How schema mapping can help in data integration? – integrating the relational databases with ontologies

Maciej Gawinecki
ICT School, Computer Science, XXIII cycle
DII, University of Modena and Reggio Emilia
Via Vignolese 905, 41100 Modena, Italy
maciej.gawinecki@unimore.it

ABSTRACT
Nowadays many applications require information from diverse data sources, in which related data may be represented differently. In this paper we briefly present integration of heterogeneous data sources and describe how this process can be supported by schema mapping techniques. We also motivate our theoretical consideration with the practical example of integrating content of a relational database with Semantic Web data.

1. INTRODUCTION
Data integration is the process of combining data residing at different sources and providing the user with a unified view of these data [5]. As a result the user can ask queries in a single unified way over a set of heterogeneous data sources.

2. VIRTUAL AND MATERIALIZED DATA INTEGRATION
Generally speaking, integration process can be realized at different levels in the database architecture. This can be observed on the Figure 1 (prepared on the base of [6]). Precisely, the approach, where data coming from local sources are replicated and merged into a new database – a data warehouse – is called materialized data integration. In this case queries are executed over unified schema by the data warehouse. Populating the data warehouse is performed during ETL process, i.e. the process of extracting data from local sources, transforming them and loading into the data warehouse. The advantages of this approach are: (a) short response time when querying and (b) avoiding problem of temporal broken connections with local sources. Data integrated into the data warehouse can be also (c) easily filtered, aggregated and annotated. The drawback of this approach is (d) high costs of data storage and maintenance, as the warehouse must be regularly fed with new data and the local data sources must be controlled in respect to the quality of information they provide.

Another approach where data are more loosely coupled, remaining in their local sources, is called virtual data integration. In this case we still have a uniform query interface, but a user query is transformed/reformulated into specialized queries over respective original databases (instead of transforming all source data in advance). Obtained partial results are combined and transformed into an answer of expected form. Therefore we can say that data integration takes place “on the fly”, when processing query. This approach would be suitable for the situation when (a) there arises a certain global information need and/or (b) we only have a query interface to the data sources and no access to the full data, as it happens e.g. when integrating several commercial query services. This approach has the following disadvantages: (a) process of combining results may require complex operations to eliminate duplicates coming from multiply data sources – online data cleansing; (b) complex query optimisation, i.e. finding a compromise between data completeness/quality and response time; and (c) no possibility to update/annotate data in advance.

3. SCHEMA MAPPING
A schema mapping is a set of correspondences between two schemata. Finding a schema mapping is vital for integrating data sources, because it allows to overcome their heterogeneity. Particular:

• data model/representation heterogeneity, e.g. heterogeneity among relational, XML and RDF models,

• schematic heterogeneity, e.g. different data types, different cardinality, normalized vs. denormalized relations, nested structures vs. foreign keys, naming of relations (attributes) etc.

4. SCHEMA MAPPING IN DATA INTEGRATION
In both approaches of data integration uniform query interface is warranted by usage of a single global schema. The
problem of its creation can be solved by usage of schema mapping techniques.

4.1 In materialized data integration

In materialized integration approach we usually design a solution in bottom-up fashion. Before we integrate data from various data sources, first we need to integrate their schemata into the global schema. Therefore global schema can be perceived as materialized global view over local schemata (GaV – Global-as-View). This step requires us to create mappings between all pairs of the source schemata, and thus determine where they overlap and what are correspondences between concepts they model. Once these mappings are discovered, we can integrate source schemata into the target global schema. Having target schema, we can define mappings between it and particular schemata of original databases. The data warehouse can be populated with source data by interpreting each mapping as a transformation query, i.e., a query in a query language (e.g. SQL, SPARQL), which transforms data of the source schema to conform the target schema.

4.2 In virtual data integration

In virtual integration approach design process is determined by an arising information need. Therefore we develop a solution usually in a top-down way, constructing a global schema (hereafter called a mediated schema) to best model the kinds of answers the user wants. Next we find mappings between the global schema and respective source schemata. These mappings will be used for the query unfolding mechanism, translating a user query into respective subqueries over original data sources. Query unfolding can be realized by a mediator – a software component that exploits knowledge about certain local data sources residing under it [9].

In the described method, called also LaV (Local-as-View), each local schema can be perceived as a local view over the global schema. Each local data source or group of similar local data sources (e.g. of the same data model) can be wrapped with a wrapper component, which simply transforms the local query result into the form conforming the mediated schema. Therefore virtual data integration approach is more flexible then materialized one, as when a new data source is being integrated into the system, the global schema does not need to be re-integrated. Moreover, in materialized data integration approach also data already loaded into the warehouse would need to be transformed to conform the new global schema.

5. APPLYING DATA INTEGRATION

As we observed, schema mapping techniques are tightly bound with data integration process. One of promising domains, where they can be applied is integration of data from legacy databases with Semantic Web ontologies. Data materialized integration approach can be useful for example, when there is a need to use rich expressivity of semantic-based inference over existing relational data. On the contrary, virtual data integration can support querying a relational database with use of any ontology query language, e.g. SPARQL. The latter is analysed in more detail.

5.1 Inspiring application

In our research we are modelling a set of sensor perceiving moves of people in our department and storing them in a relational database [8]. These databases can be queried with SQL queries. On the other side we have an RDF-triples store, semantically describing features of immovable, communication devices in different locations of our department. By combining information coming from sensor readings and RDF-triple store we could answer to the questions like: “What are the devices in the location, where Raffaele was recently seen?” We would like to pose these queries via unified query interface.

Expected answer to a query would be not only identifiers of satisfying devices but also their descriptions, as in the following example (an RDF graph in N3 notation):

\[
\text{@prefix vocab:} <http://www.ing.unimore.it/ecosystem/resource/vocab#> .
\text{@prefix rdf:} <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
\text{@prefix xsd:} <http://www.w3.org/2001/XMLSchema#> .
\text{@prefix db:} <http://www.ing.unimore.it/ecosystem/resource#> .
\text{@prefix global:} <http://www.ing.unimore.it/ecosystem/global#> .
\text{@prefix device:} <http://www.ing.unimore.it/ecosystem/device#> .
\]

\[
\text{# knowledge from relational database of sensors readings}
\]

\[
[] \text{a global:Observation ;
 global:hasDateTime "2008-04-11"^^xsd:dateTime ;
 global:inLocation db:location/1 ;
 global:ofPerson db:person/1 .}
\]

\[
\text{db:location/1 a global:Location ;
 global:hasName "Lab202" .
 db:person/1 a global:Person ;
 global:hasName "Raffaele" .}
\]

\[
\text{# knowledge from RDF-triple store}
\]

\[
[] \text{a device:FaxMachine ;
 global:inLocation db:location/1 ;
 device:hasCommunicationNumber +39 332776501"^^xsd:string .}
\]

In the presented example we have information not only about device:FaxMachine, which is located in the same location – db:location/1 – where Raffaele was recently seen, but also details of the observation. In fact, this is done by combining of information coming from two different sources. The proposed architecture of data integration is presented on Figure 2 and will be described in detail in subsequent sections. We decided for virtual data integration as we need up-to-date informations from sensor readings.

5.2 Defining mediated schema

On the base of the example answer we can model the mediated schema (hereafter called the global ontology), against which we will execute user queries. The schema must be an RDF ontology, which define the following classes: global: Observation, global: Location, global: Person; global is a prefix for the namespace reserved for the global schema concepts. We assume that concepts of devices, coming from device namespace, are already described in the device ontology, i.e. the schema for existing RDF-triple store.

To combine results from the relational database with results from the RDF-triple store we need to define the following mappings: (a) the mapping between the global schema and the schema of relational database and (b) the mapping between the device ontology and the schema of relational database. These are two analogical cases, therefore we will focus only on one of them, the mapping (a).

As the global ontology is defined in RDF data model and sensor readings in relational data model, first we need to overcome data model heterogeneity. Therefore we can define mapping (a) as composition of two mappings:
5.3 Representing database in ontology

In [2] Berners-Lee proposed very direct mapping: (a) each table is a RDF class, (b) each field (column) name is a RDF property, (c) each record is a RDF node, an instance of the RDF class and so can play a role of a subject in a RDF statement; and (d) each table field (table cell) play a role of a object in such a statement. This mapping should be explicitly defined with a kind of a mapping language. We found two solutions worth of our interest: OWL.Relational ontology [7] and D2RQ mapping language [4]. The latter is a part of bigger DR2Q platform [3] for treating non-RDF relational databases as virtual RDF graphs. The platform can generate automatically ontological representation for a given database schema. The following fragment describes the mapping of observation and person tables.

```sparql
@prefix vocab: <http://www.ing.unimore.it/ecosystem/resource/vocab#> .
@prefix map: <file:/software/d2r-server-0.4/mapping.n3#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> .

map:observation a d2rq:ClassMap;
  d2rq:dataStorage map:database;
  d2rq:uriPattern "observation/@@observation.id@@";
  d2rq:class vocab:observation .

map:observation_person_id a d2rq:PropertyBridge;
  d2rq:belongsToClassMap map:observation;
  d2rq:property vocab:observation_person_id;
  d2rq:refersToClassMap map:person;
  d2rq:join "observation.person_id = person.id" .

map:person a d2rq:ClassMap;
  d2rq:dataStorage map:database;
  d2rq:uriPattern "person/@@person.id@@";
  d2rq:class vocab:person .

map:person_id a d2rq:PropertyBridge;
  d2rq:belongsToClassMap map:person;
  d2rq:property vocab:person_id;
  d2rq:column "person.id";
  d2rq:datatype xsd:int .
```

Let us comment the most challenging constraints defined in this mapping:

- **Representing tables as class.** The map:person resource introduces a concept of the vocab:person class. In D2RQ mapping language introduced classes does not have to represent literally tables from a database, but can have – as properties – columns (and so their values) from different tables. Therefore here we explicitly say that values of the vocab:person_id property, attached to instances of the vocab:person class, will have values coming from the id column of the person table.

- **Translation of foreign key relation.** In the database model person_id column in observation table plays the role of a foreign key referenced to the primary key column id in the person table. In the ontological representation of the database values of the vocab:observation_person_id property will be taken from the person table (line: d2rq:refersToClassMap map:person) under the condition defined by the d2rq:join property.

- **URI identification of resources representing table records.** For example, records of observation table will be translated to resources with URIs generated according to the pattern defined by d2rq:uriPattern property.

- **Converting datatypes.** Values of the person.id column of the int SQL datatype will be translated into values of the int XML Schema datatype.

The D2RQ query engine, being a part of the platform, can also execute SPARQL queries over the relational database, using the given mapping. In fact, it plays the role of a relational data wrapper in architecture of our system (see Figure 2). For example the following SPARQL query:

```sparql
PREFIX vocab: <http://www.ing.unimore.it/ecosystem/resource/vocab#> .
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

SELECT ?o ?pn
WHERE {
  ?o a vocab:observation .
  ?o vocab:observation_id ?person_id
  FILTER REGEX (?person_id, "observation.person_id = person.id")
}
```

The example of composition of these mappings for the observation table has been given on Figure 3.

![Figure 3](image-url)
5.4 Mapping database schema to mediated schema

Using the CONSTRUCT clause of the SPARQL query language [1], we can define an answer to the query as a single RDF graph. Therefore this technique can be used to build a transformation query, which transforms the ontological representation of the database data into an instance of the global ontology. The example of such a query, returning part of the expected answer, is presented below.

PREFIX vocab: <http://www.ing.unimore.it/ecosystem/resource/vocab#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX global: <http://www.ing.unimore.it/ecosystem/global#>

CONSTRUCT {
 ?l a global:Location ;
 global:madeWhen ?w ;
 global:inLocation ?l ;
 global:hasPerson ?r .

 ?l a global:Observation ;
 global:madeWhen ?w ;
 global:inLocation ?l ;
 global:hasName ?ln .

 ?r a global:Person ;
 global:hasName "Raffaele"^^xsd:string .
}
WHERE {
 ?r a vocab:person ;
 vocab:person_name "Raffaele" .
 ?o a vocab:observation ;
 vocab:observation_person_id ?r ;
 vocab:observation_sensor_id ?s .
 ?s a vocab:sensor ;
 vocab:sensor_location_id ?l .
 ?l a vocab:location ;
 vocab:location_name ?ln .
}
ORDER desc(?w)
LIMIT 1

Here, the WHERE clause binds ?r, ?o, ?s, ?l and ?ln variables to matching resources in the ontological representation of the database. The CONSTRUCT clause uses matched resources to construct the RDF graph describing the last noticed location of Raffaele and details of this observation. The result of this query can be, then, easily combined with knowledge coming from RDF-triple store by the RDF data mediator component of the system (see Figure 2).

6. CONCLUSION

In this article we briefly described two approaches of data integration: where they can be used and how they can be supported with schema mapping techniques. The theory has been followed by the practical example of application integrating relational and ontological data together.

7. ACKNOWLEDGMENTS

This paper has been prepared thanks to materials and help provided by prof. Felix Naumann during the “Data Quality and Data Integration” course.

8. REFERENCES