/ - | -)
Ind v ﬁ

J _ r@j@$.

T '

AW,

Kate Slezavina

—

-
e i

“Prometheus: A Meﬂtho
Intelligent Agents”
Lin Padgham and Michael Winikoff RMIT University, GPO Box 2476V, Melbourne, A@Q;%

This paper presents the Prometheus methodology for developing
1ntelllgenf‘ ent systems. | f

® “Multiagent systems engineering (MaSE) ’\

SCOTT A. DELOACH, MARK F. WOOD AND CLINT H. SPARKMAN Air Force Institute of Technology Graduate
School of Engineering and Management Department of Electrical and Computer Engineering Wright-Patterson Air
Force Base, OH 45

ogy for Developing =

This paper de hodology for developing
heterogeneous
® “Compari odologies”
Khanh Hoa Dam Mi ation Technology RMIT University.
Melbourne, Australia
This paper presents a ted
method)

@ The claim is tha’t I?/ eus 18 develope%;-

in sufficient detail to be used by a\
P nonekpfrt e) \ (

H‘""_.-_H

AL

T

@ A detailed com]g)a?’éz)ﬁ ith the existing

methodologies:

/ _.‘,_ﬂ_____hSUppoxi‘ts\the develop;nent of intelligent (

agents which use goals, beliefs, plans, and

events. By other

methodo treat agents as
“simple hat interact
with each othe rall system

(__-'/goa

~® Provides “start-’tozéd” support (from \5,

specification to detailed design a
e irhplefne_}ntation) and a detailed process.

b

@ Evolved out of]’przeft/ihcﬁé industrial and 'F\K y,
pedagogical expetience, and has been used ﬁ
/ by bofh\i{ldustgial pr;;titioners and by (
undergraduate students. By contrast, many

/

_—

@ Provides hierarélggglmst uring
a

mechanisms whi

- performed at multiple levels of abstraction.
Such mechanisms are crucial to the

blow design to.be

practicali

f the methodology on large
designs.

—

p—

~—® The Prometheus métho oi-ag consists of three
phases.

® The system specification phase focuses OMtlfymg
™ the basw\i_%nctlon_aht}es of the system, along with (
“inputs (percepts), outputs (actions) and any important
shared data sources.

® The architect j uses the outputs from
the previou hich agents the
system wi will interact.

® _The detai . 1nternals of

System
speaﬁﬁ::a.ﬂbn _

actions and percepis

Functionality

descripiors

¥

Interaction
diagrams

agent
acquaintance

:

S
L
-
3
G
<
&
o
T

fimal design

anifact

mtermediats

design Zoaol
crosscheck

derives _.4-"]

[‘“’“"”"”l (accer

Plan
dear:fmtmn.ﬁ d'esr:np

Detailed design

phase

System specifi cattonjl
Agent systems are typically si ated in-a ¢ hanging and dynamic ,\\

environment, which can be affected, through not totally controlled by “._
the agent system

One of the earliest questions which must be answered 1s hoew the
agent syste 1s going to 1nteract with this environment. ' f

~ We will call incoming information from the environ E
percepts and the mechanisms for affecting the environment
“actions”.

An event 1s a Si
a percept 1S raw

EXAMPLE:
visiting the w
receiving em
Actions are b
orders.

ce for the agent system, whereas
system.

percepts of customers
orders (using forms), and
ices and book suppliers.

In parallel with discovering or specifying the
percepts and actions the developer must start to
describe what it 1s the agent system should do 1n a
broader sense - the functionalities of the system.

In defining a functionality it 1s important to
also define the information that 1s required, and
the information produced by it. The functionality
descriptor contains a name, a short natural
language description, a list of actions, a list of
relevant percepts, data used and produced and a
brief description of interactions with other
functionalities.

_; metheus (system specification
ﬁf“ase)

While functionalities focus on particular aspects of the
system, use case scenarios gIlve a more common view of
the system.

The central part of a use case scenario in Prometheus
1s the sequence of steps describing an example of the
system 1n operation.

Each step 1s annotated with the name of the
functionality responsible, as well as information used or
produced. The use case templates contain an
identification number, a brief natural language
overview, an optional field called context which indicates
when this scenario would happen, or the start point of the
scenario, the scenario itself which 1s a sequence of steps,
a summary of all the information used in the various
steps, and a list of small variations.

_ metheus (Architectural design)

Architectural design

The major decision to’be made during the architectural
design 1s which agents should exist. We assign
functionalities to agents by analyzing the artifacts of the
previous phase to suggest possible assignments of
functionalities to agents. The process of 1dentifying agents
by grouping functionalities involves analyzing the reasons
for and against groupings of particular functionalities. If
functionalities use the same data it 1s an indication for
grouping them. Reasons against groupings may be clearly
unrelated functionality or existence on different hardware
platforms. More generally, we seek to have agents which
have strong coherence and loose coupling.

~ ® In order to evalglefza potential grouping fgr\%w/
coupling we use ent acquaintance

~ diagram. This dlagrzﬁn simply links each

agent ;ifh each other agent with which it
interacts. A design with fewer 11nkages 1S

H‘""_.-_H

S . ; . - | - |
~ Once a demsmg/ has been made as tO\\%@/"

which agents the system should-._

/ .._,_ﬂ___COIltalh\}t 1S poss1b ¢ to start wc?rklng f
out an descnbmg some of the

necessary. bout agents

/

H‘""_.-_H

Questions Whichj n;?J to be resolved about

:] A
agents at this stage include: \
- How many agents of this type will there be? (
- What is the lifetime of the agent? \
If they are created or destroyed during system
operation (0 and shut-down),
what trigg
Agent 'to be done?
What data doe track of?
agent react to?
: L J ﬁ\

§%e
gn metheus (Architectural design)

e

® In order to accomplish the various aims of the
system agents will also send messages to each
other. These must also be 1dentified atthis stage.
It 1s also necessary to 1dentify what information
fields will be carried in these messages, as this
forms the interface definition between the agents.

® Shared data objects (1f any) must also be
1dentified at this stage. A good design will
minimize those, but there may be situations where
it 1s reasonable to have shared data objects. Data
objects should be specified using traditional
object oriented techniques.

0

e \ ’
}] l'}-'l:"' & '
r-':f v
llII
o

_;rm metheus (Architectural design)

® The system overview diagram events and
shared data objects. It 1s definitely the
single most important artifact of the entire
design process, although of course it cannot
really be understood fully in 1solation. By
viewing this diagram we obtain a general
understanding of how the system as a
whole will function. Messages between
agents can include a reply, although this 1s
not shown explicitly on the diagram.

=.A. = ghop assistant
W.N. = warshouse manager
.F. = customer relations

_a = cashier

& -
" =
.;:'. 5 # :

__;%J'F

sometheus (Architectural design)

The final aspect of the architectural design is to
specify fully the interaction between agents. Interaction
diagrams are used as an(initial tool for doing this, while
fully specified interaction protocols are the final design
artifact. Interaction diagrams are borrowed directly from
object oriented design, showing interaction between
agents rather than objects.

Interaction diagrams, like use cases, give only a partial
picture of the system’s behavior. In order to have a
precisely defined system we progress from interaction
diagrams to interaction protocols which define precisely
which interaction sequences are valid within the system.
Next figure (right) shows the protocol for the credit check
portion of the interaction diagram shown in this figure
(left).

2.
s
Prometheus

Merchant
|

Shop ass. Warehouse Cashier

Request book

*| Erice+availability)

Response |e Response H Credit check request .

Buy book :
g Delivery cpbions? Card details request

Delivery infa | Card details

#

l Delivery info, |+

Delivery choice | Credit check request h ~ Approval

'I}etaiIE request

Card details request

Card detals | o
Card details Rejection
h -

*
Order

*‘;"f-sf Detailed design

® Detailed design

Detailed design focuses on developing
the internal structure of each of the agents
and how 1t will achieve its tasks within the
system. It 1s at this stage of the design that
the methodology becomes specific to
agents that use user-defined plans,
triggered by goals or events, such as the
various 1implementations of Belief, Desire,
Intention (BDI) systems

L)zijeile

- The focus of tjh etailed-design phase ir\\
on defining capabilities (moduleswgbm
Y the agent), internal exlf)ents plans and [
detailed data structures. The internal
structure-of each capability is then
described or introducing
ottom level
capabili s of plans,

*‘;"f-sf Detailed design

® Each capability should be described by a
capability descriptorywhich contains information
about the external interface to the capability -
which events are inputs and which events are
produced by (as inputs to other capabilities). It
also contains a natural language description of
the functionality, a unique descriptive name,
information regarding interactions with other
capabilities, or inclusions of other capabilities,
and a reference to data read and written by the
capability.

*‘;"f-sf Detailed design

® A further level of detail 1s-provided by
capability diagrams which take a-single
capability and describe its internals. At the
bottom level these will contain plans, with
events providing the connections between
plans, just as they do between capabilities
and between agents. At intermediate levels
they may contain nested capabilities or a
mixture of capabilities and plans.

H‘""_.-_H

T

~ ® The final desigrii aZ*(féEts required are theﬁ\k c

individual plan, e and data dﬁsqjgtors.
These‘“dgscrlptmns pr}wde the details (
‘necessary to move into 1mplement5t10n
Exactly t are the appropriate details for
these des
the 1impl

Dej ST

—

p—

@ One of the advgln?éeého his methodology 5

/

1s the number of places where au%o>ed
t()ols“‘c\%lebe used forc):onsistency checking (

~across the various artifacts of the design

process. example, the input and output
events fo the same on the
system and on the agent

® MaSE uses the abstraction provided by
multiagent systems for developing
intelligent, distributed software systéms.
MaSE 1s a further abstraction of the object-
oriented paradigm where agents are a
specialization of objects. Instead of simple
objects, with methods that can be invoked
by other objects, agents coordinate with
each other via conversations and act
proactively to accomplish individual and
system-wide goals.

® The general
operation of MaSE
follows the phases
and steps shown on
the right side:

Initial System
Context

Capturing

Creating Agent
Classes

Constructing
Conversations

Assembling
Agent Classes

System Design

)
5
)
=
-
o
1
&
=

H_F._._..-—"

@ The MaSE Anz{l)‘zfgh ase consists of

three steps: Capt Goals, Apply{;g Use

s CaseS“led Reﬁnmg;?(oles (
® The De sign phase has four steps: breatmg

cting Conversations,

Assembli and System

H‘""_.-_H

y AN

A major strehgg{ of MaSE is the ability \

to track changes throughout the process.

~ Every object created during the analysis |
“and design phases can be traced forward or

different steps to

instance, a goal

oals step can be

traced to

— clas

RGMASE (lispliuse)

o

Analysis Phase

The purpose of the MaSE Analysis phase 1s to produce
a set of roles whose tasks describe what the system has to
do to meet 1ts overall requirements. A role describes an
entity that performs some function within the system. In
MaSE, each role is responsible for achieving, or helping
to achieve specific system goals or sub-goals. MaSE roles
are analogous to roles played by actors in a play or by
members of a typical company structure.

The overall approach in the MaSE Analysis phase 1s
fairly simple. Define the system goals from a set of
functional requirements and then define the roles
necessary to meet those goals. While a direct mapping
from goals to roles 1s possible, MaSE suggests the use of
Use Cases to help validate the system goals and derive an
initial set of roles.

#

R MIASE (alysis pliase)

o

There are two sub-steps in Capturing Goals:
1dentifying goals and structuring goals.

° First, goals must be 1dentified from the 1nitial
system context. This process begins by extracting
scenarios from the initial specification and
describing the goal of that scenario.

° Next, the goals are-analyzed and structured
into a form that can be used later in the Analysis
phase. In this stage the goals are structured into a
Goal Hierarchy Diagram. A Goal Hierarchy
Diagram 1s a directed, acyclic graph where the
nodes represent goals and the arcs define a sub-
goal relationship.

SE CAnalysisipriase)

Example of goal hierarchy

1. Inform admin of
host violations

L)

1.7 Inform admin of
file violations

L

]

1.2 Inform admin of
login viclations.

L

1.1.1 Detect invalid
file deletion

atiemps.

L)

1.1.2 Detectinvalid
file modification

attempts.

Y ¥

1.1.3 Nofify
administrator of

viclations.

1.2.7 Detect invalid
login attempt.

REMASE (15 15)1/050)

Applying Use Cases

The objective of the Applying Use Cases step 1s
to capture a set of use cases from the nitial
system context and create a set of Sequence
Diagrams to help the system analyst identify an
initial set of roles and communications paths
within the system. Use cases define basic
scenarios that a system should be able to perform.
The Sequence Diagrams capture the use cases as a
set of events between the roles that make up the
system. These event sequences are used later in
the Analysis phase to define tasks that a particular
role must accomplish.

~ Refining Roles) ™) - = ,-
The objective of the last step of the Analysis N—

phase, Refining Roles, 1s to transform
/ structured goals and Seilence Diagrams into f
- roles and their associated tasks, which are forms
more suitable for demgnmg multiagent systems.

RGN lon for agent class
definition goals during the
Design p

' 0 ’ls will be
satisfied 1f eve ' with a role and
eve ' ™

BMASE (Design Phase)

Y

Design Phase

There are four steps to the designing a system
with MaSE. The first step 1s Creating Agent
Classes, 1n which the designer assigns roles to
specific agent types. In the second step,
Constructing Conversations, the actual
conversations between agent classes are defined
while 1n the third step, Assembling Agents
Classes, the mternal architecture and reasoning
processes of the agent classes are designed.
Finally, 1n the last step, System Design, the
designer defines the actual number and location
of agents 1n the deployed system.

~® Conclusion: Nfa?Z/is a comprehensive

/

—

p—

N ,f

methodology for the analysis of 'mulgagent -

- systems and provides solid foundation for (
~ the dz‘s\én and development of multiagent

system SE not only takes advantage of
goaldrive ut also uses the
POWET 0 s by defining
roles, p ¢ analysis

H‘""_.-_H

e A COMPARIé(‘?(F

RAMEWORK

N
‘The comparison framework covers four
/ ___,_ﬂ_____nflajof“ pects of each methodology: (
Concepts, Modeling language, Process
and Pr tics.

L€ omparing object-oriented
aéthodologies.

® Concepts:

Agent-oriented concepts are of great
importance for agent-oriented methodologies in
general « and for agent-oriented = modeling
languages 1n particular. There a set of ‘'significant
agent-ortented concepts was presented. These
include the dentition . of agents, their
characteristics such as adaptability, mental
notions (such as beliefs, desires and intention),
the relationship and communication between
agents, and other concepts.

paring object-oriented

sgmrethodologies.

® Modeling language:

If agent-oriented concepts are the basis for any
AOSE methodology, then the modelinglanguage
for representing designs in terms of those
concepts 1s generally the core component of any
software engineering methodology. A typical
modeling language consists of three main
components: symbols (either graphical or textual
representation of the concepts), syntax and
semantics. It 1s important that the modeling
language allows the system under development to
be modeled from deferent views such as
behavioral, functional and structural views .

_x¢Comparing object-oriented
sanéthodologies.

® The criteria which assess the modeling
language of each/imethodology are
categorized into two groups.

® Usability criteria reflects usage
requirements of a modeling language in
terms of providing a means for software
developers to exchange their thoughts and
1deas. These criteria basically addresses the
question of how easy the notation and the
models are to understand and to use.

e

-

@ The second groulj of criteria to'assess a modeling

/

‘is in conflict.

i
S

language is technical criteria. They involve the
unambiguity and consisﬁncy of a mZZ‘éTTﬁgx---

--x..___,_language\UnamBiguity_., eans that a co\nstructed J

model can be interpreted unambiguously.
Consistency:is a techni uality relating to the
assistance ' ique to the software
designer i etween

represen requirements

L€ omparing object-oriented
aéthodologies.

® Process:

As discussed aboye, the modeling language 1s
considered as a mandatory part of any Ssoftware
engineering methodology. However, 1n
constructing a software system, software
engineering also emphasizes the series of
activities and steps performed as part of the
software life cyecle. These activities and steps
form the process which assists system analysts,
developers and managers 1in developing software.
An 1deal methodology should cover enterprise
modeling, domain analysis, requirements analysis,
design, implementation and testing.

~omparing object-oriented
anethodologies.

® Pragmatics:

In addition to 1ssues relating to notation and process,
the choice of a methodology depends on the-pragmatics of
the methodology.

This can be assessed based on two aspects :
management and technical 1ssues.

Management criteria should consider the support that
a methodology provides to.management when adopting it.
They include the cost involved in selecting the new
methodology and its effects on the current organization
business practices.

Technical criteria look at a methodology from another
angle. They consider whether the methodology is targeted
at a specific type of software domain such as information
systems, real time systems or component-based systems.

; . Méi?nWotation \ \\
® Notation: L for Low, M fLr oo~ N
medium, H for High, DK for" cuernotion .

Easy to use S\M

/

gent-oriente

Don't Know, SDA for

Easy to\earn N/N/A

Strongly Disa ee, DA for 9! \
/ \ Language adequate & expressive SA/N/N
Dlsagreea NA fO__ Not Vi Tedleability ASA/SA
Applicable, N for NeutraI, A Consistency check SA/A/SA
Modularity ~_SA/A/A

|| ;
(<}
&
>

Process given,
Examples glven H for
(H_eurlstlcs en, n for

SA

SA/A/A

SA/A/A Msﬁ/ 4

A/N/A

_ SA

e

A
SA/A/A
SA/SA/A

SA/A/A

SPEH
SPEH
SPEH
SPEH

A/N/N

SDM
SA__| e

-omparing object-oriented
anethodologies.

® Concepts:

With regard to agent-oriented concepts, the level of support for
autonomy of all of the methodologies 1s overall good (ranging from
medium to high).

Prometheus supports very well the use of mental attitudes (such as
beliefs, desires, intentions) in modeling agents' internals (medium to
high), whereas MaSE provides weaker support.

The support for pro-activeness and reactiveness are difficult to
measure even though they seem to be fairly well supported by all two
methodologies (medium-high for MaSE and Prometheus).

In terms of support for concurrency, although the ratings are mostly
medium-high and varied considerably, MaSE is probably best with its
protocol analyzer, and Prometheus was rated as being one of the
weakest.

Although the methodologies all support cooperating agents, none
of them support teams of agents in the specific sense. Both MaSE and
Prometheus model the dynamic aspects of the system and handle
protocols well.

. i

~® Modeling Languageg T~ | ~

Overall, the respondets felt that the methodologies' N
notations were clear an rea;onably well deM
1 ~

/ (syntax/semantics) and fairly easy to use. f
Modulari'_ , and hierarchical modeling are generally
well-supported , however reuse is not well handled by any
of the me logies. ==
Very good ' tion of all the
methodolo
Promet and the system
OVEerview d to be useful
" There are some ca t of text on arcs in
" the es them hard to rer@_Q.

~ Process:] e | O\

From the software deyelopment hfe cycle point of VICW\‘ —
all of the methodologies cover the requlremm
/ architectural design and de%lled design.

~ Analysis stage of the methodologies 1s Well\described
and provides useful examples with heuristics. This helps

7

to shift fro

The imple
supported:
testing/de
supports it, c
‘research project n

(——-/ deve

ject-oriented thinking to agent-oriented.

' risingly, not well

ention

to what extent MaSE
s part of a

tools or use by

e

¥

o Pragmatics:] / " | F\\
The pragmatics of a methodology plays a very

important role in determining its applicability in
/ '“-------industry\aﬁ well as 1n academia. MaSE\‘{md

resources
them are ence papers, and

journal p of the
‘methodologies ext books.

”'”

e CONCLUSION i -

~ clearly agen\»\oriented.;_

- quality assurance, esti

e

Overall, all two methodologies provic ¢ a reasonable support for
basic agent-oriented concepts such as autonomy, mental attitudes,
pro-activeness, reactiveness, etc.)‘

t

' They all are also regarded by their developers and the students as

e

In addition, the notation of the two methodologies ig generally
good.

rocess, all the methodologies provide examples
1st develo requirements gathering to

Implement egree by all methodologies
whereas testi ce are not clearly well-

Additionally, some
supporting management

decisi not su thodologies.

