Pitfalls of agent system development on the basis
of a Travel Support System

Maciej Gawinecki!, Mateusz Kruszyk??3,
Marcin Paprzycki!, and Maria Ganzha!

! Polish Academy of Sciences, Systems Research Institute,

Warsaw, Poland
{Maciej.Gawinecki,Marcin.Paprzycki,Maria.Ganzha}@ibspan.waw.pl,
2 Adam Mickiewicz University, Department of Mathematics and Computer Sciences,

Poznan, Poland

3 Content Forces, Content Management Services provider,

Amsterdam, Netherlands and Poznan, Poland
www.contentforces.pl

Abstract. Belief that a particular software engineering paradigm is uni-
versal for all domains is an illusion and agent-oriented engineering is not
an exception. This we have learned during the development of an agent-
based Travel Support System. The system was developed as a distributed
environment to provide user with personalized content helping in travel
planning. In this article we focus on these issues of our systems, where
agents fit and give practical alternatives, where they do not. We believe
that lessons learned in our project generalize to other project involving
utilization of agent technology.

multi-agent system, development methodology, content management, personal-
ization

1 DMotivation

Nowadays a software architect, challenged to develop an application solving cer-
tain problems does not have to start building it from the scratch. Being a sup-
porter of re-use-what-available philosophy, she can rather select relevant soft-
ware development paradigm and existing off-the-shelf technologies. Obviously,
each existing paradigm provides different abstraction for conceptualizing a given
problem. The role of an architect is to know limitations and possibilities of differ-
ent abstractions and choose the most intuitive and efficient one(s).* Therefore,
believing the a particular paradigm is universal for all domains is an illusion and
agent-oriented engineering is not an exception [1]. The same way as in all other

* In business practice the choice of right approaches is of course much more compli-
cated and depends not only on software requirements, but also on various costs of
using specific technology, skills of available programmers, predicted long-term sup-
port for existing technologies, etc.

software engineering tasks, a number of factors must be considered when select-
ing an agent-based approach [2, 3]. Let us list some of the more prominent ones.

An environment that is distributed, highly dynamic, uncertain and complex.
Such an environment requires distribution of data, control or expertise and these
objectives can be naturally supported by agents. For example consider produc-
tion system in a factory; where points of control behave in both autonomous
and cooperative way, and can adapt to local environment changes in order to
realize a global goal [4]. Moreover, in a distributed environment access to remote
resources can be improved by providing a light agent with mobility: the agent
representing certain point of control can move to the target location where data
necessary for computation is stored instead of transferring large quantities of
data over the network (as is the case in a traditional remote procedure call).

Agents as a natural metaphor. Organizations and societies consisting of coop-
erative or competitive entities can be naturally modeled by agent teams. Agent-
oriented engineering allows classical methods of building complex systems (de-
composition, abstraction and organization, as in object-oriented paradigm [5]) to
be applied in distributed dynamical environments [6].

Dealing with legacy systems. Genesereth and Ketchpel suggests using agents
as wrappers for legacy software, which in such a way can be reused by other
components in heterogeneous system [7].

At the same time it is important to acknowledge that agent paradigm is
relatively novel and may fail in cases in which traditional approaches (client-
server architecture, object-oriented paradigm etc.) and technologies (Web Ser-
vices, Java RMI, Content Managements Systems etc.) have taken their deserved
place, confirmed by business practice. This is also the lesson that we have learned,
building our Travel Support System and thus we would like to share our expe-
riences in this article. This knowledge may also be helpful, in the case when
someone may naively may claim that agents are a “silver bullet” for software
development, while these arguments is still largely untested in practice [§].

In the next section we briefly summarize the main design characteristics of
our agent-based Travel Support System. We follow with a description of ma-
jor problems that we have run into. We complete the paper by description of
proposed solutions to these problems.

2 Background

Travel Support System (TSS) is an academic project aiming, among others, at
convincing agent-idea skeptics that building an agent-based system for planning
a travel is nowadays both reasonable and possible with use of on-the-shelf tech-
nologies [9]. Our work was inspired by the following scenario. Hungry foreign
tourist arrives to an unknown city and seeks a mnice restaurant serving cuisine
that she likes. Internet, contacted for advice about restaurants in the neighbor-
hood, recommends mainly establishments serving steaks, mot knowing that the
tourist is a fanatic vegetarian. This scenario determines the following function-
alities of the system:

— Content delivery. Content should be delivered to the user in browser-proces-
sable form, i.e. HTML, WML etc. and match the user query.

— Content personalization. Delivered content should be personalized according
to the user-model to avoid situations like the one presented in the scenario.

— Adaptation of personalization. Habits of the user can change, therefore her
model should be adapted on the basis of her activities recorded by the system.

In fact, these functionalities are realized only by a part of the Travel Support Sys-
tem, called Content Delivery Subsystem. In what follows we focus our attention
only on this particular subsystem (hereafter called system). The remaining parts
of the TSS, responsible for data management and collection have been depicted
on figure 1 and described in detail in [9]. This latter reference (and references
collected there to our earlier work) should be consulted for all remaining details
concerning the TSS. As far as the technologies utilized in the TSS, the RDF

Delivery Collection

Content s ' - = Content

Content Storage

User

Content other
g Management sources

User

Fig. 1. Travel Support System general architecture.

language has been applied to demarcate data (to allow machines process seman-
tically rich data and meet requirements of Semantic Web applications [10, 11]).
Jena framework has been used to manage RDF graphs [12] (RDF graphs are per-
sisted as Jena models in traditional relational databases). When conceptualizing
the system, the Model-View-Controller design pattern [13] has been applied for
clear separation between pure data (model) and its visual representation (view).

Let us now list the most important agents that have been designed and
implemented in our system

— Proxy Agent (PrA) integrates non-agent user environment with the agent-
based system (precisely described in [14]). It is able to receive HT TP requests
from a user browser (since it wraps a simple “home-made” HTTP server),
and forward them to the system and return an answer from the system in
the form of an HTTP response.

— Session Handling Agent (SHA) is responsible for realizing user requests. It
plays the role of controller in the MVC pattern. Specifically, it (1) receives

user request from the PrA, (2) creates model responding the request or
delegates the PA to do it, (3) requests the VTA to transform the model
into the browser-readable view, and (4) passes the response to the PrA.
Additional responsibility of the SHA is to track user feedback and log it in
the History database.

— Profile Managing Agent (PMA) is responsible for initializing and learning
user profile on the basis of user feedback (see [15], for more details about
learning algorithm used in the system). It provides a user profile to the PA.

— View Transforming Agent (VTA) is a response to the need of providing
content to various user devices, which can render documents described in
markup language (e.g. HTML) as well as simple TXT messaging. The VTA
generates a view in terms of a HTML/WML/TXT document matching a
given model. It wraps and utilizes Python-based Raccoon server, which ap-
plies pointed XSL stylesheet to a given XML document [16].

— Personal Agent (PA) acts on behalf of its user, personalizing recommenda-
tions restaurants with respect to the user profile (see [15], for more details
about filtering algorithm used in the system). It is created only for a duration
of the session, for a user who is logged in. Notice that user can log-in and
log-out during a session and while user is logged out the PA can orchestrate
work that is preparing a response set. When the response set is delivered
and user logs-out, the PA is “killed.”

— Restaurant Service Agent (RSA) Wraps Jena model with data of Polish
restaurants.

3 Problems encountered during the development of the
system

In this section we present four problems, we met during agentifing our system.
We tried to present them as general issues with aids, so other developers could
utilize our experience in their work.

3.1 Agents as wrappers for legacy software

Utilization of agent as wrappers for legacy software, was proposed as aid for sys-
tems with heterogeneous software [7]. This is representation of a general move
toward message-oriented communication, which increases the interoperability,
portability, and flexibility of a distributed applications [17]. However, we found
such utilization of agents justified only in one of the following situation: (a)
where there is no other middleware solution, which would connect heterogeneous
parts of an application, or (b) usage of agents brings additional functionality to
wrapped software (as e.g. as Observer or Adaptor design pattern).

Let us illustrate this situation by an example from our system. JADE agents
use two semantically rich languages: SL and ACL [18]. For example, in the
following message the RSA agent informs the PA about requested restaurants:

(request
:sender
:receiver ...
:ontology tss—ontology
:language fipa—sl

:content ’’
(result
(action (find—restaurants :query))
(’?<?xml version—="’1.0""7>
<rdf :RDF>

<res:Restaurant rdf:ID=""Poland LD Lodz
_Kuchnia_Polska_ Obiady _domowe996614020°’ >
<loc :streetAddress> ul. Lutomierska 8
</loc:streetAddress>
</res:Restaurant>

</r.(.1.f:RDF>")
)

)3

)

It can be seen that the message contains also RDF /XML serialized data describ-
ing restaurants. The process of creating an ACL message by the RSA and reading
it by the PA has been depicted in Figure 2. RDF data describing restaurants
and persisted in the Jena model must be serialized to RDF/XML. The rest of
the message content is constructed with use of Java beans representing certain
concepts in communication ontology and then encoded in Lisp-like strings. All
resulting message-parts are combined into a single ACL message and communi-
cated to the PA with uses the RMI technology (standard technology that JADE
uses to transfer messages). The PA reads the content of the message in exactly
the reverse way. This process is definitely time- and resource-consuming and it is

Jena SL expressions Jena SL expressions
model (Java beans) model (Java beans)

serializing encoding deserializing decoding

SL expressions
Lisp-like strings

SL expressions
Lisp-like strings

RDF/XML

adding

ACL Message
at sender location

adding extracting

extracting

ACL Message
at sender location

RMI
communication

Fig. 2. Communication costs in Travel Support System.

not justified in our system, where agents do not take advantage of SL’s features.
The SL language was developed to provide agents with ability of communicating
their beliefs, desires and uncertain beliefs; this takes place particularly in the case
of, so called, BDI agents. However, our agents are not BDI agents and do not

utilize semantically rich communication. Moreover, as it was described above,
remote Jena models persisted in the database can be reached with use of simple
database connection, without time-consuming serialization of Jena models and
putting them inside of ACL messages. In this context, one should also remem-
ber about additional effort of a developer, who needs to design communication
ontology (in the SL language).

An alternative could be (1) to use of simple database connections, in cases
where data sources where interfaced by agent wrappers, (2) introducing tradi-
tional technologies, such as Java RMI, for requesting remote services (such as
view transformation), or (3) if possible, integrating interacting agents within
a single host. Summarizing, interoperability among parts of an application is
simply warranted by Java-based interfaces of an application.

3.2 Replacing traditional technologies with agents

You see agents everywhere. Many young developers narrowly follows the vision
of Nwana and Ndumu to agentify all software functionalities [19]. However, this
is very common mistake to design whole system in an agent-oriented architec-
ture, while most of the work can be done with use of traditional approaches and
technologies [1]. We have made this mistake for a purpose. The main objective
of the original design was to utilize agents in all possible functions. Let us now
look into some more details as to what we have found.

The main scenario of the system is content delivery, which is realized in a
client-server architecture, where the system plays a passive role of server. This
client-server architecture has been naturally transformed into the FIPA Request
Interaction Protocol [18], in which the Initiator plays the client role, and the Re-
sponder plays the server role. Specifically, the SHA (Initiator) requests that the
VTA (Responder) generates a view from the model. Separate functionality has
been created as the PrA, which wraps the HTTP server. All these agents plays
vital roles in our adaptation of the Model-View-Controller pattern in agent-like
environment.

Summarizing, in general the MVC pattern utilizing the HTTP protocol can
be characterized as:

— stateless—each user request is independent to others, so the results of re-
sponse to a user request have no influence on results of another one, by an
analogy to the HTTP;?

— reactive—MVC components stay inactive between user requests, so they
react only to external requests, simply like active objects [20];

— synchronous— as process of realizing a single user request is a sequence
of steps, where each next step cannot be realized until the previous one has
been finished: receiving HT'TP request, preparing model, preparing view and
returning HTTP response;

5 With an exception to a term session, which—however—has been successfully handled
by traditional CMS frameworks

— parallel, but not concurrent parallelism is utilized to decrease interleaving
in I/O operations.

Therefore, in this case, the well known properties of agents defined as proactive-
ness,® asynchronous communication, statefulness and concurrency’ cannot be
utilized.

Previously, the MVC pattern has been successfully incorporated and tested
in business practice by use of traditional technologies, such as the Spring Frame-
work [21]. In our case utilization of agents for this pattern resulted in the fol-

lowing disadvantages of the system:

— difficulty of integration of the proposed solution with traditional Content
Management Systems, due to use of niche technologies (Raccoon, agents);
this seems more reasonable in the situation where content presented to a
user is composed also from fragments not delivered by agents.

— forcing a potential developer to learn designing web content from scratch,

— introduction of the solution that can be less stable and efficient that thor-
oughly tested solutions, for example (1) not properly managed concurrency
in the HTTP server can be a bottleneck in the system and (2) above men-
tioned communication overhead can slow down data flow in the system.

Overall, upon reflection we can say that we have modeled a part of the system
with higher abstraction than naturally necessary, which resulted in difficulties
of verifying and reasoning about such solution (i.e. the simpler the model the
easier it is to think about it, to verify its correctness and to remove errors).

3.3 Solving conflicts in functionalities acquaintance

Creating too many agents, each one realizing separate functionality, is yet an-
other pitfall in agent-oriented development [1]. The main problem is a poten-
tial communication overload caused by exchange of messages between separated
functionalities [22]. Guidelines for solving such problems can be found in the
Prometheus methodology, which proposes to analyze, in the given order, the
following factors, while specifying particular agents: (1) data and knowledge
acquaintance, (2) relationships among agents and (3) interactions frequency.
Functionalities which use the same data or interacts with each other often are
suggested to be integrated into a single agent [23]. However this approach often
conflicts with a situation, where related resources, data etc. must be located on
separate hosts (e.g. due to performance issue or because they belong to differ-
ent owners). However, in this case communication can be limited by introducing
mobile agents. Let us see this approach on the example.

At first, we applied the Prometheus methodology to the Travel Support Sys-
tem; the results can be seen in Figure 3. Red lines demarcate access of agents to

6 Agents can react also changes of their internal state (being usually results of reason-
ing), what can be perceived as proactive behaviour

" programming technique, in which two or more, often cooperative, threads are making
progress, often used to model real world entities

particular databases and ontologies (directions of arrows point read and /or write
access). Black lines describe dependency of a pointed agent on a given functional-
ity. For instance, PMA reads data from the Stereotypes database, and both writes
to and reads data from Profiles and Statistics databases. Moreover, the learning
process requires access to (1) History database (and thus communicating with
the SHA to obtain the learning data) and Restaurants database (wrapped by
the RSA). Let us consider this example further. Content-based learning adapted

= SHAspace|
= Comman Space]
HistoryDB
serModellingOnt
TemplatesDB)-.. oeiadeling
_
tealizing user reques DataModelOnt
T
initializng Use [puefrs
7N
finding relevantinformation /
V; \
’ \ rmatting response
4 \
e [=] VTA& Raccoon Space|
// realizing personal request \
27 \ EtylesheetsFiss
-~
- |

] o

= TemplatssDB

obtaining domain onfology ™\ | =] ReREpacH \,

——
RSA S
fost 108 sgafching restaurant
astaurants|

Fig. 3. Dependencies in the Travel Support System.

in the system requires great amount of information: both description of recom-
mended objects (Restaurants) and history of user feedback about those objects
(History). According to the integration rule we should have integrated all related
functionalities of the PMA, the SHA and the RSA agents together with access
to the necessary data sources in a single agent. But we have made an exception
to this rule for the following reasons: (1) restaurant data could be provided by
the company not belonging to the system and thus external to it, (2) the PMA
and the SHA should be hosted on separate machines, because learning process
requires large amount of CPU resources, while the SHA is obligated to respond
to many users’ requests in a timely fashion. An alternative would be to designate
an agent that learns single user profile and moves to the host where appropriate
data for a particular learning phase is stored. Mobility of a such an agent has two
advantages: (1) performance boost it decreases communication overload while
accessing remote data, and (2) design metaphor it provides the developer with
possibility to realize certain computations from a single point of control which
can move itself, while releasing her from necessity of passing control along var-
ious remote hosts (as in standard remote procedure calling). Example of such a
solution can be seen in Figure 4, where Mateusz’s PA travels across remote hosts.

Learning user profile scenario

MIGRATING
e ING,

Fig. 4. Personal Agent migrating during learning process.

3.4 Placing Personal Agent in real environment

Generally speaking, automated personal assistants are one of the ways that
agents are viewed [24]. This perspective says, that each user is represented in a
system by a personal agent. We have learned that this approach can be justified
mostly in situations, where such an agent resides on a user machine. Let us see
reasons for this conclusion.

In our system we decided to utilize personal agent that is responsible for
filtering and personalizing data delivered to the user [25]. In its original design,
such an agent (also called intelligent interface agent) was supposed to exist on a
user machine or mobile phone. The main reasons for this proposed design were:

— security user profile is not explicitly accessible to the system,

— mobility— an agent can accompany the user in her travel, moving together
with her mobile device,

— resource separation— an agent utilizes resources belonging to its user, not
to the system.

However, in our system we assumed, that user devices are light (allowing only
for visualizing documents demarcated in a markup language) and that user is
unable or prevented from installing additional applications (e.g. for security rea-
sons in a corporate environment). This decision has automatically swept away
the expected advantages. Currently it is the system that stores user profiles.
Moreover, a PA can be accessed by its user only through the PrA and this in an
obvious ways limits the sense of PA’s mobility. And the last, but not least con-
sequence is the necessity of providing additional resources to the PA, which now
utilizes system hardware. To avoid wasting resources we decided to instantiate a
Personal Agent only for duration of its user session. Therefore, we could have—
for example 1000 users registered in the system, but only 100 of them actively

10

interacting with the system, and thus only 100 PAs would exists. However, this
leads to an interesting open question related to collaborative filtering. It is typ-
ically assumed that in this case all trusted PAs should be accessible every time
another PA is about to ask them for their opinion about (restaurant) recommen-
dations (to provide maximally relevant response to its user). Since not all PAs are
“alive” all the time, they cannot provide a response to such a query. Therefore,
usage of collaborative filtering, or even usage of PAs must be re-considered.

4 How the TSS should be re-designed

Having analyzed problems that have arisen during the design and implementa-
tion of the original system, we have found that utilization of traditional tech-
nologies for some of its parts would be beneficial for the overall architecture.
Therefore let us briefly discuss which functionalities of the system should be re-
alized as agents and which by utilizing traditional technologies, and how they
can cooperate with each other.

4.1 Utilization of agents
Agents can be placed in the following system scenarios:

— profile learning—because of their ability to move across different locations;
this approach (1) gives also ability to organize agents in teams of agents,
each team realizing different algorithm of learning, and (2) introduces pos-
sibility of selecting agents to realize a particular task by use of negotiations,
depending on agent’s current location and current access to the resource;

— content filtering—creation of a single Personal Agent for each user should
replaced by utilization of agents representing groups of users and using dif-
ferent filtering algorithms;

Traditional technologies should be utilized in the following cases:

— MVC-based framework, for example Spring, can be used for content delivery,
replacing functionality of the SHA and the VTA (together with the need of
utilization of the Raccoon server),

— PrA wrapping home-made HTTP server can be replaced by a traditional
servlet container, such as an Apache Tomcat, on which the Spring will be
hosted,

— access to remote data sources can be “unwrapped” and provided directly via a
simple database connection; concurrent access issue must also be considered
here (e.g. by use of multiply-read-single-write policy).

4.2 Integration of agents and traditional technologies

It has been shown that in the TSS there exists a demand for co-existence of both
traditional and agent technologies. Therefore appropriate middleware must be

11

created allowing heterogeneous parts of the system to communicate with each
other.

Servlets executed by the CMS need to issue commands to JADE agents, for
example through the so called gateway, which can be featured by the Gateway
Agent class from jade.wrapper.gateway package.

Agent requiring functionality of a certain Web Service (speaking the WSDL
language) can send its request to the Gateway Agent (from Web Services Integra-
tion Gateway add-on [26]), which translates ACL messages into SOAP messages
in both directions and forwards them between the Web Service and the request-
ing agent. See figure 4 for example of such a situation, where the PA requires
data about hotels provided by an appropriate Web Service.

5 Conclusion

In this paper we have discussed lessons learned from the design and initial imple-
mentation of the agent-based Travel Support System. We have shown, that the
initial assumption everything should be an agent has only educational value.
However, in a realistic system both agent and traditional technologies have to
coexist and be utilized in a judicious way. Following the critical analysis of pit-
falls of our design, we have outlined a solution that would make our system more
realistic, flexible and efficient. Finally, specific middleware solution was proposed
for integration of non-JADE parts with JADE-based parts of the system.

6 Acknowledgements

The authors would like to thank for fruitful discussions: Minor Gordon from
Computer Laboratory of University of Cambridge in United Kingdom, Pawel
Kobzdej from the Systems Research Institute of the Polish Academy of Sci-
ences and Pawel Kaczmarek from Hewlett-Packard Poland. Many thanks also
to Juan A. Bota Blaya from Information and Telecommunicatinos Engineering
Department of the Murcia University in Spain for suggestion about the semantic
overload issue.

References

1. Wooldridge, M., Jennings, N.R.: Pitfalls of agent-oriented development. In Sycara,
K.P., Wooldridge, M., eds.: Proceedings of the 2nd International Conference on
Autonomous Agents (Agents’98), New York, ACM Press (1998) 385 391

2. Bond, A.H., Gasser, L., eds.: Readings in Distributed Artificial Intelligence. Mor-
gan Kaufmann, San Mateo, CA (1988)

3. Jennings, N.R., Wooldridge, M.: Applications of intelligent agents. In: Agent
Technology: Foundations, Applications and Markets. Springer, Berlin (1998)

4. Bussmann, S.; Schild, K.: An Agent-based Approach to the Control of Flexible
Production Systems. In: Procedding of the 8th IEEE International Conference of
Emergent Technologies and Factory Automation (EFTA 2001), Abtibes Juan-les-
pins, France (2001) 481 488

12

10.
11.
12.
13.

14.

15.

16.
17.
18.
19.
20.
21.
22.

23.

24.

25.

26.

Booch, G.: Object-oriented analysis and design with applications (2nd ed.).
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA (1994)
Jennings, N.R.: Agent-oriented software engineering. In: Proceedings of the 12th
international conference on Industrial and engineering applications of artificial in-
telligence and expert systems : multiple approaches to intelligent systems, Secau-
cus, NJ, USA, Springer-Verlag New York, Inc. (1999) 4-10

Genesereth, M.R., Ketchpel, S.: Software agents. Communications of the ACM 37
(1994) 48 53

Wooldridge, M.: An introduction to multiagent systems. John Wiley & Sons (2002)
Ganzha, M., Gawinecki, M., Paprzycki, M., Gasiorowski, R., Pisarek, S., Hyska,
W.: Utilizing Semantic Web and Software Agents in a Travel Support System.
In: Semantic Web Technologies and eBusiness: Virtual Organization and Business
Process Automation. Idea Publishing Group (2006)

Resource Description Framework (RDF). http://www.w3.org/RDF/ (2005)
Semantic Web Activity Statement. http://www.w3.0rg/2001/sw/Activity (2001)
Jena a semantic web framework for java. http://jena.sourceforge.net/ (2005)
Ramachandran, V.: Design Patterns for Building Flexible and Maintainable
J2EE Applications. http://java.sun.com/developer/technicalArticles/J2EE/
despat/ (2002)

Gawinecki, M., Gordon, M., Kaczmarek, P., Paprzycki, M.: The Problem of Agent-
Client Communication on the Internet. Parallel and Distributed Computing Prac-
tices 6 (2003) 111 123

Gawinecki, M.: User modelling on a base of interaction with WWW system. Mas-
ter’s thesis, Deparment of Mathematics and Computer Science, Adam Mickiewicz
University, Poznan (2005)

Raccoon. http://rx4rdf.liminalzone.org/Racoon (2005)

Rao, B.R.: Making the most of middleware. 12 (1995) 89-06

Foundation for intelligent physical agents. http://www.fipa.org (2007)

Nwana, H.S., Ndumu, D.T.: A perspective on software agents research. The Knowl-
edge Engineering Review 14 (1999) 1-18

Guessoum, Z., Briot, J.P.P.: From active objects to autonomous agents. IEEE
Concurrency 7 (1999) 68-76 citeseer.ist.psu.edu/guessoum99from.html.
Spring Application Framework. http://www.springframework.org (2006)
Tusiewicz, M.: System wieloagentowy: teoria, projekt, implementacja oraz przyk-
lady zastosowan. Master’s thesis, Department of Mathematics, Physics and Com-
puter Science, Jaggielonian University, Krakow (2003)

Padgham, L., Winikoff, M.: Prometheus: a methodology for developing intelligent
agents. In: AAMAS ’02: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems, New York, NY, USA, ACM Press
(2002) 37 38

Laufmann, S.C.: Agent software for near-term success in distributed applications.
(1998) 49-69

Nesbitt, S.: Collaborative Filtering on the Web: An agent-based Approach (Liter-
ature Review) (1997)

JADE Board, Whitestein Technologies AG: JADE Web Services Integration Gate-
way Guide. http://jade.tilab.com (2006)

