki M.
(2005) Ontology-based Stereotyping in a Travel
Support System. In: Proceedings of the XXI Fall
Meeting of Polish Information Processing
Society, PTI Press, 73-85
[33] Gawinecki M., Vetulani Z., Gordon M.,
Paprzycki M. (2005) Representing Users in a
Travel Support System. In: Proceedings of the
ISDA 2005 Conference, IEEE Computer Society
Press, Los Alamitos, CA, 393-398
[34] Fink J., Kobsa A., "User Modeling for
Personalized City Tours," Artificial Intelligence
Review, 18, 2002, 33–74
[35] Greer, J.McCalla, G. 1993. Student
modeling: the key to individualized knowledge
based instruction. NATO ASI Series F, 125.

