

Individual lecture Individual lecture
presentationpresentation

Kate Slezavina

Content
 “Prometheus: A Methodology for Developing

Intelligent Agents”
 Lin Padgham and Michael Winikoff RMIT University, GPO Box 2476V, Melbourne, AUSTRALIA

 This paper presents the Prometheus methodology for developing
intelligent agent systems.

 “Multiagent systems engineering (MaSE) ”
 SCOTT A. DELOACH, MARK F. WOOD AND CLINT H. SPARKMAN Air Force Institute of Technology Graduate

School of Engineering and Management Department of Electrical and Computer Engineering Wright-Patterson Air
Force Base, OH 45433-7765

 This paper describes the MaSE methodology for developing
heterogeneous multiagent systems.

 “Comparing Agent Oriented Methodologies”
 Khanh Hoa Dam Michael Winikoff School of Computer Science and Information Technology RMIT University,

Melbourne, Australia

 This paper presents a comparison of two agent-oriented
methodologies: MaSE and Prometheus.

Prometheus

 The claim is that Prometheus is developed
in sufficient detail to be used by a
nonexpert.

Prometheus

 A detailed comparison with the existing
methodologies:

 Supports the development of intelligent
agents which use goals, beliefs, plans, and

 events. By contrast, many other
methodologies (i.e. MASE) treat agents as
“simple software processes that interact
with each other to meet an overall system
goal”

Prometheus

 Provides “start-to-end” support (from
specification to detailed design and
implementation) and a detailed process.

Prometheus

 Evolved out of practical industrial and
pedagogical experience, and has been used

 by both industrial practitioners and by
undergraduate students. By contrast, many

 other methodologies have been used only
by their creators and often only on small

 (and unimplemented) examples.

Prometheus

 Provides hierarchical structuring
mechanisms which allow design to be
performed at multiple levels of abstraction.
Such mechanisms are crucial to the
practicality of the methodology on large
designs.

Prometheus

 The Prometheus methodology consists of three
phases.

 The system specification phase focuses on identifying
the basic functionalities of the system, along with
inputs (percepts), outputs (actions) and any important
shared data sources.

 The architectural design phase uses the outputs from
the previous phase to determine which agents the
system will contain and how they will interact.

 The detailed design phase looks at the internals of
each agent and how it will accomplish its tasks within
the overall system.

Prometheus

Prometheus (system specification
phase)
 System specification phaseSystem specification phase
 Agent systems are typically situated in a changing and dynamic

environment, which can be affected, through not totally controlled by
the agent system.

 One of the earliest questions which must be answered is how the
agent system is going to interact with this environment.

 We will call incoming information from the environment
“percepts”, and the mechanisms for affecting the environment
“actions”.

 An event is a significant occurrence for the agent system, whereas
a percept is raw data available to the agent system.

 EXAMPLE: The online bookstore has the percepts of customers
visiting the website, selecting items, placing orders (using forms), and
receiving email from customers, delivery services and book suppliers.
Actions are bank transactions, sending email, and placing delivery
orders.

Prometheus (system specification
phase)
 In parallel with discovering or specifying the

percepts and actions the developer must start to
describe what it is the agent system should do in a
broader sense - the functionalities of the system.

 In defining a functionality it is important to
also define the information that is required, and
the information produced by it. The functionality
descriptor contains a name, a short natural
language description, a list of actions, a list of
relevant percepts, data used and produced and a
brief description of interactions with other
functionalities.

Prometheus (system specification
phase)
 While functionalities focus on particular aspects of the

system, use case scenarios give a more common view of
the system.

 The central part of a use case scenario in Prometheus
is the sequence of steps describing an example of the
system in operation.

 Each step is annotated with the name of the
functionality responsible, as well as information used or
produced. The use case templates contain an
identification number, a brief natural language
overview, an optional field called context which indicates
when this scenario would happen, or the start point of the
scenario, the scenario itself which is a sequence of steps,
a summary of all the information used in the various
steps, and a list of small variations.

Prometheus (Architectural design)

 Architectural design
 The major decision to be made during the architectural

design is which agents should exist. We assign
functionalities to agents by analyzing the artifacts of the
previous phase to suggest possible assignments of
functionalities to agents. The process of identifying agents
by grouping functionalities involves analyzing the reasons
for and against groupings of particular functionalities. If
functionalities use the same data it is an indication for
grouping them. Reasons against groupings may be clearly
unrelated functionality or existence on different hardware
platforms. More generally, we seek to have agents which
have strong coherence and loose coupling.

Prometheus (Architectural design)

 In order to evaluate a potential grouping for
coupling we use an agent acquaintance
diagram. This diagram simply links each
agent with each other agent with which it
interacts. A design with fewer linkages is
less highly coupled and therefore
preferable.

Prometheus (Architectural design)

 Once a decision has been made as to
which agents the system should
contain it is possible to start working
out and describing some of the
necessary information about agents.

Prometheus (Architectural design)

 Questions which need to be resolved about
agents at this stage include:

 How many agents of this type will there be?
What is the lifetime of the agent?

 If they are created or destroyed during system
operation (other than at start-up and shut-down),
what triggers this?

 Agent initialization - what needs to be done?
 What data does this agent need to keep track of?

 What events will this agent react to?

Prometheus (Architectural design)

 In order to accomplish the various aims of the
system agents will also send messages to each
other. These must also be identified at this stage.
It is also necessary to identify what information
fields will be carried in these messages, as this
forms the interface definition between the agents.

 Shared data objects (if any) must also be
identified at this stage. A good design will
minimize those, but there may be situations where
it is reasonable to have shared data objects. Data
objects should be specified using traditional
object oriented techniques.

Prometheus (Architectural design)

 The system overview diagram events and
shared data objects. It is definitely the
single most important artifact of the entire
design process, although of course it cannot
really be understood fully in isolation. By
viewing this diagram we obtain a general
understanding of how the system as a
whole will function. Messages between
agents can include a reply, although this is
not shown explicitly on the diagram.

Prometheus (Architectural design)

Prometheus (Architectural design)

 The final aspect of the architectural design is to
specify fully the interaction between agents. Interaction
diagrams are used as an initial tool for doing this, while
fully specified interaction protocols are the final design
artifact. Interaction diagrams are borrowed directly from
object oriented design, showing interaction between
agents rather than objects.

 Interaction diagrams, like use cases, give only a partial
picture of the system’s behavior. In order to have a
precisely defined system we progress from interaction
diagrams to interaction protocols which define precisely
which interaction sequences are valid within the system.
Next figure (right) shows the protocol for the credit check
portion of the interaction diagram shown in this figure
(left).

Prometheus

Prometheus (Detailed designDetailed design)

 Detailed designDetailed design
 Detailed design focuses on developing

the internal structure of each of the agents
and how it will achieve its tasks within the
system. It is at this stage of the design that
the methodology becomes specific to
agents that use user-defined plans,
triggered by goals or events, such as the
various implementations of Belief, Desire,
Intention (BDI) systems

Prometheus (Detailed designDetailed design)

 The focus of the detailed design phase is
on defining capabilities (modules within
the agent), internal events, plans and
detailed data structures. The internal
structure of each capability is then
described, optionally using or introducing
further capabilities. At the bottom level
capabilities are defined in terms of plans,
events, and data.

Prometheus (Detailed designDetailed design)

 Each capability should be described by a
capability descriptor which contains information
about the external interface to the capability -
which events are inputs and which events are
produced by (as inputs to other capabilities). It
also contains a natural language description of
the functionality, a unique descriptive name,
information regarding interactions with other
capabilities, or inclusions of other capabilities,
and a reference to data read and written by the
capability.

Prometheus (Detailed designDetailed design)

 A further level of detail is provided by
capability diagrams which take a single
capability and describe its internals. At the
bottom level these will contain plans, with
events providing the connections between
plans, just as they do between capabilities
and between agents. At intermediate levels
they may contain nested capabilities or a
mixture of capabilities and plans.

Prometheus (Detailed designDetailed design)

 The final design artifacts required are the
individual plan, event and data descriptors.
These descriptions provide the details
necessary to move into implementation.
Exactly what are the appropriate details for
these descriptors will depend on aspects of
the implementation platform.

Prometheus (Detailed designDetailed design)

 One of the advantages of this methodology
is the number of places where automated
tools can be used for consistency checking
across the various artifacts of the design
process. For example, the input and output
events for an agent must be the same on the
system overview diagram and on the agent
overview diagram.

MaSE

 MaSE uses the abstraction provided by
multiagent systems for developing
intelligent, distributed software systems.
MaSE is a further abstraction of the object-
oriented paradigm where agents are a
specialization of objects. Instead of simple
objects, with methods that can be invoked
by other objects, agents coordinate with
each other via conversations and act
proactively to accomplish individual and
system-wide goals.

MaSE

 The general
operation of MaSE
follows the phases
and steps shown on
the right side:

MaSE

 The MaSE Analysis phase consists of
three steps: Capturing Goals, Applying Use
Cases, and Refining Roles.

 The Design phase has four steps: Creating
Agent Classes, Constructing Conversations,
Assembling Agent Classes, and System
Design.

MaSE

 A major strength of MaSE is the ability
to track changes throughout the process.

 Every object created during the analysis
and design phases can be traced forward or
backward through the different steps to
other related objects. For instance, a goal
derived in the Capturing Goals step can be
traced to a specific role, task, and agent
class.

MaSE (Analysis phaseAnalysis phase)

 Analysis Phase
 The purpose of the MaSE Analysis phase is to produce

a set of roles whose tasks describe what the system has to
do to meet its overall requirements. A role describes an
entity that performs some function within the system. In
MaSE, each role is responsible for achieving, or helping
to achieve specific system goals or sub-goals. MaSE roles
are analogous to roles played by actors in a play or by
members of a typical company structure.

 The overall approach in the MaSE Analysis phase is
fairly simple. Define the system goals from a set of
functional requirements and then define the roles
necessary to meet those goals. While a direct mapping
from goals to roles is possible, MaSE suggests the use of
Use Cases to help validate the system goals and derive an
initial set of roles.

MaSE (Analysis phaseAnalysis phase)

 There are two sub-steps in Capturing GoalsCapturing Goals:
identifying goals and structuring goals.

 First, goals must be identified from the initial
system context. This process begins by extracting
scenarios from the initial specification and
describing the goal of that scenario.

 Next, the goals are analyzed and structured
into a form that can be used later in the Analysis
phase. In this stage the goals are structured into a
Goal Hierarchy Diagram. A Goal Hierarchy
Diagram is a directed, acyclic graph where the
nodes represent goals and the arcs define a sub-
goal relationship.

MaSE (Analysis phaseAnalysis phase)

Example of goal hierarchy

MaSE (Analysis phaseAnalysis phase)

 Applying Use Cases
 The objective of the Applying Use Cases step is

to capture a set of use cases from the initial
system context and create a set of Sequence
Diagrams to help the system analyst identify an
initial set of roles and communications paths
within the system. Use cases define basic
scenarios that a system should be able to perform.
The Sequence Diagrams capture the use cases as a
set of events between the roles that make up the
system. These event sequences are used later in
the Analysis phase to define tasks that a particular
role must accomplish.

MaSE (Analysis phaseAnalysis phase)

 Refining Roles
 The objective of the last step of the Analysis

phase, Refining Roles, is to transform the
structured goals and Sequence Diagrams into
roles and their associated tasks, which are forms
more suitable for designing multiagent systems.

 Roles form the foundation for agent class
definition and represent system goals during the
Design phase.

 It is our intention that system goals will be
satisfied if every goal is associated with a role and
every role is played by an agent class.

MaSE (Design PhaseDesign Phase)

 Design Phase
 There are four steps to the designing a system

with MaSE. The first step is Creating Agent Creating Agent
ClassesClasses, in which the designer assigns roles to
specific agent types. In the second step,
Constructing ConversationsConstructing Conversations, the actual
conversations between agent classes are defined
while in the third step, Assembling Agents Assembling Agents
ClassesClasses, the internal architecture and reasoning
processes of the agent classes are designed.
Finally, in the last step, System DesignSystem Design, the
designer defines the actual number and location
of agents in the deployed system.

MaSE

 Conclusion: MaSE is a comprehensive
methodology for the analysis of multiagent
systems and provides solid foundation for
the design and development of multiagent
systems. MaSE not only takes advantage of
goaldriven development, but also uses the
power of multiagent systems by defining
roles, protocols and tasks in the analysis
phase.

Comparing object-oriented
methodologies.
 A COMPARISON FRAMEWORK
 The comparison framework covers four

major aspects of each methodology:
Concepts, Modeling language, Process
and Pragmatics.

Comparing object-oriented
methodologies.
 Concepts:
 Agent-oriented concepts are of great

importance for agent-oriented methodologies in
general and for agent-oriented modeling
languages in particular. There a set of significant
agent-oriented concepts was presented. These
include the dentition of agents, their
characteristics such as adaptability, mental
notions (such as beliefs, desires and intention),
the relationship and communication between
agents, and other concepts.

Comparing object-oriented
methodologies.
 Modeling language:
 If agent-oriented concepts are the basis for any

AOSE methodology, then the modeling language
for representing designs in terms of those
concepts is generally the core component of any
software engineering methodology. A typical
modeling language consists of three main
components: symbols (either graphical or textual
representation of the concepts), syntax and
semantics. It is important that the modeling
language allows the system under development to
be modeled from deferent views such as
behavioral, functional and structural views .

Comparing object-oriented
methodologies.
 The criteria which assess the modeling

language of each methodology are
categorized into two groups.

 Usability criteria reflects usage
requirements of a modeling language in
terms of providing a means for software
developers to exchange their thoughts and
ideas. These criteria basically addresses the
question of how easy the notation and the
models are to understand and to use.

Comparing object-oriented
methodologies.
 The second group of criteria to assess a modeling

language is technical criteria. They involve the
unambiguity and consistency of a modeling
language. Unambiguity means that a constructed
model can be interpreted unambiguously.
Consistency is a technical quality relating to the
assistance of a modeling technique to the software
designer in guaranteeing that between
representations, no set of individual requirements
is in conflict.

Comparing object-oriented
methodologies.
 Process:
 As discussed above, the modeling language is

considered as a mandatory part of any software
engineering methodology. However, in
constructing a software system, software
engineering also emphasizes the series of
activities and steps performed as part of the
software life cycle. These activities and steps
form the process which assists system analysts,
developers and managers in developing software.
An ideal methodology should cover enterprise
modeling, domain analysis, requirements analysis,
design, implementation and testing.

Comparing object-oriented
methodologies.
 Pragmatics:
 In addition to issues relating to notation and process,

the choice of a methodology depends on the pragmatics of
the methodology.

 This can be assessed based on two aspects :
management and technical issues.

 Management criteria should consider the support that
a methodology provides to management when adopting it.
They include the cost involved in selecting the new
methodology and its effects on the current organization
business practices.

 Technical criteria look at a methodology from another
angle. They consider whether the methodology is targeted
at a specific type of software domain such as information
systems, real time systems or component-based systems.

Comparing
object-oriented
methodologies.

 Notation: L for Low, M for
medium, H for High, DK for
Don't Know, SDA for
Strongly Disagree, DA for
Disagree, NA for Not
Applicable, N for Neutral, A
for Agree, SA for Strongly
Agree, for no response. S
for Stage mentioned, P for
Process given, E for
Examples given, H for
Heuristics given, n for none.

SASADistributed

SDA/N/ /DA/SA Management decision

A/N/N N/DA/A Quality

 Pragmatics

 SPEHSPEHImplementation

 SPEHSPEHDetailed design

 SPEHSPEHArchitectural design

 SPEH SPEHRequirements

 Process

SA/A/A N/A/A Hierarchical modeling

SA/SA/A SA/A/A Modularity

 SA/A/A SA/A/SAConsistency check

AA/SA/SA Traceability

ASA/N/N Language adequate & expressive

SAN/N/A Easy to learn

A/N/A SA/A/A Easy to use

SA/A/A A Clear notation

 SA/A/A A/A/SASyntax defined

 Modeling & Notation

 SA SA/A/A SA Agent-oriented

M/H/M H Protocols

N/L/NA H/M/H Teamwork

H/M/H L/M/H Mental attitudes

 H/NA/HH/M/DKAutonomy

Prometheus MaSE Concepts & Properties

Comparing object-oriented
methodologies.
 Concepts:
 With regard to agent-oriented concepts, the level of support for

autonomy of all of the methodologies is overall good (ranging from
medium to high).

 Prometheus supports very well the use of mental attitudes (such as
beliefs, desires, intentions) in modeling agents' internals (medium to
high), whereas MaSE provides weaker support.

 The support for pro-activeness and reactiveness are difficult to
measure even though they seem to be fairly well supported by all two
methodologies (medium-high for MaSE and Prometheus).

 In terms of support for concurrency, although the ratings are mostly
medium-high and varied considerably, MaSE is probably best with its
protocol analyzer, and Prometheus was rated as being one of the
weakest.

 Although the methodologies all support cooperating agents, none
of them support teams of agents in the specific sense. Both MaSE and
Prometheus model the dynamic aspects of the system and handle
protocols well.

Comparing object-oriented
methodologies.
 Modeling Language:
 Overall, the responders felt that the methodologies'

notations were clear and reasonably well defined
(syntax/semantics) and fairly easy to use.

 Modularity, and hierarchical modeling are generally
well-supported , however reuse is not well handled by any
of the methodologies.

 Very good impression of the notation of all the
methodologies.

 Prometheus is highly appreciated, and the system
overview diagram in particular was found to be useful.
There are some cases where the amount of text on arcs in
the MaSE's concurrent diagrams makes them hard to read.

Comparing object-oriented
methodologies.
 Process:
 From the software development life-cycle point of view,

all of the methodologies cover the requirements,
architectural design and detailed design.

 Analysis stage of the methodologies is well described
and provides useful examples with heuristics. This helps
to shift from object-oriented thinking to agent-oriented.

 The implementation phase is, surprisingly, not well
supported: MaSE and Prometheus mention
testing/debugging, but it is unclear to what extent MaSE
supports it, while Prometheus' support is part of a
research project not yet integrated into tools for use by
developers.

Comparing object-oriented
methodologies.
 Pragmatics:
 The pragmatics of a methodology plays a very

important role in determining its applicability in
industry as well as in academia. MaSE and
Prometheus target undergraduate and industry
programmers. Regarding the availability of
resources supporting the methodologies, most of
them are in the form of conference papers, and
journal papers or tutorial notes. None of the
methodologies are published as text books.

Comparing object-oriented
methodologies.
 CONCLUSION
 Overall, all two methodologies provide a reasonable support for

basic agent-oriented concepts such as autonomy, mental attitudes,
pro-activeness, reactiveness, etc.

 They all are also regarded by their developers and the students as
clearly agent-oriented.

 In addition, the notation of the two methodologies is generally
good.

 Regarding the process, all the methodologies provide examples
and heuristics to assist developers from requirements gathering to
detailed design.

 Implementation was supported to some degree by all methodologies
whereas testing/debugging and maintenance are not clearly well-
supported by any methodology.

 Additionally, some important software engineering issues such as
quality assurance, estimating guidelines, and supporting management
decisions are not supported by any of the methodologies.

The endThe end

