

Agent-based Computing
 Jadex: A BDI Reasoning Engine

Maciej Gawinecki

Overview
● Theoretical foundation of BDI
● Introduction to Jadex reasoning engine
● JADE example
● Developing tools in Jadex
● Implementation in Jadex
● Conclusions

Overview
● Theoretical foundation of BDI
● Introduction to Jadex reasoning engine
● JADE example
● Developing tools in Jadex
● Implementation in Jadex
● Conslusions

Theoretical foundation of BDI
● Reasons

– M. E. Bratman, D. J. Isreal, and M. E. Pollack (1987)
"Plans and resource-bounded practical reasoning."

– A. S. Rao, M. P. Georgeff, (1995), “BDI Agents: From
Theory to Practice.”

BDI abstraction
● Deciding on which goals to achieve and how to achieve

them
– Beliefs: the information an agent has about its surroundings
– Desires: the things that an agent would like to see achieved
– Intentions: the desires that an agent is working on; also involves a

deeper personal commitment
● Example:

– Belief: My students are unhappy...
– Desire: I want to make my students happy.
– Intention: I will buy 22'' LCD for each of them!

Requirements for BDI Architecture
● A BDI architecture addresses how beliefs, desires and

intentions are represented, updated, and processed

● In BDI architecture an agent should (Bratman et al. 1987):
– monitor its plans when it changes its beliefs,
– check compatibility with prior plans (intentions),
– propose new plans when enviroments changes.

● These processes should be performed in timely fashion
(Bratman et al. 1987).

Generic BDI Architecture
● Generating options and

filtering options are
together called deliberation

Action
output

Belief Revision Function

Generate Options

Filter

Action

Sensor
input

Beliefs

Desires

Intentions

Overview
● Theoretical foundation of BDI
● Introduction to Jadex reasoning engine
● JADE example
● Developing tools in Jadex
● Implementation in Jadex
● Conslusions

Background and Motivation
● Jadex is based on the BDI model

● Integrates agent theories with object-orientation and XML
descriptions

● Object-oriented representation of BDI concepts

● Explicit representation of goals allows reasoning about
(manipulation of) goals

● Jadex is based on JADE Platform

Jadex Abstract Agent Architecture

Beliefs
● Beliefbase contains the knowledge of an agent

– Beliefs (single facts stored as Java objects)
– Beliefsets (sets of facts as Java objects)
– object-oriented representation

● No support for logical reasoning

● Advantages of storing information as facts
– Central place for knowledge (accessible to all plans)
– Allows queries over agent‘s beliefs
– Allows monitoring of beliefs and conditions (e.g. to trigger events /

goals)

Jadex Abstract Agent Architecture

Goals (desires)
● Generic goal types

– perform (some action)
– achieve (a specified world state)
– query (some information)
– maintain (reestablish a specified world state whenever violated)

● Are strongly typed with
– name, type, parameters
– BDI-flags enable non-default goal-processing

● Goal creation/deletion possibilities
– initial goals for agents
– goal creation/drop conditions for all goal kinds
– top-level / subgoals from within plans

Jadex Abstract Agent Architecture

Plans (intentions)
● Represent procedural knowledge

– Means for goal achievement and reacting to events
– Agent has library of pre-defined plans
– Interleaved stepwise execution

● Realisation of a plan
– Plan head specified in ADF
– Plan body coded in pure Java

● Assigning plans to goals/events
– Plan head indicates ability to handle goals/events
– Plan context / precondition further refines set of applicable plans

Jadex Abstract Agent Architecture

Events
● Three types of events

– Message event denotes arrival/sending messages

– Goal event denotes a new goal to be processed or that the state
of an existing goal is changed

– Internal event
● Timeout event denotes that a timeout has occurred, e.g., waiting for

arrival of messages/achieving goals/waitFor(duration) actions.
● Execute plan event denotes plan to be executed without metalevel

reasoning, e.g., plans with triggering condition
● Condition-triggered event is generated when a state change occurs

that satisfies the trigger of a condition

Jadex Event Dispatching Mechanism

Overview
● Theoretical foundation of BDI
● Introduction to Jadex reasoning engine
● Developing tools in Jadex
● JADE example
● Implementation in Jadex
● Conslusions

Example in JADE
● Package ibspan.lab3.ex1
● Launching

– bin\ex1-nurse.bat
– bin\ex1-doc.bat

● Observation
– Patient's blood presure depends on her age, recently taken drugs

and time flow
– Nurse observes patient's blood pressure, informs Doctor about it

and gives drugs on Doctor's request
– Doctor diagnoses Patient's state and Doctor diagnoses Patient's

state and orders the Nurse to keep Patient's blood pressure at a
specific average level

Doctor in BDI

keep_patient_info_uptodate (Initial goal)

maintain_patient_alive (Intitial goal)

maintain_battery_loaded (Initial goal)

load_battery (Plan)

update_patient_info (Plan)

diagnose_patient (Plan)

● Beliefs: my_chargestate, patient_pressure,
patient_is_alive, nurse

Nurse in BDI

request_drug_applying (Message event)

query_for_patient (Message event)

inform (Plan)

"apply_doctors_order (Plan)

● Beliefs: my_patient, pressure, is_alive

Overview
● Theoretical foundation of BDI
● Introduction to Jadex reasoning engine
● Developing tools in Jadex
● JADE example
● Implementation in Jadex
● Conslusions

Platform adapters
● Is a BDI-extension (add-on) for the FIPA-compliant JADE

multi-agent platform

Platform adapters
● Jadex is realized as pure reasoning engine.
● Can use any middleware platform providing services for

agent managements and messaging
● Adapter required to access middleware platform
● Adapters realized for:

– JADE
– Standalone platform (from Jadex)

Jadex Standalone Adapter
● Fast and efficient execution environment
● Small memory footprint
● No support for mobility & persistence
● Contained in Jadex distribution

(jadex_standalone.jar)
● Starting standalone platform
java jadex.adapter.standalone.Platform

JADE Adapter
● Provides mobility & persitence
● Allows using standard JADE behaviours approach
● Not contained in the standard Jadex distribution
● Download & add to classpath:

– from Jadex page:
adapter (jadex_jadeadapter.jar)

– from JADE page:
official JADE jars (base64.jar, http.jar,
iiop.jar,jade.jar, jadeTools.jar) and additionally
Crimson (crimson.jar)

● Starting with JADE platform
java jade.Boot

rma:jadex.adapter.jade.tools.rma.rma

Jadex Control Center
● Started per default when the Standalone platform is

launched

● Provides:
– project handling
– central access point for all runtime toolset
– functionalities provided by plug-ins in separate perspectives

Jadex Control Center

DF Browser

Conversation Center

Introspector

Introspector

Introspector

Introspector

Tracer

Components of a Jadex Agent

Agent Definition File (ADF)
● ADF defines agent startup properties:

– initial goals and beliefs
– heads of plans

● ADF syntax and semantics:
– ADF is written in XML
– semantics defined by XML schema: which elements can be

specified inside an agent definition file
– XML schema defined in
jadex/docs/schema/jadex-0.95.html

Agent Definition File (ADF)
<agent xmlns="http://jadex.sourceforge.net/jadex"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://jadex.sourceforge.net/jadex
 http://jadex.sourceforge.net/jadex-0.95.xsd"
name="..." package="...">

<imports>...</imports>
<capabilities>...</capabilities>
<beliefs>...</beliefs>
<goals>...</goals>
<plans>...</plans>
<events>...</events>
<expressions></expressions>
<properties>...</properties>
<initialstates>...</initialstates>

</agent>

Agent Definition File (ADF)

Agent Definition File (ADF)
● When an ADF is loaded:

– Java objects are created for the XML elements defined in the
ADF, e.g.

● belief → jadex.model.IMBelief
● goal → jadex.model.IMGoal
● plan → jadex.model.IMPlan

Beliefs
<beliefs>

<!-- The patient (of age of 90), this Nurse takes care about. -->
<belief name="my_patient" class="Patient">

<fact>new Patient(90)</fact>
</belief>

<!-- Patient's blood pressure updated every 0.5 second. -->
<belief name="pressure" class="int" updaterate="500">

<fact>$beliefbase.my_patient.getPressure()</fact>
</belief>

<!-- Is patient alive flag, updated every time accessed. -->
<belief name="is_alive" class="boolean">

<fact evaluationmode="dynamic">
$beliefbase.my_patient.isAlive()</fact>

</belief>

</beliefs>

Access to Beliefs from Plans
● Methods:

– getFact() – get the fact of a belief
– setFact(Object fact) – set a fact of a belief
– isAccessible() – is this belief accessible

● Example:

Integer pressure = (Integer) getBeliefbase().getBelief("pressure")
.getFact();

// Updating information about patient consumes some energy...
int charge = (Integer)
 getBeliefbase().getBelief("my_chargestate").getFact();
getBeliefbase().getBelief("my_chargestate").setFact(
 new Integer(charge - 2));

Goals

Goals

Goal Lifecycle

Goal

Goal Creation
● <initialgoal>: Initial goals are created and adopted as

top-level goals when an agent is born
● <creationcondition>: When the creation condition

triggers, then one or more goal instances are created and
adopted as top-level goal(s).

● Plans may directly create goals and dispatch them as
subgoals. These goals are adopted as subgoals of the
plan's root goal. When a plan terminates or is aborted, all
not yet finished subgoals are aborted automatically.

● Plans may also create goals and dispatch them as top-
level goals. Once adopted, such a goal exists
independently of the plan that created it.

Goal Lifecycle

● <contextcondition>: indicates when Active/Option goal should
be suspended

● <dropcondition>: indicates when adopted goals should be
dropped

● <deliberation>: indicates which Option goals should be
(de)activated (inhibition and cardinality)

Goal Flags
● retry {true, false}:

– the goal should be retried or redone, until it is reached, or no more
plans are available, which can handle the goal.

– Default=true
● exclude {when_tried, when_succeeded,
when_failed, never}:
– used in conjunction with retry; when retrying a goal, only plans

should be called, that where not already executed for that goal.
– Default=when_tried

● posttoall {true, false}:
– enables parallel processing of a goal, by dispatching the goal to

all applicable plans at once.
– Default=false

Goal Flags
● retrydelay (positive long value)

– optional waiting time (in milliseconds)
● Without retrydelay goal processing works as follows:

 goal → plan 1 → plan 2 → plan 3 → ...
until the goal is failed or succeeded.

● The retrydelay just specifies a delay in milliseconds before
trying the next plan, when the previous plan has finished, i.e.:
 goal → plan 1 → wait → plan 2 → wait → plan 3 → ...
until goal fails or succeeds.

● This is e.g. useful, when already tried plans are not excluded
from the applicable plan set, leading to the same plan being
tried over and over again.

– Default=0

Goal Flags

!-- Maintain correct patient's blood pressure, but only if Doctor
has energy. -->

<maintaingoal name="maintain_patient_alive" exclude="never"
retry="true" retrydelay="2500">

<contextcondition>$beliefbase.my_chargestate >
 0</contextcondition>

<!-- Engage in actions when the pressure is out of [50,100] range.
 -->

<maintaincondition> $beliefbase.patient_pressure >= 50 &&
$beliefbase.patient_pressure <= 100

</maintaincondition>
</maintaingoal>

Maintain Goals

Maintain Goals
● Keep-Operational (keep track of the battery state and

charge it when necessary)

● To avoid the agent loading only until 21% (which satisfies
the maintain condition), the extra <targetcondition> is
used. It ensures that the agent stays loading until the
battery is fully recharged.

<!-- Observe the battery state. -->
<maintaingoal name="maintain_battery_loaded" exclude="never"

retry="true">
 ...

<!-- Engage in actions when the state is below 20. -->
<maintaincondition> $beliefbase.my_chargestate >= 20
</maintaincondition>
<!-- The goal is satisfied when the charge state is 100. -->
<targetcondition> $beliefbase.my_chargestate >= 100
</targetcondition>

</maintaingoal>

Perform Goals

<!-- Look out for waste when nothing better to do, what means thatthe agent is not cleaning, not loading and it is daytime. --><performgoal name="performlookforwaste" retry="true" exclude="never"> <contextcondition> $beliefbase.daytime </contextcondition></performgoal>

Achieve Goals

<!-- Drop a piece of waste into a wastebin. --><achievegoal name="achievedropwaste" retry="true" exclude="never"> <parameter name="wastebin" class="Wastebin"/> <!-- The goal has failed when the aimed wastebin is full. --> <failurecondition> (select one Wastebin $wastebin from $beliefbase.wastebins where $goal.wastebin.getId().equals($wastebin.getId())).isFull() </failurecondition></achievegoal>
<!-- Try to move to the specified location. --><achievegoal name="achievemoveto"> <parameter name="location" class="Location"/> <!-- The goal has been reached when the agent's location is near the target position as specified in the parameter. --> <targetcondition> $beliefbase.my_location.isNear($goal.location) </targetcondition></achievegoal>

Query Goals

<!-- Try to find a not full waste bin thatis as near as possible to the agent. --><querygoal name="querywastebin" exclude="never"> <parameter name="result" class="Wastebin" direction="out"> <value evaluationmode="dynamic"> select one Wastebin $wastebin from $beliefbase.wastebins where !$wastebin.isFull() order by $beliefbase.my_location.getDistance($wastebin.getLocation()) </value> </parameter></querygoal>

Conflicting Goals
● Goal-oriented agent is capable of pursuing multiple goals

simultaneously
● Some goals could be in conflict

– Doctor cannot take care about patient and regenerate
its energy at the same time

● Some goals require limitation in number of activated
instances
– see Cleaner example in Jadex package

Goal Deliberation Strategy
● Goal deliberation allows avoiding activatation of conflicting

goals
● Jadex uses Easy Deliberation strategy

– Cardinalities for goal instances:
Only x instances of a certain type of goal are allowed to be active
simultanously

– Inhibition links:
Goals which has been activated should suspend goals inhibited
by them

Inhibition Links

keep_patient_info_uptodate maintain_patient_alive

maintain_battery_loaded

● Idle maintain goals (mainly them), might not always be in
conflict with other goals → is sometimes required to restrict
the inhibition to only take effect when the goal is in
process.

● This can be specified with the inhibit attribute of the
<inhibits> tag, using "when_active" (default) or
"when_in_process" as appropriate.

Inhibition Links

!-- Observe the battery state. -->
<maintaingoal name="maintain_battery_loaded" exclude="never"
retry="true">

<deliberation>
<!-- The Doctor's first takes care about its energy, does it

cannot do anything else when regenerating. -->
<inhibits ref="keep_patient_info_uptodate"

inhibit="when_in_process"/>
<inhibits ref="maintain_patient_alive"

inhibit="when_in_process"/>
</deliberation>

<!-- Engage in actions when the state is below 20. -->
<maintaincondition> $beliefbase.my_chargestate >= 20
</maintaincondition>
<!-- The goal is satisfied when the charge state is 100. -->
<targetcondition> $beliefbase.my_chargestate >= 100
</targetcondition>

</maintaingoal>

Goal Deliberation Strategy
● Graph consitisting of inhibiting arcs should be acyclic to

avoid cycles in deliberations.
● Agent should deliberate only on demand:

– Deliberate a new option
Check which inhibited goals should be suspended.

– Deliberate a deactived goal
Check which inhibited goals should be reactivated.

Plan Head

Plan Head
● Create plan instance when a message arrives (plan pre-

condition)

<!-- A plan, from which a new instance is created
whenever a drug applying request is received. -->

<plan name="apply_doctors_order">
<body>new ApplyDoctorsOrderPlan()</body>
<trigger>

<messageevent ref="request_drug_applying"/>
</trigger>

</plan>

Plan Head
● Create plan instance when a goal is adopted

<!-- Load the battery. -->
<plan name="load_battery">

<body>new LoadBatteryPlan()</body>
<trigger>

<goal ref="maintain_battery_loaded"/>
</trigger>

</plan>

Plan Head
● <precondition> is evaluated before a plan is

instantiated
● When it is not fulfilled this plan is excluded from the list of

applicable plans.

Plan Head
● <contextcondition> is evaluated before & during the

execution of plans.
● When context condition is violated, the plan is aborted and

the plan had failed.

<!-- Maintain correct patient's blood pressure, but only if Doctor
 has energy. -->
<maintaingoal name="maintain_patient_alive" exclude="never"
 retry="true" retrydelay="2500">

<contextcondition>$beliefbase.my_chargestate >
0</contextcondition>

<!-- Engage in actions when the pressure is out of [50,100] range. -->
<maintaincondition> $beliefbase.patient_pressure >= 50 &&

$beliefbase.patient_pressure <= 100
</maintaincondition>

</maintaingoal>

Plan Body
● The standard plans inherit from jadex.runtime.Plan
● This class provides set of abstract methods:

– body() – plan code
– passed() – optional cleanup code in case of a plan success
– failed() – optional cleanup code in case of a plan failure
– aborted() – optional cleanup code in case the plan is aborted

● Plan body may:
– Send / receive messages
– Manipulate beliefs
– Create subgoals

Plan Execution
● For the first step:

– The body() method of standard plans is called only
once

– and runs until
● the plan explicitly ends its step by calling one of the
waitFor() methods,

● or the execution of the plan triggers a condition (e.g.,
by changing belief values).

● For subsequent steps the body() method is continued,
where the plan was interrupted.

Plan Execution

AgentIdentifier nurse = ...
if (nurse == null) {

// If Nurse unknown yet, find it in Directory Facilitator
IGoal df_search = createGoal("df_search");
...
dispatchSubgoalAndWait(df_search);
AgentDescription[] result = (AgentDescription[]) df_search

.getParameterSet("result").getValues();
...

}
IMessageEvent outcoming = createMessageEvent("query_for_patient");
IMessageEvent incoming = sendMessageAndWait(outcoming);
Integer pressure = (Integer) incoming.getContent();
...

Events

Receiving Messages
● Incoming messages are handled by the event dispatching

mechanism
● Event dispatching mechanism is based on two mappings:

– from message to message event
– from (message event) to plan trigger

● Mappings are recommended to be unambigous
● When more than one mapping from a received message to

different message events are available
– agent chooses the alternative which is the most specific
– if there are two or more with the same specificity, the first one is

chosen

Receiving Messages
● The message event (jadex.runtime.IMessageEvent)

denotes the arrival or sending of a message.

Receiving Messages
<events>

...
<!-- Specifies a drug applying request being all
messages with performative request. -->
<messageevent name="request_drug_applying" direction="receive"

type="fipa">
<parameter name="performative" class="String"

direction="fixed">
<value>SFipa.REQUEST</value>

</parameter>
<parameter name="language" class="String" direction="fixed">

<value>SFipa.JAVA_XML</value>
</parameter>

</messageevent>
</events>
<plans>

<!-- A plan, from which a new instance is created
whenever a drug applying request is received. -->
<plan name="apply_doctors_order">

<body>new ApplyDoctorsOrderPlan()</body>
<trigger>

<messageevent ref="request_drug_applying"/>
</trigger>

</plan>
...

</plans>

Receiving Messages

public class ApplyDoctorsOrderPlan extends Plan {
...public void body() {

// Access the event that triggered this plan.
IMessageEvent incoming = (IMessageEvent) getInitialEvent();
// Get Doctor's order/decision.
String decision = (String) incoming.getContent();
...

}

Sending Messages

<events>
...
<!-- Specifies a drug applying request being all
messages with performative request. -->
<messageevent name="request_drug_applying" direction="send"

type="fipa">
<parameter name="performative" class="String">

<value>SFipa.REQUEST</value>
</parameter>
<parameter name="conversation-id" class="String">

<value>SFipa.createUniqueId($scope.getAgentName())</value>
</parameter>
<parameter name="language" class="String">

<value>SFipa.JAVA_XML</value>
</parameter>

</messageevent>
</events>

Sending Messages

public class DiagnosePatientPlan extends Plan {
...public void body() {

...
// Prepare a message to the Nurse
IMessageEvent outcoming =

createMessageEvent("request_drug_applying");
outcoming.getParameterSet(jadex.adapter.fipa.SFipa.RECEIVERS)

.addValue(nurse);
// Prepare diagnosis and decision to apply in the situation
Integer pressure = (Integer)

getBeliefbase().getBelief("patient_pressure").getFact();
String decision = (pressure < 50) ?

"DO_INJECTION" : (pressure > 100) ? "DO_VALIUM" : null ;if (decision != null) {
outcoming.setContent(decision);
IMessageEvent incoming = sendMessageAndWait(outcoming);
...

}
}

}

Replying Messages
<events>

...
<!-- Specifies a return message about patient's blood pressure

or being alive information, being all messages with
performative inform. -->

<messageevent name="inform_about_patient" direction="send"
type="fipa">

<parameter name="performative" class="String"
direction="fixed">

<value>SFipa.INFORM</value>
</parameter>
<parameter name="language" class="String" direction="fixed">

<value>SFipa.JAVA_XML</value>
</parameter>

</messageevent>
</events>

public class InformAboutPatientPressurePlan extends Plan {
...public void body() {

// Access the event that triggered this plan.
IMessageEvent incoming = (IMessageEvent) getInitialEvent();
Integer pressure = (Integer)

getBeliefbase().getBelief("pressure").getFact();
// Prepare reply of "inform_about_patient" type, defined in ADF
IMessageEvent outcoming =

incoming.createReply("inform_about_patient",pressure);
sendMessage(outcoming);

Overview
● Theoretical foundation of BDI
● Introduction to Jadex reasoning engine
● Developing tools in Jadex
● JADE example
● Implementation in Jadex
● Conslusions

Documentation
● Jadex support

– Tutorial and User Guide:
http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

– forum and mailing list:
http://sourceforge.net/projects/jadex

● Other presentations about Jadex
– Prof. Michael N. Huhns, Jadex and BDI Agents:

http://www.cse.sc.edu/~huhns/csce590/BDI-agents.ppt
– Mehdi Dastani, Multi-Agent Programming, Jadex: A BDI

Reasoning Engine:
http://www.cs.uu.nl/docs/vakken/map/slides/jadex.pdf

http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
http://sourceforge.net/projects/jadex
http://www.cse.sc.edu/~huhns/csce590/BDI-agents.ppt
http://www.cs.uu.nl/docs/vakken/map/slides/jadex.pdf

Jadex summary
● Objective: Supporting the construction of open multiagent

systems by making use of mentalistic notions
● Supports easy agent construction with XML-based agent

description and procedural plans in Java
● Supports reusability through the capability concept offers

toolsupport for debugging (in addition to the JADE tools)
– BDI-Viewer allows to observe and modify the internal state
– The BDI-Introspector allows to control the agent
– The Logger agent collects log-outputs of any agents

FAQ
● In my agents there is always one plan for a goal. Why do I

need goals anyway?
– You don't need to use goals for every problem.
– Using goals in many cases simplifies the development

and allows for easier extensions of an application.
– The difference between plans and goals is fundamental.

● Goals represent the "what" is desired
● plans are characterized by the "how" could things be

accomplished.
– If you e.g. use a goal "achieve happy programmers"

you did not specify how you want to pursue this goals.
One option might be the increase of salary, another
might be to buy new TFT monitors.

FAQ
● In my agents there is always one plan for a goal. Why do I

need goals anyway?
– Example from Nurses

FAQ
● How can the environment of a Jadex MAS be

programmed?
– As a a separate environment agent:

● Works when distribution required
● The agent administers the environment
● Domain specific ontology is defined: FIPA-compliant actions

(e.g.such as moveup)
● Each agent encodes each action into an AgentAction.
● The environment agent tries to execute the contained action

and sends back the result e.g. Done(AgentAction).
● As this procedure is cumbersome, we used following idea. For

every primitive action a goal is defined with corresponding
plans that do the message handling. The agent programmer
can subsequently use just the goals for interaction with the
environment.

FAQ
● How can the environment of a Jadex MAS be

programmed?
– As a singleton object for all agents:

● Precisely as a simple belief with a fact expression that refers
to that singleton object:

● e.g. garbagegollector example

● Limited in nature as it is not possible to distribute the
application over more than one Java VM.

<!-- Environment object as singleton.-->
<belief name="env" class="Environment">

<fact>Environment.getInstance($agent.getType(),
 agent.getName())</fact>

</belief>

Tools
● XMLBuddy plugin for Eclipse

http://www.xmlbuddy.com/
for editing XML files

http://www.xmlbuddy.com/

Many Thanks Go To...
● Mehdi Dastani and Michael N. Huhns for their

presentations
● Marcin Paprzycki and Maria Ganzha for their valuable

comments

Thank you
for your attention

