
Pitfalls of agent system development on the basisof a Travel Support SystemMa
iej Gawine
ki1, Mateusz Kruszyk2,3,Mar
in Paprzy
ki1, and Maria Ganzha1

1 Polish A
ademy of S
ien
es, Systems Resear
h Institute,Warsaw, Poland{Ma
iej.Gawine
ki,Mar
in.Paprzy
ki,Maria.Ganzha}�ibspan.waw.pl,
2 Adam Mi
kiewi
z University, Department of Mathemati
s and Computer S
ien
es,Pozna«, Poland

3 Content For
es, Content Management Servi
es provider,Amsterdam, Netherlands and Pozna«, Polandwww.
ontentfor
es.plAbstra
t. Belief that a parti
ular software engineering paradigm is uni-versal for all domains is an illusion and agent-oriented engineering is notan ex
eption. This we have learned during the development of an agent-based Travel Support System. The system was developed as a distributedenvironment to provide user with personalized
ontent helping in travelplanning. In this arti
le we fo
us on these issues of our systems, whereagents �t and give pra
ti
al alternatives, where they do not. We believethat lessons learned in our proje
t generalize to other proje
t involvingutilization of agent te
hnology.multi-agent system, development methodology,
ontent management, personal-ization1 MotivationNowadays a software ar
hite
t,
hallenged to develop an appli
ation solving
er-tain problems does not have to start building it from the s
rat
h. Being a sup-porter of re-use-what-available philosophy, she
an rather sele
t relevant soft-ware development paradigm and existing o�-the-shelf te
hnologies. Obviously,ea
h existing paradigm provides di�erent abstra
tion for
on
eptualizing a givenproblem. The role of an ar
hite
t is to know limitations and possibilities of di�er-ent abstra
tions and
hoose the most intuitive and e�
ient one(s).4 Therefore,believing the a parti
ular paradigm is universal for all domains is an illusion andagent-oriented engineering is not an ex
eption [1℄. The same way as in all other4 In business pra
ti
e the
hoi
e of right approa
hes is of
ourse mu
h more
ompli-
ated and depends not only on software requirements, but also on various
osts ofusing spe
i�
 te
hnology, skills of available programmers, predi
ted long-term sup-port for existing te
hnologies, et
.

2software engineering tasks, a number of fa
tors must be
onsidered when sele
t-ing an agent-based approa
h [2, 3℄. Let us list some of the more prominent ones.An environment that is distributed, highly dynami
, un
ertain and
omplex.Su
h an environment requires distribution of data,
ontrol or expertise and theseobje
tives
an be naturally supported by agents. For example
onsider produ
-tion system in a fa
tory; where points of
ontrol behave in both autonomousand
ooperative way, and
an adapt to lo
al environment
hanges in order torealize a global goal [4℄. Moreover, in a distributed environment a

ess to remoteresour
es
an be improved by providing a light agent with mobility: the agentrepresenting
ertain point of
ontrol
an move to the target lo
ation where datane
essary for
omputation is stored�instead of transferring large quantities ofdata over the network (as is the
ase in a traditional remote pro
edure
all).Agents as a natural metaphor. Organizations and so
ieties
onsisting of
oop-erative or
ompetitive entities
an be naturally modeled by agent teams. Agent-oriented engineering allows
lassi
al methods of building
omplex systems (de-
omposition, abstra
tion and organization, as in obje
t-oriented paradigm [5℄) tobe applied in distributed dynami
al environments [6℄.Dealing with lega
y systems. Genesereth and Ket
hpel suggests using agentsas wrappers for lega
y software, whi
h in su
h a way
an be reused by other
omponents in heterogeneous system [7℄.At the same time it is important to a
knowledge that agent paradigm isrelatively novel and may fail in
ases in whi
h traditional approa
hes (
lient-server ar
hite
ture, obje
t-oriented paradigm et
.) and te
hnologies (Web Ser-vi
es, Java RMI, Content Managements Systems et
.) have taken their deservedpla
e,
on�rmed by business pra
ti
e. This is also the lesson that we have learned,building our Travel Support System and thus we would like to share our expe-rien
es in this arti
le. This knowledge may also be helpful, in the
ase whensomeone may naively may
laim that agents are a �silver bullet� for softwaredevelopment, while these arguments is still largely untested in pra
ti
e [8℄.In the next se
tion we brie�y summarize the main design
hara
teristi
s ofour agent-based Travel Support System. We follow with a des
ription of ma-jor problems that we have run into. We
omplete the paper by des
ription ofproposed solutions to these problems.2 Ba
kgroundTravel Support System (TSS) is an a
ademi
 proje
t aiming, among others, at
onvin
ing agent-idea skepti
s that building an agent-based system for planninga travel is nowadays both reasonable and possible with use of on-the-shelf te
h-nologies [9℄. Our work was inspired by the following s
enario. Hungry foreigntourist arrives to an unknown
ity and seeks a ni
e restaurant serving
uisinethat she likes. Internet,
onta
ted for advi
e about restaurants in the neighbor-hood, re
ommends mainly establishments serving steaks, not knowing that thetourist is a fanati
 vegetarian. This s
enario determines the following fun
tion-alities of the system:

3� Content delivery. Content should be delivered to the user in browser-pro
es-sable form, i.e. HTML, WML et
. and mat
h the user query.� Content personalization. Delivered
ontent should be personalized a

ordingto the user-model to avoid situations like the one presented in the s
enario.� Adaptation of personalization. Habits of the user
an
hange, therefore hermodel should be adapted on the basis of her a
tivities re
orded by the system.In fa
t, these fun
tionalities are realized only by a part of the Travel Support Sys-tem,
alled Content Delivery Subsystem. In what follows we fo
us our attentiononly on this parti
ular subsystem (hereafter
alled system). The remaining partsof the TSS, responsible for data management and
olle
tion have been depi
tedon �gure 1 and des
ribed in detail in [9℄. This latter referen
e (and referen
es
olle
ted there to our earlier work) should be
onsulted for all remaining details
on
erning the TSS. As far as the te
hnologies utilized in the TSS, the RDF

Fig. 1. Travel Support System general ar
hite
ture.language has been applied to demar
ate data (to allow ma
hines pro
ess seman-ti
ally ri
h data and meet requirements of Semanti
 Web appli
ations [10, 11℄).Jena framework has been used to manage RDF graphs [12℄ (RDF graphs are per-sisted as Jena models in traditional relational databases). When
on
eptualizingthe system, the Model-View-Controller design pattern [13℄ has been applied for
lear separation between pure data (model) and its visual representation (view).Let us now list the most important agents that have been designed andimplemented in our system� Proxy Agent (PrA) integrates non-agent user environment with the agent-based system (pre
isely des
ribed in [14℄). It is able to re
eive HTTP requestsfrom a user browser (sin
e it wraps a simple �home-made� HTTP server),and forward them to the system and return an answer from the system inthe form of an HTTP response.� Session Handling Agent (SHA) is responsible for realizing user requests. Itplays the role of
ontroller in the MVC pattern. Spe
i�
ally, it (1) re
eives

4 user request from the PrA, (2)
reates model responding the request ordelegates the PA to do it, (3) requests the VTA to transform the modelinto the browser-readable view, and (4) passes the response to the PrA.Additional responsibility of the SHA is to tra
k user feedba
k and log it inthe History database.� Pro�le Managing Agent (PMA) is responsible for initializing and learninguser pro�le on the basis of user feedba
k (see [15℄, for more details aboutlearning algorithm used in the system). It provides a user pro�le to the PA.� View Transforming Agent (VTA) is a response to the need of providing
ontent to various user devi
es, whi
h
an render do
uments des
ribed inmarkup language (e.g. HTML) as well as simple TXT messaging. The VTAgenerates a view in terms of a HTML/WML/TXT do
ument mat
hing agiven model. It wraps and utilizes Python-based Ra

oon server, whi
h ap-plies pointed XSL stylesheet to a given XML do
ument [16℄.� Personal Agent (PA) a
ts on behalf of its user, personalizing re
ommenda-tions restaurants with respe
t to the user pro�le (see [15℄, for more detailsabout �ltering algorithm used in the system). It is
reated only for a durationof the session, for a user who is logged in. Noti
e that user
an log-in andlog-out during a session and while user is logged out the PA
an or
hestratework that is preparing a response set. When the response set is deliveredand user logs-out, the PA is �killed.�� Restaurant Servi
e Agent (RSA) Wraps Jena model with data of Polishrestaurants.3 Problems en
ountered during the development of thesystemIn this se
tion we present four problems, we met during agenti�ng our system.We tried to present them as general issues with aids, so other developers
ouldutilize our experien
e in their work.3.1 Agents as wrappers for lega
y softwareUtilization of agent as wrappers for lega
y software, was proposed as aid for sys-tems with heterogeneous software [7℄. This is representation of a general movetoward message-oriented
ommuni
ation, whi
h in
reases the interoperability,portability, and �exibility of a distributed appli
ations [17℄. However, we foundsu
h utilization of agents justi�ed only in one of the following situation: (a)where there is no other middleware solution, whi
h would
onne
t heterogeneousparts of an appli
ation, or (b) usage of agents brings additional fun
tionality towrapped software (as e.g. as Observer or Adaptor design pattern).Let us illustrate this situation by an example from our system. JADE agentsuse two semanti
ally ri
h languages: SL and ACL [18℄. For example, in thefollowing message the RSA agent informs the PA about requested restaurants:

5(r eques t: sender . . .: r e
 e i v e r . . .: onto logy t s s−onto logy: language f ipa−s l:
ontent ' '(r e s u l t(a
 t i on (f ind−r e s t au r an t s : query))(' ' <?xml v e r s i on = ' '1.0 ' '? ><rd f :RDF><re s : Restaurant rd f : ID= ' 'Poland_LD_Lodz__Ku
hnia_Polska_Obiady_domowe996614020' '><lo
 : s t r e e tAddre s s> ul . Lutomierska 8</l o
 : s t r e e tAddre s s></r e s : Restaurant>. . .</rd f :RDF>"))' ')It
an be seen that the message
ontains also RDF/XML serialized data des
rib-ing restaurants. The pro
ess of
reating an ACL message by the RSA and readingit by the PA has been depi
ted in Figure 2. RDF data des
ribing restaurantsand persisted in the Jena model must be serialized to RDF/XML. The rest ofthe message
ontent is
onstru
ted with use of Java beans representing
ertain
on
epts in
ommuni
ation ontology and then en
oded in Lisp-like strings. Allresulting message-parts are
ombined into a single ACL message and
ommuni-
ated to the PA with uses the RMI te
hnology (standard te
hnology that JADEuses to transfer messages). The PA reads the
ontent of the message in exa
tlythe reverse way. This pro
ess is de�nitely time- and resour
e-
onsuming and it is
Fig. 2. Communi
ation
osts in Travel Support System.not justi�ed in our system, where agents do not take advantage of SL's features.The SL language was developed to provide agents with ability of
ommuni
atingtheir beliefs, desires and un
ertain beliefs; this takes pla
e parti
ularly in the
aseof, so
alled, BDI agents. However, our agents are not BDI agents and do not

6utilize semanti
ally ri
h
ommuni
ation. Moreover, as it was des
ribed above,remote Jena models persisted in the database
an be rea
hed with use of simpledatabase
onne
tion, without time-
onsuming serialization of Jena models andputting them inside of ACL messages. In this
ontext, one should also remem-ber about additional e�ort of a developer, who needs to design
ommuni
ationontology (in the SL language).An alternative
ould be (1) to use of simple database
onne
tions, in
aseswhere data sour
es where interfa
ed by agent wrappers, (2) introdu
ing tradi-tional te
hnologies, su
h as Java RMI, for requesting remote servi
es (su
h asview transformation), or (3) if possible, integrating intera
ting agents withina single host. Summarizing, interoperability among parts of an appli
ation issimply warranted by Java-based interfa
es of an appli
ation.3.2 Repla
ing traditional te
hnologies with agentsYou see agents everywhere. Many young developers narrowly follows the visionof Nwana and Ndumu to agentify all software fun
tionalities [19℄. However, thisis very
ommon mistake to design whole system in an agent-oriented ar
hite
-ture, while most of the work
an be done with use of traditional approa
hes andte
hnologies [1℄. We have made this mistake for a purpose. The main obje
tiveof the original design was to utilize agents in all possible fun
tions. Let us nowlook into some more details as to what we have found.The main s
enario of the system is
ontent delivery, whi
h is realized in a
lient-server ar
hite
ture, where the system plays a passive role of server. This
lient-server ar
hite
ture has been naturally transformed into the FIPA RequestIntera
tion Proto
ol [18℄, in whi
h the Initiator plays the
lient role, and the Re-sponder plays the server role. Spe
i�
ally, the SHA (Initiator) requests that theVTA (Responder) generates a view from the model. Separate fun
tionality hasbeen
reated as the PrA, whi
h wraps the HTTP server. All these agents playsvital roles in our adaptation of the Model-View-Controller pattern in agent-likeenvironment.Summarizing, in general the MVC pattern utilizing the HTTP proto
ol
anbe
hara
terized as:� stateless�ea
h user request is independent to others, so the results of re-sponse to a user request have no in�uen
e on results of another one, by ananalogy to the HTTP;5� rea
tive�MVC
omponents stay ina
tive between user requests, so theyrea
t only to external requests, simply like a
tive obje
ts [20℄;� syn
hronous� as pro
ess of realizing a single user request is a sequen
eof steps, where ea
h next step
annot be realized until the previous one hasbeen �nished: re
eiving HTTP request, preparing model, preparing view andreturning HTTP response;5 With an ex
eption to a term session, whi
h�however�has been su

essfully handledby traditional CMS frameworks

7� parallel, but not
on
urrent�parallelism is utilized to de
rease interleavingin I/O operations.Therefore, in this
ase, the well known properties of agents de�ned as proa
tive-ness,6 asyn
hronous
ommuni
ation, statefulness and
on
urren
y7
annot beutilized.Previously, the MVC pattern has been su

essfully in
orporated and testedin business pra
ti
e by use of traditional te
hnologies, su
h as the Spring Frame-work [21℄. In our
ase utilization of agents for this pattern resulted in the fol-lowing disadvantages of the system:� di�
ulty of integration of the proposed solution with traditional ContentManagement Systems, due to use of ni
he te
hnologies (Ra

oon, agents);this seems more reasonable in the situation where
ontent presented to auser is
omposed also from fragments not delivered by agents.� for
ing a potential developer to learn designing web
ontent from s
rat
h,� introdu
tion of the solution that
an be less stable and e�
ient that thor-oughly tested solutions, for example (1) not properly managed
on
urren
yin the HTTP server
an be a bottlene
k in the system and (2) above men-tioned
ommuni
ation overhead
an slow down data �ow in the system.Overall, upon re�e
tion we
an say that we have modeled a part of the systemwith higher abstra
tion than naturally ne
essary, whi
h resulted in di�
ultiesof verifying and reasoning about su
h solution (i.e. the simpler the model theeasier it is to think about it, to verify its
orre
tness and to remove errors).3.3 Solving
on�i
ts in fun
tionalities a
quaintan
eCreating too many agents, ea
h one realizing separate fun
tionality, is yet an-other pitfall in agent-oriented development [1℄. The main problem is a poten-tial
ommuni
ation overload
aused by ex
hange of messages between separatedfun
tionalities [22℄. Guidelines for solving su
h problems
an be found in thePrometheus methodology, whi
h proposes to analyze, in the given order, thefollowing fa
tors, while spe
ifying parti
ular agents: (1) data and knowledgea
quaintan
e, (2) relationships among agents and (3) intera
tions frequen
y.Fun
tionalities whi
h use the same data or intera
ts with ea
h other often aresuggested to be integrated into a single agent [23℄. However this approa
h often
on�i
ts with a situation, where related resour
es, data et
. must be lo
ated onseparate hosts (e.g. due to performan
e issue or be
ause they belong to di�er-ent owners). However, in this
ase
ommuni
ation
an be limited by introdu
ingmobile agents. Let us see this approa
h on the example.At �rst, we applied the Prometheus methodology to the Travel Support Sys-tem; the results
an be seen in Figure 3. Red lines demar
ate a

ess of agents to6 Agents
an rea
t also
hanges of their internal state (being usually results of reason-ing), what
an be per
eived as proa
tive behaviour7 programming te
hnique, in whi
h two or more, often
ooperative, threads are makingprogress, often used to model real world entities

8parti
ular databases and ontologies (dire
tions of arrows point read and/or writea

ess). Bla
k lines des
ribe dependen
y of a pointed agent on a given fun
tional-ity. For instan
e, PMA reads data from the Stereotypes database, and both writesto and reads data from Pro�les and Statisti
s databases. Moreover, the learningpro
ess requires a

ess to (1) History database (and thus
ommuni
ating withthe SHA to obtain the learning data) and Restaurants database (wrapped bythe RSA). Let us
onsider this example further. Content-based learning adapted

Fig. 3. Dependen
ies in the Travel Support System.in the system requires great amount of information: both des
ription of re
om-mended obje
ts (Restaurants) and history of user feedba
k about those obje
ts(History). A

ording to the integration rule we should have integrated all relatedfun
tionalities of the PMA, the SHA and the RSA agents together with a

essto the ne
essary data sour
es in a single agent. But we have made an ex
eptionto this rule for the following reasons: (1) restaurant data
ould be provided bythe
ompany not belonging to the system and thus external to it, (2) the PMAand the SHA should be hosted on separate ma
hines, be
ause learning pro
essrequires large amount of CPU resour
es, while the SHA is obligated to respondto many users' requests in a timely fashion. An alternative would be to designatean agent that learns single user pro�le and moves to the host where appropriatedata for a parti
ular learning phase is stored. Mobility of a su
h an agent has twoadvantages: (1) performan
e boost�it de
reases
ommuni
ation overload whilea

essing remote data, and (2) design metaphor�it provides the developer withpossibility to realize
ertain
omputations from a single point of
ontrol whi
h
an move itself, while releasing her from ne
essity of passing
ontrol along var-ious remote hosts (as in standard remote pro
edure
alling). Example of su
h asolution
an be seen in Figure 4, where Mateusz's PA travels a
ross remote hosts.

9

Fig. 4. Personal Agent migrating during learning pro
ess.3.4 Pla
ing Personal Agent in real environmentGenerally speaking, automated personal assistants are one of the ways thatagents are viewed [24℄. This perspe
tive says, that ea
h user is represented in asystem by a personal agent. We have learned that this approa
h
an be justi�edmostly in situations, where su
h an agent resides on a user ma
hine. Let us seereasons for this
on
lusion.In our system we de
ided to utilize personal agent that is responsible for�ltering and personalizing data delivered to the user [25℄. In its original design,su
h an agent (also
alled intelligent interfa
e agent) was supposed to exist on auser ma
hine or mobile phone. The main reasons for this proposed design were:� se
urity�user pro�le is not expli
itly a

essible to the system,� mobility� an agent
an a

ompany the user in her travel, moving togetherwith her mobile devi
e,� resour
e separation� an agent utilizes resour
es belonging to its user, notto the system.However, in our system we assumed, that user devi
es are light (allowing onlyfor visualizing do
uments demar
ated in a markup language) and that user isunable or prevented from installing additional appli
ations (e.g. for se
urity rea-sons in a
orporate environment). This de
ision has automati
ally swept awaythe expe
ted advantages. Currently it is the system that stores user pro�les.Moreover, a PA
an be a

essed by its user only through the PrA and this in anobvious ways limits the sense of PA's mobility. And the last, but not least
on-sequen
e is the ne
essity of providing additional resour
es to the PA, whi
h nowutilizes system hardware. To avoid wasting resour
es we de
ided to instantiate aPersonal Agent only for duration of its user session. Therefore, we
ould have�for example�1000 users registered in the system, but only 100 of them a
tively

10intera
ting with the system, and thus only 100 PAs would exists. However, thisleads to an interesting open question related to
ollaborative �ltering. It is typ-i
ally assumed that in this
ase all trusted PAs should be a

essible every timeanother PA is about to ask them for their opinion about (restaurant) re
ommen-dations (to provide maximally relevant response to its user). Sin
e not all PAs are�alive� all the time, they
annot provide a response to su
h a query. Therefore,usage of
ollaborative �ltering, or even usage of PAs must be re-
onsidered.4 How the TSS should be re-designedHaving analyzed problems that have arisen during the design and implementa-tion of the original system, we have found that utilization of traditional te
h-nologies for some of its parts would be bene�
ial for the overall ar
hite
ture.Therefore let us brie�y dis
uss whi
h fun
tionalities of the system should be re-alized as agents and whi
h�by utilizing traditional te
hnologies, and how they
an
ooperate with ea
h other.4.1 Utilization of agentsAgents
an be pla
ed in the following system s
enarios:� pro�le learning�be
ause of their ability to move a
ross di�erent lo
ations;this approa
h (1) gives also ability to organize agents in teams of agents,ea
h team realizing di�erent algorithm of learning, and (2) introdu
es pos-sibility of sele
ting agents to realize a parti
ular task by use of negotiations,depending on agent's
urrent lo
ation and
urrent a

ess to the resour
e;�
ontent �ltering�
reation of a single Personal Agent for ea
h user shouldrepla
ed by utilization of agents representing groups of users and using dif-ferent �ltering algorithms;Traditional te
hnologies should be utilized in the following
ases:� MVC-based framework, for example Spring,
an be used for
ontent delivery,repla
ing fun
tionality of the SHA and the VTA (together with the need ofutilization of the Ra

oon server),� PrA wrapping home-made HTTP server
an be repla
ed by a traditionalservlet
ontainer, su
h as an Apa
he Tom
at, on whi
h the Spring will behosted,� a

ess to remote data sour
es
an be �unwrapped� and provided dire
tly via asimple database
onne
tion;
on
urrent a

ess issue must also be
onsideredhere (e.g. by use of multiply-read-single-write poli
y).4.2 Integration of agents and traditional te
hnologiesIt has been shown that in the TSS there exists a demand for
o-existen
e of bothtraditional and agent te
hnologies. Therefore appropriate middleware must be

11
reated allowing heterogeneous parts of the system to
ommuni
ate with ea
hother.Servlets exe
uted by the CMS need to issue
ommands to JADE agents, forexample through the so
alled gateway, whi
h
an be featured by the GatewayAgent
lass from jade.wrapper.gateway pa
kage.Agent requiring fun
tionality of a
ertain Web Servi
e (speaking the WSDLlanguage)
an send its request to the Gateway Agent (fromWeb Servi
es Integra-tion Gateway add-on [26℄), whi
h translates ACL messages into SOAP messagesin both dire
tions and forwards them between the Web Servi
e and the request-ing agent. See �gure 4 for example of su
h a situation, where the PA requiresdata about hotels provided by an appropriate Web Servi
e.5 Con
lusionIn this paper we have dis
ussed lessons learned from the design and initial imple-mentation of the agent-based Travel Support System. We have shown, that theinitial assumption�everything should be an agent has only edu
ational value.However, in a realisti
 system both agent and traditional te
hnologies have to
oexist and be utilized in a judi
ious way. Following the
riti
al analysis of pit-falls of our design, we have outlined a solution that would make our system morerealisti
, �exible and e�
ient. Finally, spe
i�
 middleware solution was proposedfor integration of non-JADE parts with JADE-based parts of the system.6 A
knowledgementsThe authors would like to thank for fruitful dis
ussions: Minor Gordon fromComputer Laboratory of University of Cambridge in United Kingdom, PawelKobzdej from the Systems Resear
h Institute of the Polish A
ademy of S
i-en
es and Pawel Ka
zmarek from Hewlett-Pa
kard Poland. Many thanks alsoto Juan A. Bota Blaya from Information and Tele
ommuni
atinos EngineeringDepartment of the Mur
ia University in Spain for suggestion about the semanti
overload issue.Referen
es1. Wooldridge, M., Jennings, N.R.: Pitfalls of agent-oriented development. In Sy
ara,K.P., Wooldridge, M., eds.: Pro
eedings of the 2nd International Conferen
e onAutonomous Agents (Agents'98), New York, ACM Press (1998) 385�3912. Bond, A.H., Gasser, L., eds.: Readings in Distributed Arti�
ial Intelligen
e. Mor-gan Kaufmann, San Mateo, CA (1988)3. Jennings, N.R., Wooldridge, M.: Appli
ations of intelligent agents. In: AgentTe
hnology: Foundations, Appli
ations and Markets. Springer, Berlin (1998)4. Bussmann, S., S
hild, K.: An Agent-based Approa
h to the Control of FlexibleProdu
tion Systems. In: Pro
edding of the 8th IEEE International Conferen
e ofEmergent Te
hnologies and Fa
tory Automation (EFTA 2001), Abtibes Juan-les-pins, Fran
e (2001) 481�488

125. Boo
h, G.: Obje
t-oriented analysis and design with appli
ations (2nd ed.).Benjamin-Cummings Publishing Co., In
., Redwood City, CA, USA (1994)6. Jennings, N.R.: Agent-oriented software engineering. In: Pro
eedings of the 12thinternational
onferen
e on Industrial and engineering appli
ations of arti�
ial in-telligen
e and expert systems : multiple approa
hes to intelligent systems, Se
au-
us, NJ, USA, Springer-Verlag New York, In
. (1999) 4�107. Genesereth, M.R., Ket
hpel, S.: Software agents. Communi
ations of the ACM 37(1994) 48�538. Wooldridge, M.: An introdu
tion to multiagent systems. John Wiley & Sons (2002)9. Ganzha, M., Gawine
ki, M., Paprzy
ki, M., G¡siorowski, R., Pisarek, S., Hyska,W.: Utilizing Semanti
 Web and Software Agents in a Travel Support System.In: Semanti
 Web Te
hnologies and eBusiness: Virtual Organization and BusinessPro
ess Automation. Idea Publishing Group (2006)10. Resour
e Des
ription Framework (RDF). http://www.w3.org/RDF/ (2005)11. Semanti
 Web A
tivity Statement. http://www.w3.org/2001/sw/A
tivity (2001)12. Jena a semanti
 web framework for java. http://jena.sour
eforge.net/ (2005)13. Rama
handran, V.: Design Patterns for Building Flexible and MaintainableJ2EE Appli
ations. http://java.sun.
om/developer/te
hni
alArti
les/J2EE/despat/ (2002)14. Gawine
ki, M., Gordon, M., Ka
zmarek, P., Paprzy
ki, M.: The Problem of Agent-Client Communi
ation on the Internet. Parallel and Distributed Computing Pra
-ti
es 6 (2003) 111�12315. Gawine
ki, M.: User modelling on a base of intera
tion with WWW system. Mas-ter's thesis, Deparment of Mathemati
s and Computer S
ien
e, Adam Mi
kiewi
zUniversity, Poznan (2005)16. Ra

oon. http://rx4rdf.liminalzone.org/Ra
oon (2005)17. Rao, B.R.: Making the most of middleware. 12 (1995) 89�0618. Foundation for intelligent physi
al agents. http://www.fipa.org (2007)19. Nwana, H.S., Ndumu, D.T.: A perspe
tive on software agents resear
h. The Knowl-edge Engineering Review 14 (1999) 1�1820. Guessoum, Z., Briot, J.P.P.: From a
tive obje
ts to autonomous agents. IEEECon
urren
y 7 (1999) 68�76
iteseer.ist.psu.edu/guessoum99from.html.21. Spring Appli
ation Framework. http://www.springframework.org (2006)22. Tusiewi
z, M.: System wieloagentowy: teoria, projekt, implementa
ja oraz przyk-lady zastosowa«. Master's thesis, Department of Mathemati
s, Physi
s and Com-puter S
ien
e, Jaggielonian University, Kraków (2003)23. Padgham, L., Winiko�, M.: Prometheus: a methodology for developing intelligentagents. In: AAMAS '02: Pro
eedings of the �rst international joint
onferen
e onAutonomous agents and multiagent systems, New York, NY, USA, ACM Press(2002) 37�3824. Laufmann, S.C.: Agent software for near-term su

ess in distributed appli
ations.(1998) 49�6925. Nesbitt, S.: Collaborative Filtering on the Web: An agent-based Approa
h (Liter-ature Review) (1997)26. JADE Board, Whitestein Te
hnologies AG: JADE Web Servi
es Integration Gate-way Guide. http://jade.tilab.
om (2006)

