
Pitfalls of agent system development on the basisof a Travel Support SystemMaiej Gawineki1, Mateusz Kruszyk2,3,Marin Paprzyki1, and Maria Ganzha1

1 Polish Aademy of Sienes, Systems Researh Institute,Warsaw, Poland{Maiej.Gawineki,Marin.Paprzyki,Maria.Ganzha}�ibspan.waw.pl,
2 Adam Mikiewiz University, Department of Mathematis and Computer Sienes,Pozna«, Poland

3 Content Fores, Content Management Servies provider,Amsterdam, Netherlands and Pozna«, Polandwww.ontentfores.plAbstrat. Belief that a partiular software engineering paradigm is uni-versal for all domains is an illusion and agent-oriented engineering is notan exeption. This we have learned during the development of an agent-based Travel Support System. The system was developed as a distributedenvironment to provide user with personalized ontent helping in travelplanning. In this artile we fous on these issues of our systems, whereagents �t and give pratial alternatives, where they do not. We believethat lessons learned in our projet generalize to other projet involvingutilization of agent tehnology.multi-agent system, development methodology, ontent management, personal-ization1 MotivationNowadays a software arhitet, hallenged to develop an appliation solving er-tain problems does not have to start building it from the srath. Being a sup-porter of re-use-what-available philosophy, she an rather selet relevant soft-ware development paradigm and existing o�-the-shelf tehnologies. Obviously,eah existing paradigm provides di�erent abstration for oneptualizing a givenproblem. The role of an arhitet is to know limitations and possibilities of di�er-ent abstrations and hoose the most intuitive and e�ient one(s).4 Therefore,believing the a partiular paradigm is universal for all domains is an illusion andagent-oriented engineering is not an exeption [1℄. The same way as in all other4 In business pratie the hoie of right approahes is of ourse muh more ompli-ated and depends not only on software requirements, but also on various osts ofusing spei� tehnology, skills of available programmers, predited long-term sup-port for existing tehnologies, et.

2software engineering tasks, a number of fators must be onsidered when selet-ing an agent-based approah [2, 3℄. Let us list some of the more prominent ones.An environment that is distributed, highly dynami, unertain and omplex.Suh an environment requires distribution of data, ontrol or expertise and theseobjetives an be naturally supported by agents. For example onsider produ-tion system in a fatory; where points of ontrol behave in both autonomousand ooperative way, and an adapt to loal environment hanges in order torealize a global goal [4℄. Moreover, in a distributed environment aess to remoteresoures an be improved by providing a light agent with mobility: the agentrepresenting ertain point of ontrol an move to the target loation where dataneessary for omputation is stored�instead of transferring large quantities ofdata over the network (as is the ase in a traditional remote proedure all).Agents as a natural metaphor. Organizations and soieties onsisting of oop-erative or ompetitive entities an be naturally modeled by agent teams. Agent-oriented engineering allows lassial methods of building omplex systems (de-omposition, abstration and organization, as in objet-oriented paradigm [5℄) tobe applied in distributed dynamial environments [6℄.Dealing with legay systems. Genesereth and Kethpel suggests using agentsas wrappers for legay software, whih in suh a way an be reused by otheromponents in heterogeneous system [7℄.At the same time it is important to aknowledge that agent paradigm isrelatively novel and may fail in ases in whih traditional approahes (lient-server arhiteture, objet-oriented paradigm et.) and tehnologies (Web Ser-vies, Java RMI, Content Managements Systems et.) have taken their deservedplae, on�rmed by business pratie. This is also the lesson that we have learned,building our Travel Support System and thus we would like to share our expe-rienes in this artile. This knowledge may also be helpful, in the ase whensomeone may naively may laim that agents are a �silver bullet� for softwaredevelopment, while these arguments is still largely untested in pratie [8℄.In the next setion we brie�y summarize the main design harateristis ofour agent-based Travel Support System. We follow with a desription of ma-jor problems that we have run into. We omplete the paper by desription ofproposed solutions to these problems.2 BakgroundTravel Support System (TSS) is an aademi projet aiming, among others, atonvining agent-idea skeptis that building an agent-based system for planninga travel is nowadays both reasonable and possible with use of on-the-shelf teh-nologies [9℄. Our work was inspired by the following senario. Hungry foreigntourist arrives to an unknown ity and seeks a nie restaurant serving uisinethat she likes. Internet, ontated for advie about restaurants in the neighbor-hood, reommends mainly establishments serving steaks, not knowing that thetourist is a fanati vegetarian. This senario determines the following funtion-alities of the system:

3� Content delivery. Content should be delivered to the user in browser-proes-sable form, i.e. HTML, WML et. and math the user query.� Content personalization. Delivered ontent should be personalized aordingto the user-model to avoid situations like the one presented in the senario.� Adaptation of personalization. Habits of the user an hange, therefore hermodel should be adapted on the basis of her ativities reorded by the system.In fat, these funtionalities are realized only by a part of the Travel Support Sys-tem, alled Content Delivery Subsystem. In what follows we fous our attentiononly on this partiular subsystem (hereafter alled system). The remaining partsof the TSS, responsible for data management and olletion have been depitedon �gure 1 and desribed in detail in [9℄. This latter referene (and referenesolleted there to our earlier work) should be onsulted for all remaining detailsonerning the TSS. As far as the tehnologies utilized in the TSS, the RDF

Fig. 1. Travel Support System general arhiteture.language has been applied to demarate data (to allow mahines proess seman-tially rih data and meet requirements of Semanti Web appliations [10, 11℄).Jena framework has been used to manage RDF graphs [12℄ (RDF graphs are per-sisted as Jena models in traditional relational databases). When oneptualizingthe system, the Model-View-Controller design pattern [13℄ has been applied forlear separation between pure data (model) and its visual representation (view).Let us now list the most important agents that have been designed andimplemented in our system� Proxy Agent (PrA) integrates non-agent user environment with the agent-based system (preisely desribed in [14℄). It is able to reeive HTTP requestsfrom a user browser (sine it wraps a simple �home-made� HTTP server),and forward them to the system and return an answer from the system inthe form of an HTTP response.� Session Handling Agent (SHA) is responsible for realizing user requests. Itplays the role of ontroller in the MVC pattern. Spei�ally, it (1) reeives

4 user request from the PrA, (2) reates model responding the request ordelegates the PA to do it, (3) requests the VTA to transform the modelinto the browser-readable view, and (4) passes the response to the PrA.Additional responsibility of the SHA is to trak user feedbak and log it inthe History database.� Pro�le Managing Agent (PMA) is responsible for initializing and learninguser pro�le on the basis of user feedbak (see [15℄, for more details aboutlearning algorithm used in the system). It provides a user pro�le to the PA.� View Transforming Agent (VTA) is a response to the need of providingontent to various user devies, whih an render douments desribed inmarkup language (e.g. HTML) as well as simple TXT messaging. The VTAgenerates a view in terms of a HTML/WML/TXT doument mathing agiven model. It wraps and utilizes Python-based Raoon server, whih ap-plies pointed XSL stylesheet to a given XML doument [16℄.� Personal Agent (PA) ats on behalf of its user, personalizing reommenda-tions restaurants with respet to the user pro�le (see [15℄, for more detailsabout �ltering algorithm used in the system). It is reated only for a durationof the session, for a user who is logged in. Notie that user an log-in andlog-out during a session and while user is logged out the PA an orhestratework that is preparing a response set. When the response set is deliveredand user logs-out, the PA is �killed.�� Restaurant Servie Agent (RSA) Wraps Jena model with data of Polishrestaurants.3 Problems enountered during the development of thesystemIn this setion we present four problems, we met during agenti�ng our system.We tried to present them as general issues with aids, so other developers ouldutilize our experiene in their work.3.1 Agents as wrappers for legay softwareUtilization of agent as wrappers for legay software, was proposed as aid for sys-tems with heterogeneous software [7℄. This is representation of a general movetoward message-oriented ommuniation, whih inreases the interoperability,portability, and �exibility of a distributed appliations [17℄. However, we foundsuh utilization of agents justi�ed only in one of the following situation: (a)where there is no other middleware solution, whih would onnet heterogeneousparts of an appliation, or (b) usage of agents brings additional funtionality towrapped software (as e.g. as Observer or Adaptor design pattern).Let us illustrate this situation by an example from our system. JADE agentsuse two semantially rih languages: SL and ACL [18℄. For example, in thefollowing message the RSA agent informs the PA about requested restaurants:

5(r eques t: sender . . .: r e e i v e r . . .: onto logy t s s−onto logy: language f ipa−s l: ontent ' '(r e s u l t(a t i on (f ind−r e s t au r an t s : query))(' ' <?xml v e r s i on = ' '1.0 ' '? ><rd f :RDF><re s : Restaurant rd f : ID= ' 'Poland_LD_Lodz__Kuhnia_Polska_Obiady_domowe996614020' '><lo : s t r e e tAddre s s> ul . Lutomierska 8</l o : s t r e e tAddre s s></r e s : Restaurant>. . .</rd f :RDF>"))' ')It an be seen that the message ontains also RDF/XML serialized data desrib-ing restaurants. The proess of reating an ACL message by the RSA and readingit by the PA has been depited in Figure 2. RDF data desribing restaurantsand persisted in the Jena model must be serialized to RDF/XML. The rest ofthe message ontent is onstruted with use of Java beans representing ertainonepts in ommuniation ontology and then enoded in Lisp-like strings. Allresulting message-parts are ombined into a single ACL message and ommuni-ated to the PA with uses the RMI tehnology (standard tehnology that JADEuses to transfer messages). The PA reads the ontent of the message in exatlythe reverse way. This proess is de�nitely time- and resoure-onsuming and it is
Fig. 2. Communiation osts in Travel Support System.not justi�ed in our system, where agents do not take advantage of SL's features.The SL language was developed to provide agents with ability of ommuniatingtheir beliefs, desires and unertain beliefs; this takes plae partiularly in the aseof, so alled, BDI agents. However, our agents are not BDI agents and do not

6utilize semantially rih ommuniation. Moreover, as it was desribed above,remote Jena models persisted in the database an be reahed with use of simpledatabase onnetion, without time-onsuming serialization of Jena models andputting them inside of ACL messages. In this ontext, one should also remem-ber about additional e�ort of a developer, who needs to design ommuniationontology (in the SL language).An alternative ould be (1) to use of simple database onnetions, in aseswhere data soures where interfaed by agent wrappers, (2) introduing tradi-tional tehnologies, suh as Java RMI, for requesting remote servies (suh asview transformation), or (3) if possible, integrating interating agents withina single host. Summarizing, interoperability among parts of an appliation issimply warranted by Java-based interfaes of an appliation.3.2 Replaing traditional tehnologies with agentsYou see agents everywhere. Many young developers narrowly follows the visionof Nwana and Ndumu to agentify all software funtionalities [19℄. However, thisis very ommon mistake to design whole system in an agent-oriented arhite-ture, while most of the work an be done with use of traditional approahes andtehnologies [1℄. We have made this mistake for a purpose. The main objetiveof the original design was to utilize agents in all possible funtions. Let us nowlook into some more details as to what we have found.The main senario of the system is ontent delivery, whih is realized in alient-server arhiteture, where the system plays a passive role of server. Thislient-server arhiteture has been naturally transformed into the FIPA RequestInteration Protool [18℄, in whih the Initiator plays the lient role, and the Re-sponder plays the server role. Spei�ally, the SHA (Initiator) requests that theVTA (Responder) generates a view from the model. Separate funtionality hasbeen reated as the PrA, whih wraps the HTTP server. All these agents playsvital roles in our adaptation of the Model-View-Controller pattern in agent-likeenvironment.Summarizing, in general the MVC pattern utilizing the HTTP protool anbe haraterized as:� stateless�eah user request is independent to others, so the results of re-sponse to a user request have no in�uene on results of another one, by ananalogy to the HTTP;5� reative�MVC omponents stay inative between user requests, so theyreat only to external requests, simply like ative objets [20℄;� synhronous� as proess of realizing a single user request is a sequeneof steps, where eah next step annot be realized until the previous one hasbeen �nished: reeiving HTTP request, preparing model, preparing view andreturning HTTP response;5 With an exeption to a term session, whih�however�has been suessfully handledby traditional CMS frameworks

7� parallel, but not onurrent�parallelism is utilized to derease interleavingin I/O operations.Therefore, in this ase, the well known properties of agents de�ned as proative-ness,6 asynhronous ommuniation, statefulness and onurreny7 annot beutilized.Previously, the MVC pattern has been suessfully inorporated and testedin business pratie by use of traditional tehnologies, suh as the Spring Frame-work [21℄. In our ase utilization of agents for this pattern resulted in the fol-lowing disadvantages of the system:� di�ulty of integration of the proposed solution with traditional ContentManagement Systems, due to use of nihe tehnologies (Raoon, agents);this seems more reasonable in the situation where ontent presented to auser is omposed also from fragments not delivered by agents.� foring a potential developer to learn designing web ontent from srath,� introdution of the solution that an be less stable and e�ient that thor-oughly tested solutions, for example (1) not properly managed onurrenyin the HTTP server an be a bottlenek in the system and (2) above men-tioned ommuniation overhead an slow down data �ow in the system.Overall, upon re�etion we an say that we have modeled a part of the systemwith higher abstration than naturally neessary, whih resulted in di�ultiesof verifying and reasoning about suh solution (i.e. the simpler the model theeasier it is to think about it, to verify its orretness and to remove errors).3.3 Solving on�its in funtionalities aquaintaneCreating too many agents, eah one realizing separate funtionality, is yet an-other pitfall in agent-oriented development [1℄. The main problem is a poten-tial ommuniation overload aused by exhange of messages between separatedfuntionalities [22℄. Guidelines for solving suh problems an be found in thePrometheus methodology, whih proposes to analyze, in the given order, thefollowing fators, while speifying partiular agents: (1) data and knowledgeaquaintane, (2) relationships among agents and (3) interations frequeny.Funtionalities whih use the same data or interats with eah other often aresuggested to be integrated into a single agent [23℄. However this approah oftenon�its with a situation, where related resoures, data et. must be loated onseparate hosts (e.g. due to performane issue or beause they belong to di�er-ent owners). However, in this ase ommuniation an be limited by introduingmobile agents. Let us see this approah on the example.At �rst, we applied the Prometheus methodology to the Travel Support Sys-tem; the results an be seen in Figure 3. Red lines demarate aess of agents to6 Agents an reat also hanges of their internal state (being usually results of reason-ing), what an be pereived as proative behaviour7 programming tehnique, in whih two or more, often ooperative, threads are makingprogress, often used to model real world entities

8partiular databases and ontologies (diretions of arrows point read and/or writeaess). Blak lines desribe dependeny of a pointed agent on a given funtional-ity. For instane, PMA reads data from the Stereotypes database, and both writesto and reads data from Pro�les and Statistis databases. Moreover, the learningproess requires aess to (1) History database (and thus ommuniating withthe SHA to obtain the learning data) and Restaurants database (wrapped bythe RSA). Let us onsider this example further. Content-based learning adapted

Fig. 3. Dependenies in the Travel Support System.in the system requires great amount of information: both desription of reom-mended objets (Restaurants) and history of user feedbak about those objets(History). Aording to the integration rule we should have integrated all relatedfuntionalities of the PMA, the SHA and the RSA agents together with aessto the neessary data soures in a single agent. But we have made an exeptionto this rule for the following reasons: (1) restaurant data ould be provided bythe ompany not belonging to the system and thus external to it, (2) the PMAand the SHA should be hosted on separate mahines, beause learning proessrequires large amount of CPU resoures, while the SHA is obligated to respondto many users' requests in a timely fashion. An alternative would be to designatean agent that learns single user pro�le and moves to the host where appropriatedata for a partiular learning phase is stored. Mobility of a suh an agent has twoadvantages: (1) performane boost�it dereases ommuniation overload whileaessing remote data, and (2) design metaphor�it provides the developer withpossibility to realize ertain omputations from a single point of ontrol whihan move itself, while releasing her from neessity of passing ontrol along var-ious remote hosts (as in standard remote proedure alling). Example of suh asolution an be seen in Figure 4, where Mateusz's PA travels aross remote hosts.

9

Fig. 4. Personal Agent migrating during learning proess.3.4 Plaing Personal Agent in real environmentGenerally speaking, automated personal assistants are one of the ways thatagents are viewed [24℄. This perspetive says, that eah user is represented in asystem by a personal agent. We have learned that this approah an be justi�edmostly in situations, where suh an agent resides on a user mahine. Let us seereasons for this onlusion.In our system we deided to utilize personal agent that is responsible for�ltering and personalizing data delivered to the user [25℄. In its original design,suh an agent (also alled intelligent interfae agent) was supposed to exist on auser mahine or mobile phone. The main reasons for this proposed design were:� seurity�user pro�le is not expliitly aessible to the system,� mobility� an agent an aompany the user in her travel, moving togetherwith her mobile devie,� resoure separation� an agent utilizes resoures belonging to its user, notto the system.However, in our system we assumed, that user devies are light (allowing onlyfor visualizing douments demarated in a markup language) and that user isunable or prevented from installing additional appliations (e.g. for seurity rea-sons in a orporate environment). This deision has automatially swept awaythe expeted advantages. Currently it is the system that stores user pro�les.Moreover, a PA an be aessed by its user only through the PrA and this in anobvious ways limits the sense of PA's mobility. And the last, but not least on-sequene is the neessity of providing additional resoures to the PA, whih nowutilizes system hardware. To avoid wasting resoures we deided to instantiate aPersonal Agent only for duration of its user session. Therefore, we ould have�for example�1000 users registered in the system, but only 100 of them atively

10interating with the system, and thus only 100 PAs would exists. However, thisleads to an interesting open question related to ollaborative �ltering. It is typ-ially assumed that in this ase all trusted PAs should be aessible every timeanother PA is about to ask them for their opinion about (restaurant) reommen-dations (to provide maximally relevant response to its user). Sine not all PAs are�alive� all the time, they annot provide a response to suh a query. Therefore,usage of ollaborative �ltering, or even usage of PAs must be re-onsidered.4 How the TSS should be re-designedHaving analyzed problems that have arisen during the design and implementa-tion of the original system, we have found that utilization of traditional teh-nologies for some of its parts would be bene�ial for the overall arhiteture.Therefore let us brie�y disuss whih funtionalities of the system should be re-alized as agents and whih�by utilizing traditional tehnologies, and how theyan ooperate with eah other.4.1 Utilization of agentsAgents an be plaed in the following system senarios:� pro�le learning�beause of their ability to move aross di�erent loations;this approah (1) gives also ability to organize agents in teams of agents,eah team realizing di�erent algorithm of learning, and (2) introdues pos-sibility of seleting agents to realize a partiular task by use of negotiations,depending on agent's urrent loation and urrent aess to the resoure;� ontent �ltering�reation of a single Personal Agent for eah user shouldreplaed by utilization of agents representing groups of users and using dif-ferent �ltering algorithms;Traditional tehnologies should be utilized in the following ases:� MVC-based framework, for example Spring, an be used for ontent delivery,replaing funtionality of the SHA and the VTA (together with the need ofutilization of the Raoon server),� PrA wrapping home-made HTTP server an be replaed by a traditionalservlet ontainer, suh as an Apahe Tomat, on whih the Spring will behosted,� aess to remote data soures an be �unwrapped� and provided diretly via asimple database onnetion; onurrent aess issue must also be onsideredhere (e.g. by use of multiply-read-single-write poliy).4.2 Integration of agents and traditional tehnologiesIt has been shown that in the TSS there exists a demand for o-existene of bothtraditional and agent tehnologies. Therefore appropriate middleware must be

11reated allowing heterogeneous parts of the system to ommuniate with eahother.Servlets exeuted by the CMS need to issue ommands to JADE agents, forexample through the so alled gateway, whih an be featured by the GatewayAgent lass from jade.wrapper.gateway pakage.Agent requiring funtionality of a ertain Web Servie (speaking the WSDLlanguage) an send its request to the Gateway Agent (fromWeb Servies Integra-tion Gateway add-on [26℄), whih translates ACL messages into SOAP messagesin both diretions and forwards them between the Web Servie and the request-ing agent. See �gure 4 for example of suh a situation, where the PA requiresdata about hotels provided by an appropriate Web Servie.5 ConlusionIn this paper we have disussed lessons learned from the design and initial imple-mentation of the agent-based Travel Support System. We have shown, that theinitial assumption�everything should be an agent has only eduational value.However, in a realisti system both agent and traditional tehnologies have tooexist and be utilized in a judiious way. Following the ritial analysis of pit-falls of our design, we have outlined a solution that would make our system morerealisti, �exible and e�ient. Finally, spei� middleware solution was proposedfor integration of non-JADE parts with JADE-based parts of the system.6 AknowledgementsThe authors would like to thank for fruitful disussions: Minor Gordon fromComputer Laboratory of University of Cambridge in United Kingdom, PawelKobzdej from the Systems Researh Institute of the Polish Aademy of Si-enes and Pawel Kazmarek from Hewlett-Pakard Poland. Many thanks alsoto Juan A. Bota Blaya from Information and Teleommuniatinos EngineeringDepartment of the Muria University in Spain for suggestion about the semantioverload issue.Referenes1. Wooldridge, M., Jennings, N.R.: Pitfalls of agent-oriented development. In Syara,K.P., Wooldridge, M., eds.: Proeedings of the 2nd International Conferene onAutonomous Agents (Agents'98), New York, ACM Press (1998) 385�3912. Bond, A.H., Gasser, L., eds.: Readings in Distributed Arti�ial Intelligene. Mor-gan Kaufmann, San Mateo, CA (1988)3. Jennings, N.R., Wooldridge, M.: Appliations of intelligent agents. In: AgentTehnology: Foundations, Appliations and Markets. Springer, Berlin (1998)4. Bussmann, S., Shild, K.: An Agent-based Approah to the Control of FlexibleProdution Systems. In: Proedding of the 8th IEEE International Conferene ofEmergent Tehnologies and Fatory Automation (EFTA 2001), Abtibes Juan-les-pins, Frane (2001) 481�488

125. Booh, G.: Objet-oriented analysis and design with appliations (2nd ed.).Benjamin-Cummings Publishing Co., In., Redwood City, CA, USA (1994)6. Jennings, N.R.: Agent-oriented software engineering. In: Proeedings of the 12thinternational onferene on Industrial and engineering appliations of arti�ial in-telligene and expert systems : multiple approahes to intelligent systems, Seau-us, NJ, USA, Springer-Verlag New York, In. (1999) 4�107. Genesereth, M.R., Kethpel, S.: Software agents. Communiations of the ACM 37(1994) 48�538. Wooldridge, M.: An introdution to multiagent systems. John Wiley & Sons (2002)9. Ganzha, M., Gawineki, M., Paprzyki, M., G¡siorowski, R., Pisarek, S., Hyska,W.: Utilizing Semanti Web and Software Agents in a Travel Support System.In: Semanti Web Tehnologies and eBusiness: Virtual Organization and BusinessProess Automation. Idea Publishing Group (2006)10. Resoure Desription Framework (RDF). http://www.w3.org/RDF/ (2005)11. Semanti Web Ativity Statement. http://www.w3.org/2001/sw/Ativity (2001)12. Jena a semanti web framework for java. http://jena.soureforge.net/ (2005)13. Ramahandran, V.: Design Patterns for Building Flexible and MaintainableJ2EE Appliations. http://java.sun.om/developer/tehnialArtiles/J2EE/despat/ (2002)14. Gawineki, M., Gordon, M., Kazmarek, P., Paprzyki, M.: The Problem of Agent-Client Communiation on the Internet. Parallel and Distributed Computing Pra-ties 6 (2003) 111�12315. Gawineki, M.: User modelling on a base of interation with WWW system. Mas-ter's thesis, Deparment of Mathematis and Computer Siene, Adam MikiewizUniversity, Poznan (2005)16. Raoon. http://rx4rdf.liminalzone.org/Raoon (2005)17. Rao, B.R.: Making the most of middleware. 12 (1995) 89�0618. Foundation for intelligent physial agents. http://www.fipa.org (2007)19. Nwana, H.S., Ndumu, D.T.: A perspetive on software agents researh. The Knowl-edge Engineering Review 14 (1999) 1�1820. Guessoum, Z., Briot, J.P.P.: From ative objets to autonomous agents. IEEEConurreny 7 (1999) 68�76 iteseer.ist.psu.edu/guessoum99from.html.21. Spring Appliation Framework. http://www.springframework.org (2006)22. Tusiewiz, M.: System wieloagentowy: teoria, projekt, implementaja oraz przyk-lady zastosowa«. Master's thesis, Department of Mathematis, Physis and Com-puter Siene, Jaggielonian University, Kraków (2003)23. Padgham, L., Winiko�, M.: Prometheus: a methodology for developing intelligentagents. In: AAMAS '02: Proeedings of the �rst international joint onferene onAutonomous agents and multiagent systems, New York, NY, USA, ACM Press(2002) 37�3824. Laufmann, S.C.: Agent software for near-term suess in distributed appliations.(1998) 49�6925. Nesbitt, S.: Collaborative Filtering on the Web: An agent-based Approah (Liter-ature Review) (1997)26. JADE Board, Whitestein Tehnologies AG: JADE Web Servies Integration Gate-way Guide. http://jade.tilab.om (2006)

