
Utilizing Semantic Web and Software Agents in a Travel Support System

Maria Ganzha
Elbląg University of Humanities and Economy, Elbląg, Poland

Maciej Gawinecki
Adam Mickiewicz University, Poznań, Poland

Marcin Paprzycki
SWPS University, Warsaw, Poland

Rafał Gąsiorowski, Szymon Pisarek, Wawrzyniec Hyska
Warsaw University of Technology, Warsaw, Poland

Introduction

Let us consider a business traveler who is about to leave Tulsa, Oklahoma for San Diego,
California. Let us say that she went there many times in the past, but this trip is rather
unexpected and she does not have time to arrange travel details. She just got a ticket from
her boss’ secretary and has 45 minutes to pack and catch a taxi to leave for the airport.
Obviously, she could make all local arrangements after arrival, but this could mean that
her personal preferences could not be observed and also that she would have to spend
time at the airport in a rather unpleasant area where the courtesy phones are located or to
spend long time talking on the cell phone (and listen to call-waiting music) to find a place
to stay etc. Yes, one could assume that she could ask her secretary to make arrangements,
but this would assume that she does have a secretary (which is now a rarity in the cost-
cutting corporate world) and that her secretary knows her personal preferences well.

Let us now consider another scenario. Here, a father is planning a family vacation. He is
not sure where they would like to go, so he spends countless hours on the Web, going
over zillions of pages, out of which only few match his preferences. Let us note here, that
while he will simply skip pages about beauty of Ozark Mountains – as his family does
not like mountains, but he will “have to” go over a number of pages describing beach
resorts. While doing this he is going to find out that many of possible locations are too
expensive, while others do not have kitchenettes that they like to have – as their daughter
has special dietary requirements and they prefer to cook most of their vacation meals
themselves.

What do we learn from these two scenarios? In the first case, we have a traveler who,
because of her unexpected travel, cannot engage in e-business as she does not have
enough time to do it, while she could definitely utilize it. Yes, when in the near future
airplanes will have Internet access, she will possibly be able to make proper arrangement
while traveling, but this is likely going to be an expensive proposition. Furthermore, the
situation when traveler is spending time on the plane to make travel arrangements is
extremely similar to the second scenario, where user is confronted with copious volumes
of data within which (s)he has to find few pertinent gems.

What is needed in both cases is creation of a travel support system that would work as
follows. In the first case, it would know personal preferences of the traveler and on their
basis, while she is flying and preparing for the unexpected business meeting, would
arrange accommodations in one of her preferred hotels, make a dinner reservation in one
of her favorite restaurants and negotiate a “special appetizer promotion” (knowing that
she loves the shrimp cocktail that is offered there). Upon her arrival in San Diego, results
would be displayed on her PDA (or a smart cell phone) and she could go directly to the
taxi or to her preferred car rental company. In the second case, the travel support system
would act as an interactive advisor – mimicking the work of a travel agent – and would
help select travel destination by removing from considerations locations and
accommodations that do not fit the user profile, and personalizing content delivery
further – by prioritizing information to be displayed and delivering one that would be
predicted to be most pertinent first. Both these scenarios would represent an ideal way in
which e-business should be conducted.

The aim of this chapter is to propose a system that, when mature, should be able to
support needs of travelers in exactly the above described way. We will also argue that,
and illustrate how, Semantic Web technologies combined with software agents should be
used in the proposed system. We proceed as follows. In the next section we briefly
discuss current state-of-the-art in agent systems, semantic web and agent based travel
support systems. We follow with a description of the proposed system illustrated by
UML diagrams of its most important functionalities. We then discuss how to work with
ontologically demarcated data in the world where such resources are practically
nonexistent. Finally, we show how RDF demarcated data is to be used to support
personal information delivery. We conclude with description of current state of
implementation and plans for further development of the system.

Background

There are two main themes that permeate the scenarios and the proposed solution
presented above. These are: information overload and need for content personalization.
One of the seminal papers that addresses exactly these two problems was published by P.
Maes in 1994 (Maes, 1994). There she suggested that it will be intelligent software agents
that will solve the problem of information overload. In a way it can be claimed that it is
that paper that grounded in computer science the notion of a personal software agent that
acts on behalf of its user and autonomously works to deliver desired personalized
services. This notion is particularly well matching with travel support, where for years
human travel agents played exactly the role that personal agents are expected to mimic.
Unfortunately, as it can be seen, the notion of intelligent personal agent, even though
extremely appealing, does not seem to materialize (while its originator has moved away
from agent research into a more appealing area of ambient computing).

What can be the reason for this lack of development of intelligent personal agents? One
of them seems to be the truly overwhelming amount of available information that is
stored mostly in a human consumable form (demarcated using HTML to make it look
“appealing” to the viewer). Even a more recent move toward the XML as the

demarcation language will not solve this problem as XML is not expressive enough.
However, a possible solution to this problem has been suggested, in the form of semantic
demarcation of resources or, more generally, the Semantic Web (Berners-Lee, 2001,
Fensel 2001). Here it is claimed that when properly applied, demarcation languages like
RDF (RDF, 2005), OWL (OWL, 2005) or DAML (DAML, 2005) will turn human-
enjoyable Internet pages into machine-consumable data repositories. While there are
those who question validity of optimistic claims associated with the Semantic Web
(Zaslavsky, 2004, Orłowska, 2005) and see in it only a new incarnation of an old problem
of unification of information stored in heterogeneous databases – problem that still
remains without general solution – we are not interested in this discussion. For the
purpose of this chapter we assume that the Semantic Web can deliver on its promises and
focus on how to apply it in our context.

In our work we follow two additional sources of inspiration. First, it has been
convincingly argued that the Semantic Web and software agents are highly
interdependent and should work very well together to deliver services needed by the user
(Hendler, 1999, 2001). Second, we follow the positive program put forward in the highly
critical work of Nwana and Ndumu (Nwana, 1999). In this context we see two ways of
proceeding for those interested in agent systems (and the Semantic Web). One can wait
for all the necessary tools and technologies to be ready to start developing and
implementing agent systems (utilize ontological demarcation of resources), or one can
start to do it now (using available, however imperfect, technologies and tools) – among
others, to help develop new generation of improved tools and technologies. In our work
we follow Nwana and Ndumu in believing that the latter approach is the right one.
Therefore, we do not engage in the discussion if concept of a software agent is anything
more but a new name for old ideas; if agents should be used in a travel support system; if
agent mobility is or is not important, if JADE (JADE, 2005), JENA (JENA, 2005)
Raccoon (Raccoon, 2005) are the best technologies to be used etc. Our goal is to use what
we consider top of the line technologies and approaches to develop and implement a
complete skeleton of an agent based travel support system that will utilize semantically
demarcated data as its centerpiece.

Here an additional methodological comment is in order. As it was discussed in (Gilbert,
2004, Harrington, 2003, Wright, 2003) there exist two distinct ways of managing
information in an infomediary (Galant 2002d) system like the one discussed here (with
possible intermediate solutions). Information can be indexed – where only references to
the actual information available in repositories residing outside of “the system” are
stored. Or, information can be gathered – where actual content is brought to the central
repository. In the original design of the travel support system (Angryk 2002, Gilbert,
2004, Harrington, 2003, Wright, 2003) we planned to follow the indexing path, which is
more philosophically aligned with the main ideas behind the Semantic Web. It can be
said metaphorically, that in the Semantic Web everything is a resource that is located
somewhere within the Web and can be found through a generalized resource locator. In
this case indexing simply links together resources of interest. Unfortunately, current state
of the Semantic Web is such that there are practically no resources that system like ours
could use. To be able to develop and implement a working system “now” we have

decided to gather information. More precisely, in the central repository we will store sets
of RDF triples (tokens) that will represent travel objects (instances of ontologies). We
will also develop an agent-based data collection system that will transform Web-available
information into such tokens stored in the system.

Obviously, our work is not the only one in the field of applying agents and ontologies to
travel support, however, while we follow many predecessors, we have noticed that most
of them have ended on a road leading to nowhere. In our survey conducted in 2001 we
have found a number of WWW sites of agent based travel support system projects that
never made it beyond the initial stages of conceptualization (for more details see
(Paprzyckii, 2001a, Paprzycki, 2001b) and references presented there). The situation did
not change much since. A typical example of the state-of-the-art in the area is the, EU
funded, CRUMPET project. During its funded existence (between approximately 1999
and 2003) it resulted in a number of publications and apparent demonstrations, but
currently its original WWW site is gone and it is really difficult to assess which of its
promises have been truly delivered on.

Summarizing, there exists a large number of sources of inspiration of our work, but we
proceed with development of a system that constitutes a rather unique combination of
agents and the Semantic web.

System description

Before we proceed describing the system let us stress that what we describe in this
chapter is the core of a much larger system that is in various stages of development. In
selecting the material to be presented we have decided first, to focus on these parts under
development that are finished or almost finished. This means that a number of interesting
agents that are to exist in the system in the future and that were proposed and discussed in
(Angryk, 2002, Galant, 2002c, Gordon, 2005a) will be omitted. Furthermore we
concentrate our attention on these parts of the system that are most pertinent to the
subject area of this book (Semantic Web and eBusiness) while practically omitting issues
like, for instance, agent–world communication (addressed in (Galant, 2002b, Kaczmarek,
2005)) and others.

In Figures 1 and 2 we present two distinct top level views on the system. The first one
depicts basic “interactions” occurring in the system as well as its main subsystems. It also
clearly places the repository of semantically demarcated data in the center of the system.
More precisely, starting from right to left, we can see that content has been divided into
(a) Verified Content Providers (VCP) that represents sources of trusted content that are
consistently available and format of which is changing rarely and not “without a notice”
and (b) other sources that represents all of the remaining available content. Interested
readers can find more information about this distinction in (Angryk, 2002, Gordon,
2005a).

CONTENT

VCP

other
sources

Content
Collection

Content
Management

Content
Delivery Content

Storage

User

User

User

User

Figure 1. Top level view of the system.

While the dream of the Semantic Web is a beautiful one indeed, currently (outside of a
multitude of academic research projects) it is almost impossible to find within the Web
large sources of clean explicitly ontologically demarcated content (in particular, travel
related content). This being the case, it is extremely difficult to find actual data that can
be used (e.g. for testing purposes) in a system like the one we are developing. Obviously,
we could use some of existing text processing techniques to classify pages as relevant to
various travel-topics, but this is not what we attempt to achieve here. Therefore, we will,
for the time being, omit the area denoted as other sources that contains mostly weakly
structured and highly volatile data (see also (Nwana, 1999) for an interesting discussion
of perils of dealing with dynamically changing data sources). This area will become a
source of useful information when the ideas of the Semantic Web and ontological content
demarcation become widespread.

Since we assume that VCPs carry content that is structured and rarely changing its format
(e.g. website of Hilton Hotels), it is possible to extract from them information that can be
transformed into a form that is to be stored in our system. More precisely, in our system,
we store information about travel objects in the form of instances of ontologies, persisted
in a JENA repository. To be able to do this, in the Content Collection Subsystem we use
Wrapper Agents (WA) designed to interface with specific WWW sites and collect
information available there (see also Figure 2). Note that currently we have no choice but
to create each of WAs manually. However, in the future, as semantic demarcation
becomes standard, the only operation required to adjust our system will be to replace our
current “static WAs” with “ontological WAs”. This is one of the important strengths of
agent-based system design, pointed to in (Jennings, 2001, Woolridge, 2002).

As mentioned, the Content Storage is the JENA repository, which was designed to persist
RDF triples (RDF is our semantic demarcation approach of choice). The Content
Management Subsystem encompasses a number of agents (considered jointly as a Data
Management Agent (DMA)) that work to assure that users of the system have access to
the best quality of data. These agents are to, among others deal with: time sensitive
information (such as changes of programs of movie theaters), incomplete data tokens or
inconsistent information (Angryk, 2002, Gordon, 2005a).

Content Delivery Subsystem has two roles. First it is responsible for the format (and
syntax) of interactions between users and the system. However, this aspect of the system,
as well as agents responsible for it, is mostly outside of scope of this chapter (more
details can be found in (Galant, 2002b, Kaczmarek, 2005)). Second, it is responsible for
the semantics of user-system interactions. Here two agents play crucial role. First, the
Personalization Infrastructure Agent (PIA) that consists of a number of extremely simple
rule-based “RDF subagents” (each one of them is a class within the PIA) that extend the
set of travel objects selected as a response to the original query to create a Maximum
Response Set (MRS) that is delivered to the PA for filtering and ordering. Second, the
Personal Agent (PA) that utilizes user profile to filter and hierarchically organize
information obtained from the PIA as the MRS. It is also the PA that is involved in
gathering explicit user feedback (see below) that is used to adjust user profile.

In Figure 2 we represent, in the form of an UML use case diagram, the above mentioned
agents as well as other agents that are a part of the central system infrastructure. This
diagram should be considered together with the system visualization found in Figure 1.

Figure 2. Top level use case diagram.

Since we had to abandon, hopefully temporarily, other sources, in Figure 2 we depict
only Web Sites and Web Services that belong to the VCP category. They are sources of
data for the function Data Collection that is serviced by Wrapper Agents (WA), Indexing
Agents (IA) and a Coordinator Agent (CA). The IA communicates with the DB Agent
when performing Inserting tokens function. Separately, the CA receives Data requests
from Data Management Agents (DMA). These Data requests represent situations when
data tokens were found to be potentially obsolete or incomplete (as a part of the Data
Management function) and a new token has to be delivered by an appropriate WA to
refresh / complete data available in the system. The DMA and the DB Agent (DBA) are
the only agents that have a direct access to the JENA database. In the Content Delivery
Subsystem we have three functions specified. The Travel Service Selection function is
related to User(s) querying the system (information flow from the User to the central
repository), while the Response Delivery function involves operations taking place
between the time when the initial response to the query is obtained from JENA and when
the final personalized response is delivered to the user (information flow from the central
repository to the User). During this process the PIA performs the Preparing MRS
function. Let us now discuss in some detail agents and their interactions. Before we
proceed let us note that we omit a special situation when the system is initialized for the
very first time and does not have any data stored in the JENA repository. While this
situation requires agents started in a specific order, since it is only a one-time event it is

not worthy extra attention. We therefore assume that there is already data stored in the
system and focus on interactions taking place in a working system.

Wrapper Agent (WA) interfaces with WWW sites, mapping XML- or HTML-demarcated
data into RDF triples describing travel objects (according to the ontology used in our
system (Gawinecki, 2005a, 2005b, Gordon, 2005b)). It is created by the Coordinating
Agent (CA) on the basis of a configuration file. The configuration file may be created by
System Administrator and send to the CA as a message from the GUI Agent or may be
contained in a message from the DMA that wants to update one or more tokens. Each
completed token is time-stamped and priority-stamped and send back to the CA. Upon
completion of its work the (or in the case of an error) WA sends an appropriate message
to the CA and self-destructs. A new WA with the same functionality is created by the CA
whenever needed. Note that to simplify agent management we create instances of WA for
each “job,” even though they may produce tokens describing the same travel resource.
For instance, when one WA is working on finding information about all Westin Hotels in
Central Europe (task assigned by the System Administrator), another WA may be asked to
find information about Westin Hotel in Warszawa (job requested by the DMA). It is the
role of the Indexing Agent to assure that the most current available token is stored in the
repository (see below). An UML statechart of the WA is contained in Figure 3.

Figure 3. Statechart of the Wrapper Agent.

Coordinator Agent (CA) manages all activities of the Content Collection Subsystem.
When started, it creates a certain number of Indexing Agents (IA) (specified by the
System Administrator – Servicing agent management request function in Figure 4) and
enters a listening state. There are six types of messages that may be received. (1) A self-
destruction order received from the GUI Agent (send by the System Administrator) –
resulting in the CA killing all existing WAs and IAs first, and then self-destructing. (2)
Message from the WA that it encountered an error or that it has completed its work and
will self-destruct – resulting in appropriate information being recorded. (3) Message from
the WA containing a token – to be inserted into the priority queue within the CA. (4)

Message from one of the Indexing Agents (IA) requesting a new token to be inserted into
the repository – which results in the highest priority token being removed from the
priority queue and send to the requesting IA. When the queue is empty, a message is send
to the IA informing about this fact (as seen in Figure 5, IA will retry requesting token
after some delay). (5) Message from the DMA containing a request (in the form of a
configuration file) to provide one or more tokens – resulting in creation of an appropriate
WA (or a number of WAs). And, finally, (6) message from the GUI Agent ordering
adjustment of the number of IAs in the system. A complete statechart of the Coordinator
Agent is depicted in Figure 4.

Figure 4. Statechart of the Coordinator Agent

Indexing Agent (IA) is responsible for inserting tokens into the central repository as well
as initial pre-processing of tokens to facilitate cleanness of data stored in the system. For
the time being the IA performs the following simple checks: (1) time consistency of
tokens to be inserted – since it is possible that multiple WAs generate token describing the
same travel resource (see above), the IA compares time stamps of the token to be inserted
with that in the repository and inserts its token only when it is newer; (2) data consistency
– token to be used to update / append information has to be consistent with the token in
the repository (e.g. the same hotel has to have the same address); inconsistent tokens are
marked as such and they are to be deconflicted (Angryk, 2002). In the case when the
priority queue is empty, request will be repeated after delay T. The statechart of the IA is
represented in Figure 5 (top panel presents the overall process flow, while the bottom
panel specifies processes involved in servicing tokens).

Figure 5. Statechart of the Indexing Agent

Let us now briefly describe the next three agents visible in Figure 2. The DB Agent
(DBA) represents interface between the database (in our case the JENA repository) and
the agent system. It is created to separate an agent system from an “outside technology”
in such a way that in case of changes in the repository all other changes will be localized
to that agent, while the remaining parts of the system stay unchanged.

In the current system the Data Management Agent (DMA) is a simple one. A number of
agents of this type, responsible for different travel objects, are created upon system
startup. Their role is to “traverse” the repository to find outdated and incomplete tokens
and request new / additional ones to be generated to update / complete information stored
in the repository. To achieve this goal DMAs generate a configuration file of an
appropriate WA and send them to the CA for processing. In the future DMAs will be
responsible for complete management of tokens stored in the repository to assure their
completeness, consistency and freshness.

The Personalization Infrastructure Agent (PIA) consists a manager and a number of
“RDF subagents” (PIA workers in Figure 6). Each of these sub-agents represents one or

more of simple rules of the type “Irish pub is also a pub” or “Japanese food is Oriental
food.” These rules are applied to the set of RDF triples returned by the initial query. Rule
application involves querying the repository and is expected to expand the result set (e.g.
if user is asking for Korean restaurant then other Oriental restaurants are likely to be
included). The PIA subagents operate as a team passing the result set from one to the next
(in our current implementation they are organized in a ring) and since their role is to
maximize the set of responses to be delivered to the user no potential response is
removed form the set. Final result of their operation is the Maximal Response Set (MRS)
that is operated on by the Personal Agent. Action Diagram of the PIA is depicted in
figure 6.

Figure 6. Action Diagram of the PIA

A separate Personal Agent (PA) will be created for each user and will play two roles in
the Content Delivery Subsystem. First, it is the central coordinator – for each user query it
directs it from one agent to the next, constantly monitoring processing progress. Second,
it utilizes user profile to filter and order responses that are to be sent to the user. More
precisely, the user query, after being pre-processed and transformed into an RDQL query
(see (Kaczmarek, 2005) for more details) is being sent to the DBA. What is returned is the
initial response consisting of a number of tokens that satisfy the query. This response is
being redirected (by the PA) to the PIA to obtain the MRS. Then the PA utilizes the user
profile to: (1) remove from the set responses that do not belong there (e.g. user is known
to be adversely inclined toward Italian food, and pizza in particular, and thus all of the
Italian food serving restaurants have to be excluded); (2) order the remaining selections

in such a way that these that are believed to be of most interest to the user will be
displayed first (e.g. if user is known to stay in Hilton Hotels, they will be displayed first).
The statechart diagram of the PA is contained in Figure 7.

Figure 7. Statechart of the Personal Agent

As we can see the PA behaves differently depending if the user is using the system for the
first time or if it is a returning user. In the latter case, the PA will attempt at gathering
explicit feedback related to the information delivered to the user during the previous
session. This will be done through generation of a questionnaire that will be shown to the
user, who may decide to ignore it (see also (Galant, 2002a)). Obtained responses will be
used to adjust the user-profile. We can also see how the PA plays the role of response
preparation orchestrator by always receiving responses from other agents and forwarding
them to the next agent in the processing chain. We have selected this model of
information processing so that “worker agents” like the DBA or the PIA know only one
agent to interact with (the PA). Otherwise, an unnecessary set of dependencies would be
introduced to the system making it substantially more difficult to manage (any change to
one of these agents would have to be propagated to all agents that interact with it – while
in our case only a single agent needs to be adjusted).

Replacing Semantic Web with a Semantic Database

As noted before, currently the Semantic Web is an attractive idea that lacks its main
component – large repositories of semantically demarcated (in particular travel-related)
data. This was one of important reasons to change the design of our systems from data
indexing into data gathering. As a result we are able to create our own “mini Semantic
Web” (in the form of a semantic database) and store there information that in the future
will allow us to extend our system beyond the basic skeleton described here, and start
experimenting with its true projected functionalities – like content personalization.

Let us describe how the HTML-demarcated information available on the Web is turned
into semantic-tokens representing travel objects in our repository. Before proceeding let
us discuss briefly ontologies utilized in the system. As reported in (Gawinecki, 2005a,
2005b, Gordon, 2005b) while there exists a large number of attempts at designing
ontologies depicting various aspects of the world, we were not able to locate a complete
ontology of most basic objects in the “world of travel” such as a hotel and a restaurant.
More precisely, there exists an implicit ontology of restaurants utilized by the ChefMoz
project (ChefMoz, 2005), but it cannot be used directly as a Semantic Web resource due
to the fact that data stored there is infested with bugs that make its automatic utilization
impossible without pre-processing that also involves manual operations (see (Gawinecki,
2005a, Gordon, 2005b) for more details).

This being the case we have proceeded in two directions. First, as reported in
(Gawinecki, 2005a, Gordon, 2005b) we have reverse engineered the restaurant ontology
underlying the ChefMoz project and cleaned data related to Polish restaurants. Separately
we have proceeded with designing hotel ontology using a pragmatic approach. Our hotel
ontology is to be used to represent, manipulate and manage hotel information actually
appearing within Web-based repositories (in context of travel; i.e. not hotels as
landmarks, or sites of historical events). Therefore we have studied content of 10 largest
Internet travel agencies and found out that most of them describe hotels using very
similar “vocabulary.” Therefore we used these common terms to shape our hotel
ontology and the results of this process have been reported in (Gawinecki, 2005a, 2005b,
Gordon, 2005b). As an outcome we have two fully functional, complete ontologies (of a
hotel and of a restaurant) that are used to shape data stored in our JENA repository.

In this context, let us illustrate how we transform the VCP featured data into travel
tokens. As an example we will utilize WWW site belonging to Hilton Hotels
(www.hilton.com). More precisely, let us look at some of the information that is available
at the WWW site of Hilton Sao Paulo Morumbi depicted in Figure 8.

http://www.hilton.com/

Figure 8. Hilton Sao Paulo Morumbi main page.

As clearly seen, from this page we can extract information such as the hotel name,
address and phone numbers. This page would also have to be interacted with in case we
planned to utilize our travel support system to make an actual reservation (which is only
in very long-term plans and out of scope of this chapter). To find the remaining
information defined by the hotel ontology requires traversing the WWW site deeper.
Therefore, for instance, the WA has to go to the page contained in Figure 9, to find
information about hotel amenities.

Figure 9. Hilton Sao Paulo Morumbi amenities page.

As a result the following set of RDF triples (in XML-based notation) will be generated:

<rdf:Description

rdf:about="http://www.agentlab.net/travel/hotels/Hilton/SAOMOHI">
 <j.1:roomAmenit rdf:resource="http://.../hotel.rdf#AccessibleRoom"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#AirConditioning"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#ConnectingRooms"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#Shower"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#CableTelevision"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#CNNavailable"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#Bathrobe"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#BathroomAmenities"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#Coffee_TeaMaker"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#Hairdryer"/>
 <j.1:roomAmenity
 rdf:resource="http://.../hotel.rdf#HighSpeedInternetConnection"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#InternetAccess"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#Iron"/>

 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#IroningBoard"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#Minibar"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#Newspaper"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#Wake-upCalls"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#Two-linePhone"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#VoiceMail"/>
 <j.1:roomAmenity
 rdf:resource="http://.../hotel.rdf#TelephoneWithDataPorts"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#SpeakerPhone"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#SmokeDetektors"/>
 <j.1:roomAmenity rdf:resource="http://.../hotel.rdf#Safe"/>
</rdf:Description>

These RDF triples represent a part of our hotel ontology, but this time they became its
instance representing a given Hilton Hotel (values of various aspects of the hotel are
filled-in). Our WA will then continue traversing the hotel site to find, for instance,
information about fitness and recreation as well as check-in and check-out times. An
appropriate page belonging to the same hotel is depicted in Figure 10 while the resulting
set of RDF triples follows.

Figure 10. Hilton Sao Paulo Morumbi fitness and recreation and check-in & check-out
information.

<rdf:Description
rdf:about="http://www.agentlab.net/travel/hotels/Hilton/SAOMOHI">

 <j.1:recreationService
 rdf:resource="http://.../hotel.rdf#FitnessCenterOnsite"/>
 <j.1:recreationService

rdf:resource="http://.../hotel.rdf#IndoorOrOutdoorConnectingPool"/>
 <j.1:petsPolicy rdf:resource="http://.../hotel.rdf#NoPetsAlowed"/>
 <j.1:additionalDetail

rdf:resource="http://www.agentlab.net/travel/hotels/Hilton/SAOMOHI/CheckI
n-CheckOut"/>

</rdf:Description>

<rdf:Description

rdf:about="http://www.agentlab.net/travel/hotels/Hilton/SAOMOHI/CheckIn-
CheckOut">

 <j.1:detail>Check-in: 2:00PM, Check-out: 12:00PM</j.1:detail>
</rdf:Description>

In this way the WA processes all necessary pages belonging to the Hilton Sao Paulo
Morumbi and as a result obtains a set of RDF triples that constitute its complete
definition (from the point of view of ontology utilized in our system). This set of RDF
triples is then time and priority level stamped, packed into an ACL message and send to
the CA that inserts it into the priority queue – to be later inserted, by the IA, to the
semantic database. Depending on the assignment the WA may continue producing tokens
of other Hilton hotels or, if work is completed, it informs the CA about this fact and self-
destructs. In this way in our system, by manually creating Wrapper Agents for a variety
of travel information sources we can collect real-life data representing actual travel
objects.

RDF data Utilization – Content Personalization

Let us now discuss how the data stored in the system is used to deliver personalized
responses to the user. While our approach to user profile construction and utilization is
based on ideas presented in (Burke, 2002, Fink, 2002, Galant, 2002a, Kobsa, 2001,
Montaner, 2003, Rich, 1979, Sołtysiak, 1998), however utilization of these methods in
the context of ontologically demarcated information is novel and was proposed originally
in (Gawinecki, 2005c).

To be able to deliver personalized content to the user of the system, we have to be able to
represent the user in the system first – define user-profile. Furthermore, the proposed
user-profile has to be created in such a way to simplify interactions in the system. Since
our system is oriented toward processing of ontologically demarcated data, it is very
natural to represent user preferences in the same way. Thus we adapted an overlay model
of user profile, where opinions are “connected” with appropriate concepts in the domain
ontology. This approach is also called a student model, since it has been found useful to
describe knowledge of the student about specific topics of the domain (Greer, 1994).
Basic tenets of the overlay model are depicted in Figure 11.

Figure 11. Overlay model utilized to represent user profile

For instance, let us consider our hotel ontology and assume that user likes to stay in
hotels that have both pool and fitness center. Both these features are subclasses of the
concept amenities. We can represent user interest by assigning weight to each amenity
(the larger the weight the more important is given feature to the user). In case of our
hypothetical customer, both pool and exercise room will be assigned large weights, while
features that user is not particularly interested in (e.g. availability of ironing board – see
Figure 9) will be assigned small weight – the lesser is the interest the closer to 0 the value
will be. In the case of features about which we do not know anything about users’
preferences, no value will be assigned (see Figure 11). Let us observe that in this
approach we are mimicking the notion of probability – all assigned values are from the
interval (0, 1). This means that even in the case of strong counter-preference towards a
given feature we will assign value 0 (there are no negative values available). Proceeding
in thus described way we will create a special instance of hotel ontology, one that
represents user-hotel-profile. The following fragment of an instance of hotel ontology
(this time represented in an N3 notation) depicts user (Karol) profile as it is represented
in our system:

:KarolOpinions a sys:OpinionsSet;
 sys:containsOpinion
 [sys:about hotel:Pool;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.89].
 [sys:about hotel:ExerciseRoom;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.84].
 [sys:about res:AirConditioning;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.89].
 [sys:about hotel:BathroomAmenities;
 sys:hasClassification sys:Interesting;

 sys:hasNormalizedProbability 0.73].
 [sys:about hotel:IroningBoard;
 sys:hasClassification sys:NotInteresting;
 sys:hasNormalizedProbability 0.11].
 [sys:about hotel:Iron,
 sys:hasClassification sys:NotInteresting;
 sys:hasNormalizedProbability 0.15].

The above hotel-profile of Karol, tells us that he likes to stay in hotels with swimming
pool and exercise room, while availability of an iron and ironing board is inconsequential
to him.

Obviously, somewhere in the system we have to store, in some form, information about
the user. To assure consistency across the system, this is done in a form of a simplistic
user-ontology. Below we present a fragment of such ontology:

: wasBorn a rdf : Property ;
 rdfs: range xsd : Date ;
 rdfs: domain : UserProfileData.

: hasAge a rdf : Property ;
 rdfs: range : Age ;
 rdfs: domain : UserProfileData .

: hasWealth a rdf : Property ;
 rdfs: range : Wealth ;
 rdfs: domain : UserProfileData .

: hasProfession a rdf : Property ;
 rdfs: range : Profession ;
 rdfs: domain : UserProfileData .

Let us now assume that Karol is a 24 years old painter, who has enough money to feel
rich and whose dressing style is a natural one, than his profile would be represented as:

:KarolProfile a sys:UserProfile;
 :hasUserID 14-32-61-3456;
 :hasUserProfileData :KarolProfileData;
 :hasOpinionsSet :KarolOpinions.

:KarolProfileData a :UserProfileData;
 :hasAge 24;
 :hasWealth sys:Rich;
 :hasDress sys:NaturalDress;
 :hasProfession sys:SpecialistFreeLancer.

Rather than keeping them separate, we combine instances of user ontology with the
above described user-profile into a complete ontological description – a comprehensive
user-profile. This user-profile is then to be stored in the JENA repository.

One of the important questions is that all recommender systems have to address is, how
to “introduce” new user to the system (Galant, 2002a). In our system we use stereotyping
(Rich, 1979). Obviously, we represent stereotypes the same way we used to represent

user-profiles, with the difference that instead of specific values representing preferences
of a given user, we use sets of variables of nominal (to represent categories – e.g.
profession), ordinal (e.g. low income, medium income, high income) and interval (e.g.
age between16 and 22) types. For values of nominal and ordinal types we have
established sets of possible values, while for the values of interval types, we defined
borders of intervals considered in the system. Using results of a survey and expert
knowledge, we were able to create restaurant-related stereotypes (one instance of
restaurant ontology of each identified stereotype). To illustrate such a case, here is a
fragment of artistic profile in the area of restaurants:

:ArtistStereotypeOpinions a sys:OpinionsSet;
 sys:containsOpinion
 [sys:about res:CafeCoffeeShopCuisine;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 1.0].
 [sys:about res:CafeteriaCuisine;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.75].
 [sys:about res:TeaHouseCuisine;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.9].
 [sys:about res:WineBeer;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.8].
 [sys:about res:WineList;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 1.0].
 [sys:about res:HotDogsCuisine;
 sys:hasClassification sys:NotInteresting;
 sys:hasNormalizedProbability 0.0].

In this stereotype we can see, among others, that an artist has been conceptualized as a
person who likes coffee houses a bit more than tea houses and is willing to eat in a
cafeteria, likes vine (a bit more than beer), but does not like hot dogs (fast food). Other
stereotypes have been conceptualized similarly and their complete list, and a detailed
description of their utilization can be found in (Gawinecki, 2005d).

When a new user logs to the system she will be requested to fill a short questionnaire
about age, gender, income level, occupation, address (matching user features defined by
the user-ontology), as well as questions about her travel preferences. While the basic
user-ontology based data will be required, answering questions about travel preferences
will be voluntary. Personal data collected through the questionnaire will be used to match
a person to a stereotype. More precisely, we will calculate a distance measure between
user-specified characteristics and these appearing in stereotypes defined in the system
and find one that matches her profile the closest. To achieve this we will use the
following formula:

Where: wf – weight of attribute, df

S,u – distance between values of the attribute in the
stereotype S and user’s data u, δf

S,u – Boolean flag that informs whether attribute f appears
in both: stereotype’s data (S) and user’s data (u).

To illustrate this, let us consider Karol, the painter, again. In the table below we present
Karol’s data and the artist stereotype data and show how the closeness between Karol
and that stereotype is calculated.

Attribute
(f)

Attribute
weight
(wf)

Data of artist stereotype
(comma means OR relation):
(S)

Karol’s Data:
(u)

Distance
between value
of attribute:
(df

S,u)

Weighted
distance:
(wf* df

S,u)

Age 2 20-50 24 0.00 0.00
Wealth 4 Not Rich, Average Rich Rich 0.33 1.33
Dress 1 Naturally, Elegantly Naturally 0.00 0.00
Profession 2 Student/Pupil,

Scientist/Teacher,
Specialist/FreeLancer
Unemployed/WorkSeeker

Specialist/FreeLancer 0.00 0.00

 COMBINED 1.3(3) /
(2+4+1+2)=
0.14(6)

The same process is then repeated comparing Karol’s data against all other stereotypes to
find the one that fits him the best. In the next step this stereotype is joined with his user-
data to become his initial profile. In the case when he answered any domain-specific
questions (recall, that he may omit them), this data will be used to modify his user-
profile. For example, let us assume that he has been identified as student stereotype, but
he has also specified that he does not like coffee houses (while in the student stereotype
coffee houses have been assigned a substantial positive weight). Obviously, in his profile,
this positive value will be replaced by zero – as explicit personal preferences outweigh
these specified in the stereotype (see also (Nistor, 2002)):

:KarolOpinions a sys:OpinionsSet;
 sys:containsOpinion
 [sys:about res:CafeCoffeeShopCuisine;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.0].

Observe that as soon as the system is operational we will be able to store information
about user behaviors (Angryk 2003, Galant, 2002a, Gordon, 2005). This data will be then
used not only to modify individual user-profiles, but also mined (e.g. clustered) to obtain
information about various group-behaviors taking place in the system. This information
can be used to verify, update or completely replace our initial stereotypes. Such processes

are based on the so-called implicit relevance feedback (Fink, 2002, Kobsa 2001). As
described earlier (see Figure 7) we will utilize also explicit feedback based on user
responses to subsequent questionnaires. Currently as explicit feedback we utilize only a
single question: “did you like our main suggestion presented last time?” but a more
intricate questionnaire could also be used. Specifically, at the end of each user-system
interaction, on the basis of what was recommended to the user, a set of questions about
these recommendations could be prepared. When user returns to the system, these
questions would be then asked to give him opportunity to express his direct opinion. Both
implicit and explicit feedbacks are used to adjust user-profile (see also Gawinecki,
2005c). Note here, that in most recommender systems stereotyping is the method of
information filtering (demographic filtering); thus making such systems rather rigid – in
this case individual user preferences cannot be properly modeled and modified (Kobsa,
2001). In our system we use stereotyping only to solve the cold-start problem – and
modify them over time – and thus avoid the rigidity trap.

User-profile is utilized by the PA to rank and filter travel objects. Let us assume that after
the query, the response preparation process has passed all stages and in the last one the
PIA agent has completed its work and the MRS has been delivered to the PA. The PA has
now to compute a temperature of each travel object that is included in the MRS. The
temperature represents the “probability” that a given object is a “favorite” of the user.
This way of calculating the importance of selected objects was one of the reasons for the
way that we have assigned importance measures to individual features (as belonging to
the interval [0,1]). Recall here that the DBA and the PIA know nothing about user-
preferences and that the PIA uses variety of general rules to increase the response set
beyond that provided as a response to the original query.

To calculate the temperature of a travel object (let us name it an active object) three
aspects of the situation have to be taken into account. First, features of the active object.
Second, user interests represented in the user-profile – if a given feature has no
preference specified then it cannot be used. In other words, for each token in the MRS we
will crop its ontological graph to represent only these features that are defined in user
profile. Third, features requested in user query. More specifically, if given keywords
appear in the query (representing explicit wishes of the user), e.g. if the query was about
a restaurant in Las Vegas, then such restaurants should be presented to the user first.
Interactions between these three aspects are represented in Figure 12.

Figure 12. Construction of final response – interactions between features.

Here we can distinguish the following situations:

A – features explicitly requested by the user, that appear in the active object as
well as in the user-profile,
B – features requested by the user and appearing in the active object,
C – features not requested, that are a part of user-profile and that appeared in the
active object,
D – features that do not appear in the active object (we are not interested in them).

Ratings obtained for each token in the MRS represent what the system believes are user
preferences and are used to filter out these objects temperatures of which are below a
certain threshold and rank the remaining ones (objects with highest scores will be
displayed first). We will omit discussion of a special case when there is no object above
the threshold. The MRS is processed in the following way:

1. Travel objects are to be returned to the user in two groups (buckets)
a. Objects requested explicitly by the user (via the query form) – Group I
b. Objects not requested explicitly by the user but predicted by the system to

be of potential interest to the user – Group II
Thus, for each active object we divide features according to the areas depicted in
Figure 11. Objects for which at least one feature is inside of either area A or B
belong to Group I, objects with all features inside area C belong to Group II,
while the remaining objects are discarded.

2. Inside of each bucket travel objects are sorted according to their temperature
computed in the following way: for a given object O its temperature

temp(O) = ∑
∈Of

ftemp)(

where temp(f) = 1 if , or pBAf ∪∈ n(f) if Cf ∈ , while temp(f)=temp(f) – 0.5.
This latter calculation is performed to implicate that these features that are not of
interest to the user (their individual temperatures are less than 0.5) reduce the
overall temperature of the object. Function pn(f) is a normalized probability of
feature f, based on the user-profile.

Let us consider Karol, who is interested in selecting a restaurant. In his query he specified
that this restaurant has to serve Italian cuisine and has to allow smoking. Additionally, we
know, from Karol’s profile, that he does not like coffee (weight 0.1) and outdoor dining
(weight 0.05). Thus for the restaurant X:

:RestaurantX a res:Restaurant;

res:cuisine res:ItalianCuisine;
res:cuisine res:PizzaCuisine;
res:cuisine res:CafeCoffeeShopCuisine;
res:feature res:Outdoor.

the overall score will be decreased due to the influence of Outdoor and
CafeCoffeeShopCuisine features, but will receive a ″temperature boost” because of the
ItalianCuisine feature (explicitly specified feature). However, the restaurant X it won’t be
rated as high as the restaurant Y:

:RestaurantY a res:Restaurant;

res:cuisine res:ItalianCuisine;
res:smoking res:PermittedSmoking.

which serves ItalianCuisine, where smoking is also permitted. To be more specific, let
us consider these two restaurants and the third one described by the following features:

:RestaurantZ a res:Restaurant;
 res:cuisine res:WineBeer;
 res:smoking res:PermittedSmoking.

Then the following table represents the way that temperatures of each restaurant will be
computed.

Restaurant N3 descriptions
(bold – requested,
underlined – in the user profile;
could be conjunctive)

Calculations

:RestaurantX a res:Restaurant;
 res:cuisine res:ItalianCuisine;
 res:cuisine res:PizzaCuisine;
 res:cuisine res:CafeCoffeeShopCuisine;
 res:feature res:Outdoor.

+0.5 (=1-0.5) requested; B
+0
-0.49 (=0.01-0.5) profile
-0.45 (=0.05-0.5) profile
= -0.44

:RestaurantY a res:Restaurant;
 res:cuisine res:ItalianCuisine ;
 res:smoking res:PermittedSmoking.

+0.5 (=1-0.5) requested; B
+0.5
= 1

 (=1-0.5) requested; B

:RestaurantZ a res:Restaurant;
 res:cuisine res:WineBeer;
 res:smoking res:PermittedSmoking.

+0.3 (=0.8-0.5) not requested; profile; C
+0.5 (
= 0.8

=1-0.5) not requested; profile; C

As a result, restaurants X and Y belong to the first bucket (to be displayed to the user as
they both have features that belong to area B). However, while restaurant Y has high
temperature (1) and definitely should be displayed, restaurant X has very low temperature
(-0.44) and thus likely will not be displayed at all. Interestingly, restaurant Z, which

belongs to the second bucket (belongs to area C), has an overall score of 0.8 and is likely
to be displayed. This example shows also the potential adverse effect of lack of
information (e.g. in the ChefMoz repository; but more generally, within the Web) on the
quality of content-based filtering (at least done in a way similar to that proposed above).
Simply said, what we do not know cannot decrease the score, and thus a restaurant for
which we know only address and cuisine may be displayed as we do not know that it
allows smoking on premises (which would make it totally unacceptable to a given user).

RDF data Utilization – Content Delivery

Let us now present in more detail how the delivery of content to the user is implemented
as an agent system. To be able to do this we need to briefly introduce additional agents
(beyond these presented in Figure 2) and their roles (using Prometheus methodology
(Prometheus, 2005)) – as represented in Figure 13.

Figure 13. Content delivery agents and their roles.

In addition to the PA (described in details in Figure 7) and the DBA, we have also: (1)
View Transforming Agent (VTA) responsible for delivering response in the form that
matches the user I/O device, (2) Proxy Agent (PrA) that is responsible for facilitating
interactions between the agent system and the outside world (need for these agents as
well as a detailed description of their implementation can be found in (Kaczmarek,
2005)), (3) Session Handling Agent (SHA), which is responsible for complete
management and monitoring of functional aspects of user interactions with the system,
(4) Profile Managing Agent (PMA) which is responsible for (a) creating profiles for new
users, (b) retrieving profiles of returning users and (c) updating user-profiles, based on
implicit and explicit relevance feedback. Let us now summarize processes involved in
content delivery through an UML action diagram. While rather complex, description
contained in Figure 14 represent a complete conceptualization of actions involved in
servicing user request from the moment that user logs into the system, to the moment
when she obtains response to her query.

Figure 14. Content delivery action diagram.

State of the System

As indicated earlier in this chapter, we have concentrated on these features of our system
that are currently being implemented and close to being ready, while omitting these
features that we would like to see developed in the future. While the interface to the
system is still under construction, it is possible to connect to it from a browser.
Furthermore, we have emulated WAP-based connectivity. As of the day this chapter
being written, we have implemented a function-complete content collection subsystem
consisting of: (1) a number of hotel wrappers (WA) that allow us to feed hotel data into
the system, (2) CA and IA agents that collaborate with the WAs to insert data into JENA-
based repository, (3) initial version of the DMA and the PIA. For the CCS we have semi-
automatically cleaned-up subsets of ChefMoz data, describing selected restaurants. We
have also a relatively complete content delivery subsystem. In particular, (1) the PrA, the
SHA and the VTA that facilitate user-system interactions have been implemented and
tested, (2) the PA is working as described in this chapter (with the PIA working in the
case of restaurants only), (3) the PMA has only limited capacity, it is capable of creating
and managing a single user profile, (4) while the existing set of stereotypes involves only
restaurants. Let us briefly illustrate the work of the system, by screen-shots of the query
(Figure 15) and the response (Figure 16). The query was a general query about
restaurants in Greensboro, NC; note the box that attempts at asking a question about
Bistro Sophia that was suggested to the user in the previous session (Figure 16).

Figure 15. System query screenshot

Figure 16. System response screenshot

One of the biggest problems related to testing our system is the fact that, being realistic,
no user would be interested in a system that only provides a few hotel chains and
restaurants (e.g. in Poland). This being the case we can ourselves test features of the
system like: (1) is the user query handled correctly, i.e. do the returned results represent
the correct answer taking into account the current state of the system, (2) do the WAs
correctly deliver and the CA and IAs accurately insert tokens into the system, (3) are
agent communication and interactions proceed without deadlocks and does the system
scale. Unfortunately, it is practically impossible to truly test adaptive features of the
system. Without actual users utilizing the system to satisfy their real travel needs, all the
work that we have done implementing the system cannot be practice-verified.

This is a more general problem of the chicken-and-egg type that is facing most of
Semantic Web research (regardless of its application area). Without real systems doing
real work and utilizing actual ontologically demarcated data on a large scale (to deliver
what users need) it is practically impossible to assess if the Semantic Web, the way was
conceptualized, is the way that we will be able to deal with information overload, or is it
just another pipe-dream like so many in the past of computer science.

Future developments

As described above, it seems to be clear what the future of the development of Semantic
Web technologies applied in context of e-business (or in any other context) has to be. It
has to follow the positive program put forward by Nwana and Ndumu. The same way as
agent systems, large number of systems utilizing Semantic Web technologies has to be
implemented and experimented with. Furthermore, it is necessary to develop tools that
are going to speed up ontological demarcation of Web content. Here, both the content
that is about to be put on the Web as well as tools supporting demarcation of legacy
content need to be improved and popularized. Only then, we will be able to truly assess
the value proposition of the Semantic Web. Furthermore, since software agents and the
Semantic Web are truly intertwined, the development of the Semantic web should
stimulate development of agent systems, while development of agent systems is likely to
stimulate development of the Semantic Web.

To facilitate these processes we plan to continue development of our agent-based travel
support system. The first step will be complete integration and testing of the above
described system skeleton. We will proceed further by, among others: (1) developing
ontologies of other important travel objects e.g. movie theaters, museums, operas, etc.,
(2) fully developing and implementing the PIA and the DMA infrastructures – according
to the above presented description, (3) continuing implementing WAs to increase the total
volume of data available in the system, (4) adding a GIS component to the system, to
allow answering queries like: which restaurant is the closest one to that hotel?, (5)
developing and implementing an agent-based collaborative filtering infrastructure, (6)
investigating potential of utilizing text processing technologies for developing new
generation of adaptive WAs.

References

Angryk R., Galant V., Gordon M., Paprzycki M. (2002): Travel Support System - an
Agent Based Framework. In: H. R. Arabnia, Y. Mun (eds.), Proceedings of the
International Conference on Internet Computing (IC'02), CSREA Press, Las Vegas, NV
719-725, 2002

T. Berners-Lee, J. Hendler, O. Lassila, (2001): The Semantic Web, Scientific American,
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21

Burke R. (2002): Hybrid Recommender Systems: Survey and Experiments. User
Modeling and User-Adapted Interaction, 12, 4, 331 - 370.

ChefMoz (2005) ChefMoz Dining Guide, http://chefdmoz.org

DAML (2005) Language Overview, http://www.daml.org/

Fensel D., (2001) Ontologies: A Silver Bullet for Knowledge Management and
Electronic Commerce, Springer, Berlin

Fink J., Kobsa A. (2002): User Modeling for Personalized City Tours. Artificial
Intelligence Review, 18 (2002) 33-74

Galant V. and Paprzycki M. (2002a): Information Personalization in an Internet Based
Travel Support System. Proceedings of the BIS'2002 Conference, Poznań, Poland, April,
2002, pp. 191-202

Galant V., Gordon M., Paprzycki M. (2002b): Agent-Client Interaction in a Web-based
E-commerce System. D. Grigoras (ed.), Proceedings of the International Symposium on
Parallel and Distributed Computing, University of Iaşi Press, Iaşi, Romania, 2002, 1-10

Galant V., Gordon M., Paprzycki M. (2002c): Knowledge Management in an Internet
Travel Support System. B. Wiszniewski (ed.), Proceedings of ECON2002, ACTEN,
Wejcherowo, 97-104

Galant V., Jakubczyc J., Paprzycki M. (2002d): Infrastructure for E-Commerce. in:
M. Nycz, M. L. Owoc (eds.), Proceedings of the 10th Conference Extracting Knowledge
from Databases, Wrocław University of Economics Press, 32-47

Gawinecki M., Gordon M., Paprzycki M., Szymczak M., Vetulani Z., Wright J. (2005a):
Enabling Semantic Referencing of Selected Travel Related Resources. In:
W. Abramowicz, Proceedings of the BIS'2005 Conference, Poznań University of
Economics Press, Poznań, Poland, 271-290

Gawinecki M., Gordon M., Nguyen N., Paprzycki M., Szymczak M. (2005b): RDF
Demarcated Resources in an Agent Based Travel Support System. In: Proceedings of the
17th Mountain Conference of the Polish Information Society, (to appear)

Gawinecki M., Vetulani Z., Gordon M., Paprzycki M. (2005c): Representing Users in a
Travel Support System, in: Kwaśnicka, H. et. al. (ed.) Proceedings of the ISDA 2005
Conference, IEEE Press, Los Alamitos, CA, 2005, 393-398

Gawinecki M., Kruszyk M., Paprzycki M. (2005d) Ontology-based Stereotyping in a
Travel Support System, in: Proceedings of the XXI Fall Meeting of Polish Information
Processing Society, PTI Press, 73-85

http://www.daml.org/
http://www.ists.pwr.wroc.pl/%7Enguyen/eng_index.html

Gilbert A., Gordon M., Nauli A., Paprzycki M., Williams S., Wright J., (2004): Indexing
Agent for Data Gathering in an e-Travel System. Informatica, Vol. 28, No. 1, 69-78

Gordon M., Paprzycki M. (2005a): Designing Agent Based Travel Support System, in:
Proceedings of the ISPDC 2005 Conference, IEEE Computer Society Press, Los
Alamitos, CA, 207-214

Gordon M., Kowalski A., Paprzycki N., Pełech T., Szymczak M., Wasowicz T. (2005b)
Ontologies in a Travel Support System, in: D. J. Bem et. al. (eds.) Internet 2005,
Technical University of Wrocław Press, Wrocław, Poland, 285-300

Greer, J., McCalla, G. (1994) Student modeling: the key to individualized knowledge
based instruction, Springer-Verlag, NATO ASI Series, 3-35

Harrington P., Gordon M., Nauli A., Paprzycki M., Williams S., Wright J. (2003): Using
Software Agents to Index Data in an E-Travel System. N. Callaos (ed.), Electronic
Proceedings of the 7th SCI Conference, Orlando, 2003, CD, file: 001428.pdf, 6 pages

J. Hendler (1999) Is There an Intelligent Agent in Your Future?, Nature, 11 March, 1999,
http://www.nature.com/nature/webmatters/agents/agents.html

Hendler J, (2001) Agents and Semantic Web, IEEE Intelligent Systems Journal, 16, 2,
30-37

JADE (2005) http://jade.tilab.com/

JENA (2005) Jena 2 - A Semantic Web Framework, Hewlett Packard,
http://www.hpl.hp.com/semweb/jena2.htm

Jennings N. R. (2001): An agent-based approach for building complex software systems.
CACM 44, 4, 2001, 35-41

Kaczmarek P., Gordon M., Paprzycki M., Gawinecki M. (2005): The Problem of Agent-
Client Communication on the Internet. Scalable Computing: Practice and Experience,
6(1), 2005, 111-123

Kobsa A., Koenemann J., Pohl W. (2001): Personalized Hypermedia Presentation
Techniques for Improving Online Customer Relationships. The Knowledge Engineering
Review, 16:2, 2001, 111-155

Maes P. (1994): Agents that Reduce Work and Information Overload. Communications
of the ACM, 37, 7, 1994, 31-40

Montaner M., López B., De La Rosa J. L., (2003) A Taxonomy of Recommender Agents
on the Internet, Artificial Intelligence Review, 19, 285–330

http://www.nature.com/nature/webmatters/agents/agents.html
http://www.pdcp.org/vols/vol06/vol06no1abs.html#gawiniecki

Nistor C. E., Oprea R., Paprzycki M., Parakh G. (2002): The Role of a Psychologist in E-
commerce Personalization. Proceedings of the 3rd European E-COMM-LINE 2002
Conference, Bucharest, Romania, 2002, 227-231

Nwana H., Ndumu D. (1999): A perspective on software agents research. The Knowledge
Engineering Review, 14, 2, (1999) 1-18

Orłowska, M. (2005) personal communication

OWL (2005) OWL Web Ontology Language Overview,
http://www.w3.org/TR/owl-features/

Paprzycki M., Angryk R., Kołodziej K., Fiedorowicz I., Cobb M., Ali D. and Rahimi S.
(2001a) “Development of a Travel Support System Based on Intelligent Agent
Technology,” in: S. Niwiński (ed.), Proceedings of the PIONIER 2001 Conference,
Technical University of Poznań Press, Poznań, Poland, pp. 243-255

Paprzycki M., Kalczyński P. J., Fiedorowicz I., Abramowicz W. and Cobb M. (2001b)
“Personalized Traveler Information System,” in: Kubiak B. F. and Korowicki A. (eds.),
Proceedings of the 5th International Conference Human-Computer Interaction, Akwila
Press, Gdańsk, Poland, pp. 445-456

Raccoon (2005) http://rx4rdf.liminalzone.org/Raccoon

RDF (2005) RDF Primer, http://www.w3.org/TR/rdf-primer

Rich E. (1979): User Modeling via Stereotypes. Cognitive Science 3, 329-354

Prometheus (2005) Prometheus Methodology,
http://www.cs.rmit.edu.au/agents/prometheus/

Sołtysiak S., Crabtree B. (1998): Automatic learning of user profiles - towards the
personalization of agent service. BT Technological Journal, 16 (3), 110-117

Wooldridge, M. (2002) An Introduction to MultiAgent Systems, John Wiley & Sons

Wright J., Gordon M., Paprzycki, M., Williams S., Harrington P. (2003):Using the
ebXML Registry Repository to Manage Information in an Internet Travel Support
System. W. Abramowicz and G. Klein (eds.), Proceedings of the BIS'2003 Conference,
Poznań University of Economics Press, Poznań, Poland, 2003, 81-89

Zaslavsky, A. (2004) personal communication

http://rx4rdf.liminalzone.org/Raccoon

