

 Int. J. Agent-Oriented Software Engineering, Vol. X, No. Y, xxxx 1

 Copyright © 200x Inderscience Enterprises Ltd.

Adaptability in an agent-based virtual organisation

G. Frąckowiak, M. Ganzha*, M. Gawinecki,
M. Paprzycki and M. Szymczak
Systems Research Institute Polish Academy of Sciences,
Warsaw, Poland
E-mail: Grzegorz.Frackowiak@ibspan.waw.pl
E-mail: Maria.Ganzha@ibspan.waw.pl
E-mail: Maciej.Gawinecki@ibspan.waw.pl
E-mail: Marcin.Paprzycki@ibspan.waw.pl
E-mail: Michal.Szymczak@ibspan.waw.pl
*Corresponding author

C. Bǎdicǎ
Software Engineering Department
University of Craiova
Bvd. Decebal 107, Craiova, RO-200440, Romania
E-mail: badica_costin@software.ucv.ro

Yo-Sub Han and Myon-Woong Park
Korea Institute of Science and Technology
Seoul, Korea
E-mail: emmous@kist.re.kr
E-mail: myon@kist.re.kr

Abstract: In this paper we consider the adaptability in an agent-based Virtual
Organisation (VO). After introducing the system and the need for adaptive
behaviours, human resource adaptability in particular, we discuss how the goal
of ‘agent adaptation’ can be implemented. Specifically, we propose how agent
behaviours can be added into/removed from/replaced in an agent skeleton, and,
in this way, agent functionality modified.

Keywords: agent systems; virtual organisation; electronic learning; e-learning;
adaptability.

Reference to this paper should be made as follows: Frąckowiak, G.,
Ganzha, M., Gawinecki, M., Paprzycki, M., Szymczak, M., Bǎdicǎ, C.,
Han, Y-S., Park, M-W. (xxxx) ‘Adaptability in an agent-based virtual
organisation’, Int. J. Agent-Oriented Software Engineering, Vol. X, No. Y,
pp.000–000.

Biographical notes: Grzegorz Frąckowiak is a Software Developer at a
leading Polish IT company and a researcher at the Polish Academy of Sciences
in Warsaw, Poland. His main interests are agent technologies, ontologies
and mobile technologies. Since 2007 he has participated in a Polish-Korean

 2 G. Frąckowiak et al.

project, the main purpose of which is to create an agent-based virtual
organisation. During this time he coauthored more than ten articles based on
the project results.

Maria Ganzha obtained her MS and her PhD in Applied Mathematics from
Moscow State University, Moscow, Russia in 1987 and 1991 respectively. Her
initial research interests were in the area of differential equations, solving
mixed wave equations in space with disappearing obstacles in particular.
Currently she works in the areas of software engineering, distributed computing
and agent systems, in particular. She has published more than 70 research
papers, is on the editorial boards of 5 journals and a book series, and was
invited to the programme committees of over 40 conferences.

Maciej Gawinecki received his MS degree from Adam Mickiewicz University
in Poznań, Poland, in 2005. Between 2006 and 2008, he worked at the Polish
Academy of Sciences as a Researcher in the E-CAP project. He is currently a
PhD student at the University of Modena and Reggio Emilia, Modena, Italy.
His research interests are in agent-based computing, ontologies, semantic
processing and internet computing.

Marcin Paprzycki (Senior Member of the IEEE and Senior Fulbright
Lecturer) received his MS degree from Adam Mickiewicz University in
Poznań, Poland in 1986 and his PhD from Southern Methodist University
in Dallas, Texas, USA in 1990. His initial research interests were in
high-performance computing and parallel computing, high-performance linear
algebra in particular. Over time they evolved towards distributed systems and
internet-based computing, in particular, agent systems. He has delivered more
than 100 invited presentations at conferences and seminars and has published
more than 250 research papers. He was also invited to the programme
committees of over 300 international conferences and is a member of the
editorial boards of 15 journals and a book series.

Michał Szymczak is researching semantic network solutions for personalised
information provisioning in the System Research Institute of the Polish
Academy of Sciences (SRI PAS). He graduated with an MS degree in
Computer Science from the Adam Mickiewicz University in Poznań, Poland
in 2006. Since then he has been involved in online services design and
project management in one of the largest polish IT companies, Comarch
S.A. Since 2007 he has been designing a semantic network core for the joint
Korean-Polish Adaptive and Personalized Information Provisioning project on
behalf of SRI PAS.

Costin Bǎdicǎ is a Professor at the Department of Software Engineering,
University of Craiova, Romania. From 2001 to 2002 he worked as a
Postdoctoral Researcher at the Department of Computer Science, King's
College London, UK, on the application of formal representation and
reasoning to business processes. He authored and coauthored about 90 articles
in conference proceedings, journals and book chapters, 1 monograph and 5
textbooks. His publications in the last five years are related to applications
of multi-agent systems, information extraction from the web and formal
modelling of business processes. Prof. Costin Bǎdicǎ is a co-initiator of the
Intelligent Distributed Computing (IDC) series of symposia. He is also serving
as a member of the editorial board of some international journals and he
has co-organised and participated in the programme committees of many
international conferences and workshops.

 Adaptability in an agent-based virtual organisation 3

Yo-Sub Han is a Senior Research Scientist at the Korea Institute of Science
and Technology. He received his PhD from the Hong Kong University
of Science and Technology in 2005. His research interests are intelligent
Human-Computer Interaction (HCI) and formal language theory.

Myon-Woong Park has been working on intelligent software for design
and manufacturing since his PhD programme at the University of Manchester,
UK, which was completed in 1987. His research interests have been
widened recently to more general and futuristic applications such as intelligent
office, e-learning and the smart home. The issue of the environment during
the decision-making process in design and manufacturing was also added
to his research area due to the positioning of the organisation he belongs
to. He currently serves as a Principal Research Scientist of the Intelligence
and Interaction Research Center and also a Professor for Human-Computer
Interaction (HCI) and Intelligent Robotics of Korea Institute of Science
and Technology.

1 Introduction

In some recent works (Ganzha et al., 2007a–b; Szymczak et al., 2007; 2008), we have
argued that adaptability is an important feature needed in a system supporting workers in
a Virtual Organisation (VO). To this effect we have claimed, first, that emergent software
technologies such as the software agents Wooldridge (2002) and the ontologies SW
(2008) should be the base around which the mapping between a real organisation and a
virtual one should be conceptualised. Thus we have proposed a system in which:

• the organisational structure, consisting of specific ‘roles’ and the interactions
between them, is represented by software agents and their interactions

• domain knowledge, resource profiles (representing organisational semantics) and
resource matching are approached utilising ontologies and semantic reasoning.

Second, we have showed that as the real organisation changes, not only its ontology
has to be adjusted, but also the ‘mechanisms of interaction’ within its agent-based
‘representation’. Obviously, this concerns not only changes in the the organisational
structure itself, but also the need to respond to the evolution of the projects carried by the
organisation, as well as the changing interests, needs and skills of employees. Thus, we
conjecture that adaptability within the organisation can be divided into:

1 system adaptability, obtained through:

• adaptation within the ‘structure’ of the agent system

• adapting the resource profiles

2 human resources adaptability, achieved through (e-)learning (training activities).

Thus far, first, we have outlined the processes involved when a task/project is introduced
into an organisation (discussed from the point of view of resource management)
(Szymczak et al., 2007); second, in Ganzha et al. (2007a), we approached the proposed
system from the point of view of the roles played by various entities identified in

 4 G. Frąckowiak et al.

Szymczak et al. (2007); while in Szymczak et al. (2008), we outlined how ontologies are
going to be used in the proposed system. This allowed us to conceptualise, in Ganzha
et al. (2007a), which roles can be played by:

• software agents alone

• by human(s)

• by human-agent team(s).

Finally, in Frąckowiak et al. (2008), we introduced our approach to the way that resource
closeness is to be established (laying the ground for semantic reasoning, which is to
be one of the core functionalities of the system). Additionally, in Ganzha et al. (2007b)
and Bǎdicǎ et al. (2008), we started discussions concerning the training activities within
a VO.

The aim of this paper is to discuss both forms of adaptability in the system. In this
context we first outline our general approach to agent adaptability. We follow this with a
brief case study of human resource adaptability provided through (e-)training. Finally, we
propose how agent adaptability can be actually implemented. It should be noted that, in
this paper, we extend and modify the material presented in Ganzha et al. (2007b), Bǎdicǎ
et al. (2008) and Ganzha et al. (2008).

2 System overview

Let us start by briefly summarising the main features of the system. Every employee has
an associated Personal Agent (PA). This agent has two main functions:

1 It is the interface between the User and the system.

2 It supports its owner in all the roles that (s)he is going to play within
the organisation.

In our system, we assume that work carried out within the organisation is project-driven
(however, the notion of the project is very broad and includes the installation of cable TV
as well as the design and implementation of an intranet-based information system for
a corporation). Therefore, it can be stated that all user activities are performed in order
to fulfil project requirements. After analysis of project-driven real-world organisations,
several roles were identified (see the Use Case diagram presented in Ganzha et al.
(2007a)). However, further analysis revealed that these roles can be further compacted
and represented in the form of an Agent Modelling Language (AML) Social Diagram, in
Figure 1.

 Adaptability in an agent-based virtual organisation 5

Figure 1 AML Social Model of an organisation (see online version for colours)

Here, we can see the general hierarchical management structure that can be applied to
typical real-world organisations (an ‘IT-related organisation’ in the example, but this is
easily generalised). The structure of the organisation consists of teams. Each team has at
least one manager, who can:

• manage a team

• supervise managers of lower levels (in this way a hierarchical structure of the
organisation is represented)

• cooperate with other managers on the same level (e.g., in the case of
team collaboration).

Since AML is a relatively new notation (see Cervenka et al. (2007) for more details), let
us note that a link with a white triangle at one end and a black triangle at the other means
sub-super relationships, while a link with bi-colour triangles represents peer-to-peer
relations. We also use the UML notation (AML is an extension of UML) and, thus,
a white rhomboidal link represents aggregation, and a dark rhomboidal link denotes
composition. The Technical Team is the team that is working on a project and is
a specific instance of a Team. Obviously, in the organisation other teams are likely to
exist – instances of the generic Team concept (e.g., workers of the Human Resource
Department). In Figure 1 the Technical Team is associated with a software-type project,
but the specific roles of its members (possibly subteams) can be easily generalised to any
project. In Figure 1 we also depict the Worker, who is a member of one of the teams.
Note that:

 6 G. Frąckowiak et al.

• the Organisation is an ‘environment’ for Managers, Teams and Workers

• the Organisation cannot exist without at least one Team

• it is possible for a Team to consist only of a Manager – without any Workers
(e.g., the case of self-employment).

In Figure 1 we have concentrated on the ‘managerial hierarchy’ of a real-world
organisation and depicted only two major roles: a Worker and a Manager. However,
when such an organisation is mapped into an agent-based virtual organisation, additional
roles can be identified. To this effect, in Szymczak et al. (2007), we analysed the
processes involved in a project (task) being introduced to the organisation. This allowed
us to identify additional roles related to resource management (rather than direct project
realisation). These roles involve software agents and have been summarised, in the form
of an AML Role Diagram, in Figure 2.

Figure 2 AML Role Diagram of the system (see online version for colours)

In this figure we conceptually move from the real-world organisation to the agent-based
virtual organisation. We can see the VOAgent, the basic agent skeleton, which is
transformed into either agents that are self-contained in their roles (they play these roles
autonomously, without human involvement), e.g., the Task Monitoring Agent, or agents
that support employees in fulfilling specific roles in the organisation. Transformations of
the VOAgent involve the Injector Agent and the Profile Manager Agent. Their actions are
described in more detail in Section 4. Here, let us state that they monitor the state of the
organisation and in appropriate moments provide selected agents with a list of ‘modules’
that they have to modify (add, replace or remove). These modules are understood as
sets of behaviours and knowledge that support a given functionality. If the VOAgent is
to support an Employee, then first it loads a set of core modules (the same for all
employees) as well as modules related to a given Employee (e.g., her Personal Profile),
and becomes a Personal Agent (PA), with the role of supporting its User. Next,

 Adaptability in an agent-based virtual organisation 7

depending on the specific role that the User is to play in the real organisation, the PA
loads additional modules that allow it to support its User in that particular role. Note that
only in the case of Worker and Project Manager supporting agents have we identified a
set of their beliefs related to the support of their Users in these roles. In the remaining
cases we observe that roles such as OPM, QoS or RPU typically involve worker-teams
and thus complex beliefs. Let us summarise the basic functionalities of the roles
identified in Figure 2:

• The Worker is a default role of any human resource (employee) in the organisation.

• The Project Manager (PM) is a role that is associated with a project proposal when
it is submitted to the organisation. Its main duties cover the formulation of project
requirements; if the project is accepted, the formulation of the project schedule; the
assignment of resources to project activities; supervising the project’s progress and
assuring its completion.

• The Organisation Provisioning Manager (OPM) is responsible for managing the
resources of the organisation (it is assumed to have access to complete information
about all resources in the organisation).

• The Resource Procurement Unit (RPU) represents an interface between the
organisation and the ‘outside world’. Its role is to seek and potentially deliver the
resources requested by the OPM.

• The Task Monitoring Agent (TMA) is responsible for monitoring an assigned
task according to its schedule and informing the PM about its completion or of
any problems.

• The Quality of Service (QoS) management unit is responsible for the quality control
of tasks completed by the workers.

Since each Employee is represented in the system by her/his PA, in its basic role, the PA
provides rudimentary support for his/her functioning in the organisation. Such support
involves (organisation-specific) core functionalities available to all workers within
the organisation; e.g., meeting scheduling, e-mail sorting and filtering, searching for
resources (such as training modules), knowing whom to call in case of an emergency.
In this way we follow the notion of the PA as conceptualised in Maes (1994). However,
the PA has to also be extendable to support specific roles that the User has to fulfil.
Note also that we assume that, in most cases, the role of the TMA can be fulfilled by a
software agent alone, while the remaining roles may require the involvement of a human
(whether this is the case or not depends on the operation mode of the specific VO)
and only in this context do they appear in Figure 2. In other words, it is possible that
a role of the RPU is to be fulfilled by an agent alone. In this case the RPU would
be ‘moved’ (within Figure 2) to the same status/location as the TMA. Overall, the PA
needs to be able to support the Employee in fulfilling the roles of Worker, PM, OPM,
RPU and QoS (or any other (sub) roles specific for a given organisation, which may be
specific instances of the basic roles identified in Figure 2). Note that we assume here that
the role of a Worker is a default extension of the core functionalities of the PA. It
involves, among others, ‘placing’ the Employee within the organisation, for instance, by
providing the PA with information about which specific team the User belongs to and

 8 G. Frąckowiak et al.

who is his/her direct supervisor. In this way, becoming a PM is not an extension of the
role of the Worker, but an extension of the functionalities of the PA that has to support
the Employee in that role.

3 Human-resource adaptability

Let us now turn our attention to adaptability in the system. We start by recognising
the fact that, as time passes, not only human resources change ‘on their own’, e.g., due
to participation in projects, their knowledge expands. It is also possible that their
capabilities have to be modified and/or additional knowledge served, e.g., to successfully
participate in a newly contracted project. Therefore let us look into human resource
adaptability and start with defining a training task.

3.1 Conceptualising training tasks

In our work, we understand training in the context of vocational or practical skills and
refer to it as workplace learning Training (Wikipedia) (2008). Clearly, in this case
training tasks can and should be closely related to organisational projects and approached
keeping in mind three issues:

1 timing, i.e., when training should be started (possibly also: when it should end)

2 goals, i.e., what should be the goals of each specific training activity

3 trainees, i.e., who should be enrolled in a given training task.

Furthermore, timing is crucial for distinguishing between reactive and proactive training
activities. To introduce the important features of both approaches, let us consider three
possible situations:

1 reactive approach: first case – project level. When a new project is introduced into
the organisation, the analysis process (see Ganzha et al. (2007b) for more details)
may indicate that, to be able to accept it, selected employees need to be enrolled into
training activities (carried out within the project bud get and time) to upgrade their
skills and remove the gap between the project requirements and the skills present in
the organisation.

Note that the training decision depends on the following factors:

• current level of competence of available resources

• the competence increment, which represents the gap between available and
required competencies for the job

• project constraints.

Furthermore, the introduction of the training tasks may also require an update of the
Project Schedule (or even schedules and resource assignments of other running
projects; but this scenario is out of the scope of this paper) to accommodate the new
training activities within the project timing and costs (Ganzha et al., 2007b).

 Adaptability in an agent-based virtual organisation 9

2 reactive approach: second case – individual or group level. While the project
is running, either the PA of an employee or the manager of that project (its PM)
may decide to enrol an employee or group of employees in ad hoc training
(possibly of small granularity) to acquire specialised knowledge increments to
solve specific problems.

3 proactive approach. This occurs when the ‘management’, analysing current market
conditions, the history of the interactions between the organisation and the external
environment, specific regulations, expected projects, etc., decides to enrol selected
employees in training task(s).

We will now elaborate these three cases in the framework of a software and
services company (however, they generalise naturally to other business areas). Let us
consider an example of a customer requesting creation of an intranet and a company
knowledge portal.

3.2 Reactive approach

Quite often (e.g., in the case of Information Technology (IT) projects), the decision to
start a project is taken even if there is no perfect match between the competencies of
the available human resources and the needs of the required tasks (the match has to be
just ‘good enough’; see Frąckowiak et al. (2008) for more details). As a result, human
resource adaptability issues may arise during the unfolding of the project (e.g., finding
tips on how to implement the Jade agent’s mobility between platforms). In this case, the
programmer informs her/his PA about the missing information that she/he needs in order
to complete her/his task. It is the job of the PA to provide its User with the needed
resource – either nonhuman (a manual, a tutorial, a book excerpt, etc.) or human (a
peer who possesses the needed information and is able to share it). Here, we assume that
every PA has the modules needed to perform such a search (within the resource space
that it has access to, as granted through appropriate privilege profile(s)) (Szymczak et al.,
2008). The search may involve contacting the OPM, as well as other PAs. The ability to
query other PAs is also restricted through the access profiles defining the organisational
structure (obviously, it is very unlikely that a programmer will have direct access to the
Chief Information Officer (CIO) of the company). This scenario is similar to well-known
cases of collaborative filtering (see, for instance, Montaner et al., 2003).

In the case of searching for nonhuman resources, we deal with agent knowledge
adaptability. Specifically, knowledge of the PA will be updated with information about
the location of the needed resource(s). Moreover, if the needed resource is a tutorial
(or some other form of e-training), we have to provide the User not only with the
information that an (Advanced Jade Mobility) e-learning module is available, but also
with help to interface with it. This function is obtained through the adaptability of the
PA. Specifically, the training material is associated with the interface module (provided
by the system or, more likely, by the training material supplier). As a result the Injector
Agent (see Figure 2, above, and the detailed discussion in Section 4) will provide the
PA with the module supporting the needed functionality. Furthermore, the completion
of training results in an update of the Human Resource Profile of the User and

 10 G. Frąckowiak et al.

the removal (from the PA) of the no longer needed interface to the training module. This
latter operation is needed to keep the PA clean of spurious modules and thus minimise
resource utilisation.

In the case when the same help request appears from different programmers (note that
each such request is stored in the project log), the PM (that analyses the project log)
might consider ordering an ad hoc training on the topic, involving a selected group within
the team (or the whole team). Here, a set of issues related to group training needs to be
considered (e.g., dealing with varying learning styles), but they are outside of the scope
of this paper. The interested reader may consult Ganzha et al. (2007b) and Bǎdicǎ et al.
(2008) and the references presented there for more details.

A similar situation takes place when the QoS module reports that a task has not
been carried out correctly by one or more team members (all reports from the QoS are
also collected in the project log). Analysing the project log, the PM may decide that a
just-in-time training is needed for one or more team members to improve their skills and
reduce the number of incorrectly completed tasks.

Once more, group training involves providing selected PAs with information
about the location of training materials and the appropriate interface module(s), as
well as updating User profiles and the removal of any unnecessary module(s) upon
training completion.

3.3 Proactive approach

Let us now consider the situation where a new project request is received and, for various
reasons (which might include, among others, that required resources are missing and/or
the requested expertise and competences are unavailable), it is determined that it should
be rejected. Moreover, assuming that a situation like this is repeated, the management is
faced with deciding whether to:

1 continuously reject similar project proposals (while there is a clear market interest)

2 hire new staff

3 proactively involve the available human resources in training tasks.

While situations (2) and (3) are instances of human resource adaptation at the
organisational level, clearly only option (3) is directly within the scope of this paper.
It should also be noted that other scenarios pertinent to the proactive approach include
the following:

• the organisational management expects a certain set of projects to materialise within
short- or mid-range perspective

• an expansion or a change in direction of the organisation

• more generally, long-term and semi-long-term goals and strategies of
the organisation

• a merger and/or acquisition, which will require synchronisation between the skills of
workers from two (or more) different companies.

 Adaptability in an agent-based virtual organisation 11

Figure 3 Interactions of the CMU and the TMU with other units in the system (see online version
for colours)

 12 G. Frąckowiak et al.

Upon further reflection, we see that while the reactive approach involves mainly
decisions at the project level, the proactive approach involves mostly decisions at the
higher organisational level. Separately, we observe that the granularity of training tasks
(and consequently costs, time and effort) in the reactive approach should be expected to
be substantially smaller than in the case of the proactive approach. For example,
proactive training can include such resource-consuming tasks as continuing professional
education, initial training for new employees (e.g., ‘school to work transition’), coaching
and motivational seminars, and group/team-building activities. Note that the PA, which
has access to the User calendar, allows the scheduling of proactive training in such a way
that it will not collide with other professional activities. In this way we can observe how
the PA can actually assist its User through intelligent training scheduling.

3.4 Competence and Training Management Units as training facilitators

Based on the material presented thus far, as well as on ideas found in related works
(Schmidt and Kunzmann, 2006; Tzelepis and Stephanides, 2006), two specialised units
are to be added to the proposed system (note that, following Szymczak et al., 2007), we
use the term ‘unit’ for each entity in the system; and associate specific roles with each
one of them):

1 Competence Management Unit (CMU) – responsible for the management
of competencies

2 Training Management Unit (TMU) – responsible for the management of
training activities.

In what follows, we outline the main functionalities of these units and their interactions
with other units existing in the system, as captured in Figure 3.

3.5 Competence Management Unit

The CMU is responsible for the management of competencies within the organisation.
The representation of competencies will utilise the competence ontology described in
Biesalski and Abecker (2005), HR-XML Consortium (2008) and Schmidt and Kunzmann
(2006), and the associated reasoning mechanisms proposed in Mochol et al. (2007).

The functionalities of the CMU comprise:

• the management of individual competencies of all human resources in the
organisation; this requires the ability to represent, record and update competencies at
an individual level

• the provisioning of a global view of competencies available at the organisational
level; this facility is required, for example, to be able to asses if the organisation has
competencies ‘good enough’ to accept a given project

• qualitative and quantitative reasoning about matchings between available and
required competencies; this functionality is needed to help decide whether to hire
new staff (Bizer et al., 2005; Mochol et al., 2007), assign human resources to tasks
or enrol human resources in training.

 Adaptability in an agent-based virtual organisation 13

Note that the PM and the OPM have to interact with the CMU during the process of
fixing the problem of missing resources. Furthermore, the CMU will utilise information
from the QoS unit, which assesses the work done by individuals and teams (each time
a task is completed, the QoS checks the result). This being the case, the QoS can provide
the CMU with information which tasks have been successfully or unsuccessfully
completed. This information, in turn, can be used to assess which individuals or
teams need extra training (i.e., training needs can be assessed directly on the basis of
on-the-job performance).

3.6 Training Management Unit

The introduction of the TMU is motivated by the need for a specialised unit that is
capable of formulating training goals for employees engaged in training activities, based
on the contextual conditions that resulted in training being requested at various levels
within the organisation: individual, group, project and organisation.

Following Tzelepis and Stephanides (2006), the main functionalities of the TMU are
defined as follows:

a the identification of training goals by analysing individual, project and business
needs, available competencies and contextual conditions when the training occurs,
i.e., reactive (both cases) or proactive approach

b the selection of learning objects and a learning strategy (this process also includes
injecting the PA(s) of trained personnel with interface modules and thus involves the
IA and its functionalities), and defining initial training data

c monitoring the training process and management of learning outcomes,
which involves updating Human Resource Profiles and removing unnecessary
interface modules.

Note that function (a) requires interaction with the unit responsible for deciding the actual
assignment of the training task (responsibility of the PM or other higher-level authority)
and with the CMU to evaluate the gap between the existing and required knowledge.
Function (b) requires interaction with the RPU in case a suitable learning object could not
be located at the level of the TMU. Function (c) involves the PA(s) of trained personnel.

Obviously, the work of the TMU involves interaction with the actual training units
(the structure and functioning of which are out of the scope of this paper). However, we
can specify that the role of the TMU is to provide input specifying:

• who needs training

• which area needs to be trained

• what training method should be applied

• when training should take place.

The output of the training unit is the certification of the completed training and an
assessment of trainee(s), which will be sent to the CMU, and to appropriate PAs to update
profile(s) of trainee(s).

 14 G. Frąckowiak et al.

4 Configuring generic agents

Outlining the processes involved in human resource adaptability showed an important
role to be played by agent adaptability when new modules have to be added to, or
removed from, the PA. Let us thus direct our attention to this aspect of adaptability in
our system.

4.1 Overview of agent adaptability

We start by presenting the use case diagram of the processes involved in (re)configuring
agents (see Figure 4, which should be looked at together with Figure 2). Before
we proceed, let us note that our approach follows the ideas put forward by Tu
and collaborators in the project DynamiCS (Tu et al., 1999). For instance, Tu et al. (1999)
discussed how e-commerce agents that are to participate in various forms of negotiations
can be dynamically assembled from separate modules (communication module, protocol
module and strategy module). While the technical details of our approach differ,
we directly follow the same general approach of dynamically assembling agents and
adapting their behaviour by reconfiguring the set of modules that a given agent
consists of.

Figure 4 Functionality of the Injector Agent

In Figure 4 we can see the Initialisation process through which the generic (skeleton)
VOAgent is created. In this way any agent in the organisation is instantiated (a future PA
supporting an Employee, or an autonomous agent, e.g., a TMA) as a skeleton which has
no ‘knowledge’ and/or behaviours associated with it. In the case of Jade agents (Jade,

 Adaptability in an agent-based virtual organisation 15

2008), which is our platform of choice, this can be viewed as the simplest instantiation of
the jade.core. Agent class. The VOAgent is extended with components and behaviours
supporting its interactions with the Injector Agent. These interactions include adding
modules, updating modules, removing modules and the agent’s knowledge management.
The set of behaviours supporting this functionality is called the Injection Interface.

This skeleton agent is then ‘operated on’ by the Injector Agent, which has
access to Module Factories and a Profile Base. The Module Factories perform the
following functions: First, they create module(s) that facilitate the core functions of
all (User-supporting) agents, as well as their extended functionalities. For instance, the
calendar-managing module(s) is(are) most likely to be associated with all PAs (all
workers can be expected to perform certain functions within certain deadlines), while
modules supporting intelligent internet search will not be necessary for janitors and
waiters in a restaurant (who do not have any reason to search for data on the internet) and
thus will be provided only to selected employees in support of their role as Worker.
Second, Module Factories create modules related to specific roles supported by the agent
(e.g., in the case of the role of a QoS team member, modules that allow the User who is
supported by his/her PA to correctly apply testing procedures to a specific task). Finally,
they instantiate the modules necessary for the functioning of autonomous agents (e.g.,
the TMA).

The Profile Base contains information about all the profiles (associated with all the
roles identified within the organisation) and is used to appropriately select modules to
be added to the VOAgent; e.g., for a PA a complete list of core modules and personal
profile(s) that have to be combined to assemble such an agent for a given User.

We can also observe that the Injector Agent takes part not only in agent initialisation,
but also in agent reconfiguration, while reconfiguration (agent functionality adaptation)
can take three forms:

1 adding a new module

2 removing a module

3 updating (replacing) a module.

Here, let us note that knowledge can be passed to the agent not only while loading
modules. In the case of changing some data in the Data Model (see, below), with this
data being used by some modules, it is possible to update only the knowledge of an agent.
It is a special form of agent reconfiguration.

As an example, imagine an Employee who is a Researcher (which is a specific
instantiation of the role of Worker). His PA will have to be loaded with modules that
allow it to support him in fulfilling this role; thus let us call the resulting agent a
Researcher Agent. The organisational profile of the Employee contains information about
unit(s) in the organisation to which he belongs (e.g., the Nanotechnology Unit, see
Szymczak et al. (2008)). Knowledge about the modules required for an agent supporting
a Researcher is stored in the Profile Base and is extracted by the Injector Agent.
Therefore, when a new PA is assembled from a VOAgent, Researcher Modules (e.g.,
modules that interface with Grant Announcement and Duty Trip Support functionalities;
Frąckowiak et al., 2008) will be injected into the ‘clean’ PA, thus extending its role.
However, when the Employee moves from a different department, modules will be added,
removed and/or replaced within an existing PA (a case of agent adaptation). For instance,

The journal uses
lowercase “i” for
“internet”. Thus we
have retained the
current appearance.

 16 G. Frąckowiak et al.

if the Researcher works as the Division Head, it would have access to the personal data
of other Researchers in the Division. Such access should no longer be allowed to the
Researcher who is not a Division Head, and thus the modules supporting it should
be removed from his PA. To envision an instance of a module, consider the fact that one
of the tasks of a Division Director is to approve the Duty Trips of Division Employees.
Therefore, one of the Division Director Modules allows it to perform this task. In such
a module, information is ‘stored’ as a set of agent behaviours. Note that this example
assumes that an infrastructure for data/profile change notification is utilised in the
system. However, we do not intend to discuss this issue, as it is out of the scope of
this contribution.

Since this description has been presented at a rather high level of abstraction, let us
now look in more detail at how these processes can be realised in practice.

4.2 Details of agent adaptability

To discuss how agent creation and adaptation is achieved, we have conceptualised
it in the form of a component diagram in Figure 5. This diagram combines the
generic framework and system artefacts which are specific to the organisation in which
the system is run. In the context of this paper, we are particularly interested in
what is happening within the dashed-line rectangle, which delineates the core of the
proposed approach.

Figure 5 Component diagram (see online version for colours)

 Adaptability in an agent-based virtual organisation 17

Let us start our description by noting that the OPM is actually an umbrella role that is
fulfilled by a number of entities (some of them by agents alone, while some involve
Employee(s) supported by their PA(s)). In Ganzha et al. (2007a), we argued that
travel-recommending functions belong to the OPM. Similarly, searching the organisation
for a C++ coder available between 18 January and 3 November 2009 is also its
role (fulfilled by a different (sub)entity than that involved in travel support; see also
Szymczak et al., 2007). Here, within the OPM, we distinguish two, earlier mentioned,
entities directly related to the support of agent adaptability. First, the Injector Agent (IA),
which is responsible for assembling an agent. The VOAgent is modified (through
the Injection Interface) by the IA in the case of agent initialisation. This modification
can result in the creation of a PA or an autonomous agent (e.g., a QoS agent in an
organisation in which the QoS role is fulfilled by an agent alone; see also Szymczak
et al., 2008). In Figure 5 the VOAgent is represented after it has been transformed into the
PA, but the same process applies to autonomous agents. The PA is extended (with
functionalities selected according to the specific profile) to allow it to support its User in
fulfilling a given role. Together with the IA, we also see the Profile Monitor Agent
(PMA). The role of the PMA is to monitor changes in the data model and to inform the
IA that a particular profile was updated (this is pertinent to both User-supporting and
autonomous agents). The IA communicates also with the Module Provider Interface,
which associates modules with module factories (stored in Module Factories) and
creates instances of modules for the requested resource (e.g., the Employee fulfilling a
given role).

In the figure, we also represent the Generic Data Model and the Generic Query
Model, which are ontologies that define universal concepts for any organisation
in which we might wish to implement the proposed system. These concepts include
human resources, nonhuman resources, profiles, profile access privileges, organisation
units, module configurations, tasks, matching types and matching relations (see also
Szymczak et al., 2008). Both these generic ontologies can be reused and specified by
organisation-specific data and query models. They are also used to generate classes that
implement the behaviours of specific modules.

Let us stress that we view all entities and their relations represented within the dashed
rectangle as a generic framework that will materialise in most organisations.

Considering the organisation-specific elements of the system (elements that will
differ between organisations and are represented outside of the generic framework),
crucial roles are played by the Organisation-Specific Data Model and the Organisation
Specific Query Model. Both these ontologies reuse the Generic Ontology, which is a part
of the framework, in order to represent data structures and matching scenarios which
are pertinent to the organisation. Based on the organisation-specific ontologies, their
instances can be created, stored and queried through the Semantic Data Storage, which is
an infrastructure for manipulating and storing semantically demarcated data. For the time
being, to support these functionalities, we intend to utilise the Jena (2008) persistence
layer. However, we are well aware of the fact that currently existing semantic data
storage and querying software is far from being efficient. As a result, in the future we
may select a different persistence technology.

 18 G. Frąckowiak et al.

Finally, Special Function-related ‘boxes’ represent specific applications that the
system is to deal with. Examples of such functions would be the Duty Trip Support (see
Szymczak et al., 2008) and the Grant Announcement (see, Frąckowiak et al., 2008). Both
these functions involve interactions between the OPM and the PA.

Modules, when approached from the low end of the software stack, are Java objects,
which are composed of a map of objects which represent the knowledge part of modules,
and of agent behaviour descriptions that contain the info about behaviours that support a
module-specific communication model (or models) and functionality (functionalities).
There is one universal module class. The instance of this class should be seen more like a
description of things that should be loaded in order to support the agent in a specific role.
The object of a module class is created by a factory, which is another dedicated-module
class. The instance of this module factory class is connected with the organisation data
model. As we mentioned before, all factories are stored in the Module Factories. Their
interface should expose the method which creates a module instance for every user.

Finally, as described above, each module instance might be composed of the list of
different knowledge objects and behaviour descriptions. Currently, we assume that each
module will be an implementation of the universal module class. The object of this class
can be easily loaded by an agent. As a result the agent will load all behaviours that allow
it to become an autonomous agent, or a PA, or to support the user in a specific role.

Module functionalities may require accessing organisation-specific data which is
stored in the Organisation Semantic Storage. Hence, the API for accessing semantically
demarcated data is required. Let us note that methods of accessing data are not the
key issue here. For instance, this can be done in various ways through an appropriately
created Data Source Gateway Agent. Currently, we assume that any system unit
responsible for connecting with the Semantic Storage will be utilising Jastor-based
(2008) Data Access Objects designed to be the system API for accessing data in the
Semantic Storage. Therefore, we can focus our attention on the infrastructure which
allows agents to communicate ‘about’ organisation-specific data. To this effect we plan
to utilise Transport Objects as a medium for communicating data (including, but not
limited to, requesting and returning data). Transport Objects (TOs) are Plain Old Java
Objects (POJO, 2008) which represent data stored in the Semantic Storage and can be
passed in ACL messages between system agents. Developers who will prepare agent
modules can use such Transport Object classes as an API.

To briefly illustrate processes that are based on the relations depicted in Figure 5,
let us assume that there is a Seller role in a given organisation. This role involves two
behaviours. The first behaviour is responsible for sending offers to customers, while the
second listens to their responses and drafts the initial proposals. Both behaviours use a
common set of data, which is a list of customers. Now, imagine that we want to create an
agent playing the role of a Seller Agent. Our task is to initialise the VOAgent, add core
modules to it to turn it into the PA and then inject it with the Seller Module(s) (this could
be a single module or a collection of modules – some of which are shared among multiple
roles). In order to inject a module, we have to prepare it first. The IA obtains the name of
the module factory to provide the VOAgent with modules that can extend it to become a
PA. When the PA is created, the Injector Agent accesses the Profile Library and obtains
information about the role(s) of a given Employee which is(are) to be supported by its
PA, as well as a list of modules that have to be associated with each of its roles. Next it
contacts the Module Provider Interface and obtains a list of classes implementing
particular module factories. These factories allow the IA to create module instances for

 Adaptability in an agent-based virtual organisation 19

specific roles. In our example the module factory will set the name and the version of the
module object, the list of Employee clients (retrieved from the Data Model specifically
for the given Employee) and also add descriptions of behaviours (sending offers and
collecting answers) to the module object. Descriptions of behaviours contain information
about behaviours’ classes and about additional (third party) libraries which should be
added to the agent classpath. These Java objects can then be injected by the PA, turning it
into a Seller Agent.

Now, let us use a different example, and observe what happens when the Worker of
an Implementation Team (see Figure 1) is promoted to become a Project Manager and
her PA has to be modified to support her in the new role. As a result of the promotion,
the organisation profile of the Employee (the Human Resource Profile; see Szymczak
et al., 2008) is adjusted. This information becomes known to the Profile Monitoring
Agent, which in turn informs the IA. The IA accesses the Profile Library and obtains
information on the collection of modules that should constitute the PA that can support
the User in the role of Project Manager. Next, it contacts the Module Provider Interface
to obtain information which classes the factory will create modules that need to be
injected/replaced in the PA (this list may also include classes that have to be removed).
On the basis of the obtained list, the IA modifies the PA. Observe that, taking into
account our current assessment of the capabilities of the Jade platform, we tend to believe
that the simplest approach to implement this process would be to instantiate a completely
new PA, with all the necessary modules injected and then to remove the old PA.
However, note that, in general, replacing modules in a ‘working system’ is a rather
complicated issue as it involves, among others, dealing with behaviours that are ‘in
progress’ and the fact that exchanging even a single module is likely to concern a number
of agents spread across the system. Therefore, we will investigate this issue further.

Thus far we have concentrated our attention on the situation when the change
concerns a single PA that has to be adapted to support its User in a new role. A different
scenario takes place when change occurs within the organisation. For instance, let
us assume that a new post of a VP for Institutional Advancement is created changing
a number of interdependencies between individuals and organisational units. These
changes materialise in the ontology of the organisation and are propagated across
appropriate classes, behaviours, modules and profiles. The PMA catches information
about these changes and informs the IA. As a result, the IA has to perform all the
necessary updates (of all affected agents). Note that, as indicated above, the OPM (and
thus the PMA) has knowledge of all resources in the organisation. Thus it has access
to the profiles of all agents (including all PAs). This being the case, it is capable of
providing the IA with a complete list of agents that need to be modified, and even a list
of specific modifications. However, this approach puts a heavy burden on the OPM.
The other possibility of adapting multiple profiles is that the PMA prepares a list of
affected modules and the IA broadcasts this to agents in the VO and asks these agents that
require change(s) to identify themselves. Here the burden is put on the communication
infrastructure. We will investigate further the efficiency of various possible means of
implementing multi-agent adaptability.

 20 G. Frąckowiak et al.

4.3 Example of agent adaptability

Let us now consider an extended example that will allow us to see how the proposed
approach will work in somewhat more realistic settings. Let us assume that the system
is implemented in an East Asia Science Institute and an employee of that institute,
Dr. Jackie Sang, got promoted from Researcher to Division Head Officer. As suggested
above, as a result, not only does his profile change, but also the range of duties and
competences. Obviously, the initial profile change involves some human action (someone
issues a document specifying that Dr. Sang got promoted and this document is then
sent to the Human Resources of the institute to be processed). However, we assume that
as soon as the decision to promote Dr. Sang is inserted into the computer system
of the institute, the remaining processes should be completed autonomously by the
infrastructure we are developing. It should be obvious that the PA of Dr. Sang has to be
updated to support his actions as the Head of the Division. For example, such update may
involve adding capabilities to preview, and accept or reject the Duty Trip applications of
division employees (see Ganzha et al., 2007a).

Obviously, regardless of his current position in the institute, Dr. Sang has to be
represented within the system as a human resource (Szymczak et al., 2008). In Figure 6,
we show a snippet of his organisational profile, which specifies his position in
the organisation.

As we can see, Dr. Jackie Sang is a member of the Food Sciences Division and is
one of the Division Head Officers in the institute. Since he is a Division Head Officer
and a member of the Food Sciences Division, it follows that he is a Head of that
Division. Here, obviously we implicitly assume a certain model of the organisation,
which is explicitly elaborated in its ontology. Knowing Dr. Sang’s new role in the
organisation (Division Head), the IA can infuse modules which allow the PA of Dr. Sang
to perform certain actions required by his new role. The listing in Figure 6 presents
a sample of a configuration of an organisation unit module assignment and module
factories class localisation.

Specifically, we can learn here that all the PAs of the members of the Food
Sciences Division organisation unit are infused with modules identified as :AM_Apply-
ForDutyTrip, :AM_SubmitDTReport and :AM_ViewInterestingGAs. Analogically, PAs
of Users who play the role of Head Officers are infused with the following modules:
:AM_ManageDTApplications, :AM_ValidateDTReports and :AM_FilterDTReports.
Also, in the sample of the configuration, the following OPM modules are
listed: :AM_GA_Support and :AM_DT_Support. Modules :AM_ApplyForDutyTrip,
:AM_SubmitDTReport, :AM_ManageDTApplications, :AM_ValidateDTReports and
:AM_FilterDTReports are all examples of the DT PA Module in the component diagram,
while the :AM_ViewInterestingGAs module is an example of the GA PA Module. Finally,
the :AM_DT_Support and the :AM_GA_Support are examples of the DT OPM Module
and the GA OPM Module.

The style followed
is to lowercase the
initial letter if it is
not a proper noun.
Thus we have
retained lowercase
“i” for “institute”.

 Adaptability in an agent-based virtual organisation 21

Figure 6 Sample human resource profile

Again, these modules are instances of an organisation-specific Java class composed
of properties and behaviours which support certain functionalities. For instance, the
:AM_ApplyForDutyTrip module includes behaviours which enable one to post a Duty
Trip application. Naturally, it may also cache previous Duty Trip Reports, some
user-specific configuration of this module or some draft applications. On the other hand,
the :AM_ManageDTApplications module consists of behaviours which allow one to
query the semantic storage for all open Duty Trip Applications and allow Division Head
Officers to reject or accept duty trip applications. The :AM_SubmitDTReport module is
designed to provide Division Workers with a functionality which enables them to edit,
submit and modify reports of their duty trips. Division Head Officers are able to browse

 22 G. Frąckowiak et al.

and validate these reports utilising implementations of the :AM_FilterDTReport and the
:AM_ValidateDTReport modules. For a system which requires employees to be provided
with recent information about interesting grant opportunities (see Frąckowiak et al.,
2008), the module identified as :AM_ViewInterestingGAs was designed. It allows
employees to be informed about grant announcements which may be of interest to
them. The localisation of each module factory is described in the module definition.
For instance, the factory class of the :AM_ApplyForDutyTrip module is named
tripstorg.ist.apip.modules.dt.Application.

After the organisation profile of Dr. Jackie Sang (his profile as a human resource) is
updated due to the fact that he was promoted, the Profile Monitor Agent, which is aware
of all changes that take place in the data model, informs the Injector Agent that that
particular profile was updated, and the modules of Dr. Sang’s PA have to be updated with
modules specific to the IST_DivisionHeadOfficers organisation unit.

An important functionality of the IA is to recognise modules which are necessary for
supporting particular roles (of members of a particular organisation unit) and locating
these module factories in Java libraries. In our example, after all necessary modules
are located, a list of appropriate Java class names is retrieved by the IA. Next, it infuses
the appropriate PA with the modules created with the use of module factories. After
the update procedure (initialised by inserting information into Dr. Sang’s profile)
is completed, his PA provides not only Duty Trip Support functions allowed for
Division Researchers, which are realised by modules :AM_ApplyForDutyTrip and
:AM_SubmitDTReport, and grant announcement functions for Division Researchers
delivered by the :AM_ViewInterestingGAs module. In addition, his PA is now capable of
performing duty trip support actions that are reserved for Division Head Officers, which
are realised by the modules :AM_ManageDTApplications and :AM_FilterDTReports.
Managing access rights to Duty Trip Applications and Duty Trip Reports (also resources
with their own profiles; see Szymczak et al., 2008) will be realised through their
profile privileges.

As mentioned before, change in profile may result in the removal of some
unnecessary modules. Imagine the situation in which, before being promoted, Dr. Sang
was also a member of the Crops_Research_Division. After promotion, his profile has
changed and he is no longer working in the Crops_ Research_ Division. That means that
his PA should no longer include modules required by the Crops_Research_ Division. The
IA informs Dr. Sang’s PA that he has to remove modules which ‘belong to’ members of
Crops_Research_Division. By removing all behaviours connected with given module, the
agent stops to support User in a given role.

5 Concluding remarks

In this paper we considered the adaptability in an agent-based virtual organisation.
Specifically, we concentrated our attention on adapting software agents to the changing
structure of the organisation, to the changes in projects carried out by the organisation
and to address human resource adaptation. We addressed these issues both on the formal
(AML and UML diagrams) and practical levels (specifying how the proposed approach is
actually going to be implemented). Finally, we have specified a number of areas that need

 Adaptability in an agent-based virtual organisation 23

to be investigated to obtain an efficient implementation of the proposed framework. We
will report our progress in addressing these questions and implementing the proposed
framework in subsequent papers.

Acknowledgement

Work of G. Frąckowiak, M. Ganzha, M. Gawinecki, M. Paprzycki, M. Szymczak,
Y-S. Han and M-W. Park has been supported in part by the KIST-SRI PAS ‘Agent
Technology for Adaptive Information Provisioning’ grant.

References

Bǎdicǎ, C., Popescu, E., Frąckowiak, G., Ganzha, M., Paprzycki, M., Szymczak, M. and
Park, M-W. (2008) ‘On human resource adaptability in an agent-based virtual organization’,
in N.T. Nguyen and R. Katarzyniak (Eds.) New Challenges in Applied Intelligence
Technologies, Studies in Computational Intelligence, Springer, Vol. 134, pp.111–120.

Biesalski, E. and Abecker, A. (2005) ‘Human Resource Management with ontologies’,
Wissensmanagement. Professional Knowledge Management, Third Biennial Conference,
Kaiserslautern, Germany, Revised selected papers, LNAI 3782, Springer, pp.499–507.

Bizer, C., Heese, R., Mochol, M., Oldakowski, R., Tolksdorf, R. and Eckstein, R. (2005) ‘The
impact of semantic web technologies on job recruitment processes’, Proc. International
Conference Wirtschaftsinformatik, Bamberg, Germany.

Cervenka, R. and Trencansky, I. (2007) AML: The Agent Modelling Language, Birkhäuser.

Frąckowiak, G., Ganzha, M., Gawinecki, M., Paprzycki, M., Szymczak, M., Myon-Woong, P. and
Yo-Sub, H. (2008) ‘On resource profiling and matching in an agent-based virtual
organization’, Proceedings of the 2008 ICAISC Conference, Springer.

Ganzha, M., Gawinecki, M., Szymczak, M., Frąckowiak, G. and Paprzycki, M. (2008) ‘Generic
framework for agent adaptability and utilization in a virtual organization – preliminary
considerations’, Proc. of the 2008 WEBIST Conference.

Ganzha, M., Paprzycki, M., Gawinecki, M., Szymczak, M., Frąckowiak, G., Bǎdicǎ, C.,
Popescu, E. and Park, M-W. (2007a) ‘Adaptive information provisioning in an agent-based
virtual organization – preliminary considerations’, Proceedings of the SYNASC’07
Conference, IEEE CS Press, pp.235–241.

Ganzha, M., Paprzycki, M., Popescu, E., Bǎdicǎ, C. and Gawinecki, M. (2007b) ‘Agent-based
adaptive learning provisioning in a virtual organization’, Advances in Intelligent Web
Mastering. Proc.AWIC’2007, Advances in Soft Computing, Fontainebleu, France: Springer,
Vol. 43, pp.25–40.

HR-XML Consortium (2008) http://www.hr-xml.org/.

Jastor – Typesafe (2008) ‘Ontology driven RDF access from java’, http://jastor.sourceforge.net/.

Java Agent DEvelopment Framework (Jade) (2008) http://jade.tilab.com/.

Jena (2008) Jena Semantic Web Framework, http://jena.sourceforge.net/.

Maes, P. (1994) ‘Agents that reduce work and information overload’, Commun. ACM, ACM Press,
Vol. 37, No. 7, pp.30–40.

Mochol, M., Wache, H. and Nixon, L. (2007) ‘Improving the accuracy of job search with semantic
techniques’, Business Information Systems, LNCS 4439, Springer, pp.301–313.

Montaner, M., López, V.P. and de la Rosa, J.L. (2003) ‘A taxonomy of recommender agents on the
internet’, Artif. Intell. Rev., Vol. 19, No. 4, pp.285–330.

Page, I., Jacob, T. and Chern, E. (1993) ‘Fast algorithms for distributed resource allocation’, IEEE
Transactions on Parallel and Distributed Systems, February, Vol. 4, No. 2, pp.188–197.

 24 G. Frąckowiak et al.

Plain Old Java Object (POJO) (2008) http://www.martinfowler.com/bliki/POJO.html.

Schmidt, A. and Kunzmann, C. (2006) ‘Towards a human resource development ontology for
combining competence management and technology-enhanced workplace learning’, OTM
Workshops (2). On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops,
LNCS 4278, Springer, pp.1078–1087.

Semantic Web (SW) (2008) http://www.w3.org/2001/sw/.

Szymczak, M., Frąckowiak, G., Ganzha, M., Gawinecki, M., Paprzycki, M. and Park, M.
(2007) ‘Resource management in an agent-based virtual organization – introducing a task into
the system’, Proceedings of the MaSeB Workshop, Los Alamitos, CA: IEEE CS Press,
pp.458–462.

Szymczak, M., Frąckowiak, G., Gawinecki, M., Ganzha, M., Paprzycki, M., Park, M-W.,
Han, Y-S. and Sohn, Y-T. (2008) ‘Adaptive information provisioning in an agent-based
virtual organization – ontologies in the system’, in N.T. Nguyen (Ed.) Proceedings of the
AMSTA-KES Conference, LNAI 4953, Heidelberg, Germany: Springer, pp.271–280.

Training (Wikipedia) (2008) http://en.wikipedia.org/wiki/Training.

Tu, M.T., Griffel, F., Merz, M. and Lamersdorf, W. (1999) ‘A plug-in architecture providing
dynamic negotiation capabilities for mobile agents’, in K. Rothermel and F. Hohl (Eds.)
Proceedings MA’98: Mobile Agents, LNCS 1477, Springer-Verlag, pp.222–236.

Tzelepis, S. and Stephanides, G. (2006) ‘A conceptual model for developing a personalized
adaptive elearning system in a business environment’, Current Developments in
Technology-Assisted Education, Formatex Publishing House, Vol. 3, pp.2003–2006.

Wooldridge, M. (2002) An Introduction to MultiAgent Systems, John Wiley & Sons.

