
1

Maciej Gawinecki
Systems Research Institute, Polish Academy of Sciences

maciej.gawinecki@ibspan.waw.pl

http://www.ibspan.waw.pl/~gawinec

Software agent computing

1st laboratory activities
at Warsaw University of Technology

✔4 h

mailto:maciej.gawinecki@ibspan.waw.pl

2

Part I:
Motivation

and aim

3

Aim of this laboratory
■ Capture basic knowledge about programming in JADE

■ Avoid confusing with vast specifactions

■ Build up real agent-based application

4

Migration vs. RPC (RMI)

Remote machineLocal machine

Remote
component

Local
component

Remote
Method
Invocation

Remote machineLocal machine
AgentB

AgentA migration
AgentA

conversation

5

Gives possibility to*:

● increase the cost efficiency of the communication
 between the logistical objects, e.g. as representatives of:

✔ vehicles,
✔ distribution centres,
✔ packages
✔ and other components

● enable new service solutions that have a need for
higher amounts of data to be transmitted, e.g:

✔ sensor data surveillance,
✔ enriched route planning services

Mobile agents in logistics

*Becker, M.; Singh, G.; Wenning, B.-L.; Görg, C.: On Mobile Agents for Autonomous Logistics: An
Analysis of Mobile Agents considering the Fan Out and sundry Strategies. In: International
Journal of Services Operations and Informatics, 1 (2007)

6

Migration – when use

“In some cases agents need to migrate in order to
accomplish their assigned tasks, as it would otherwise be
impossible to transmit all the data needed for a specific task
due to the limitations imposed by the underlying
communication network.”*

Example:
✔ wireless networks, which tend to have :

• low and variable throughput,
• high latency,
• highly variable delays
• and in some cases long connection establishment times.

*Becker, M.; Singh, G.; Wenning, B.-L.; Görg, C.: On Mobile Agents for Autonomous Logistics: An
Analysis of Mobile Agents considering the Fan Out and sundry Strategies. In: International
Journal of Services Operations and Informatics, 1 (2007)

7

Migration – when NOT use

“In other situations conventional communication (moving
the data to the code) is faster because of a low amount of
data to be transmitted and highly complex algorithms
resulting in program code of considerable size working on
the data. ”*

Example:
✔ route planner working on a small amount of update

information about traffic jams with present geographical
information with a complex route finding algorithm.

*Becker, M.; Singh, G.; Wenning, B.-L.; Görg, C.: On Mobile Agents for Autonomous Logistics: An
Analysis of Mobile Agents considering the Fan Out and sundry Strategies. In: International
Journal of Services Operations and Informatics, 1 (2007)

8

Simple logistic app – architecture

9

Simple logistic app – seq. diagram

10

✔Questions ??

11

Part II:
Creating

agent

12

Local information

■ Software:
 JADE, c:\Program Files\ABC\jade
 Ant, c:\Program Files\ABC\ant

■ Code:
 http://www.ibspan.waw.pl/~gawinec/

✔ABC:
✔Agent Based Computing

file:///c:/Program
file:///c:/Program

13

JADE – how to start?

■ JADE, Java Agent DEvelopment Framework
 software and documentation
 complies with the FIPA specifications
 http://jade.tilab.com
 register at site and jade-dev@ mailing list !!!

■ FIPA, Foundations of Intelligent Physical Agents
 Specifications
 http://www.fipa.org

■ Other documentation:
 Adam Łuszpaj, JADE – materialy dydaktyczne

http://home.agh.edu.pl/~luszpaj/index.php?id=12

http://jade.tilab.com/
http://www.fipa.org/

14

Architecture

Many platforms, many containers

15

Launching containers

> java -cp $CLASSPATH
jade.Boot -gui

> java -cp $CLASSPATH
 jade.Boot
 -container
 -host remoteMachine

Launching Main-Container with RMA

Attaching remote container

> java -cp $CLASSPATH jade.Boot
 -container
 -host remoteMachine
 rma:jade.tools.rma.rma

Launching RMA at/from remote host

RMA == Remote
Monitoring Agent
(GUI)

Jade Administrator’s Guide, http://jade.tilab.com

16

Remote Agent Management



✔ Remote Monitoring Agent
✔ Management Agent
✔ White pages GUI – to find agents
✔ Agent life cycle handling allowing

start, stop, pause, migrate, etc.
✔ Create and start agents on remote

host
● Assumes container already

registered
✔ Naturally uses ACL for

communication
Documentation – JADE Administrator’s
Guide

17

Identifing an agent
 A type of agent is created by extending the jade.core.Agent class

and redefining the setup() method.

 Each Agent instance is identified by an AID (jade.core.AID)

✔ An AID is composed of a unique name plus additional addresses

✔ An agent can retrieve its AID through the getAID() method of the
Agent class

public class TruckAgent extends Agent {
 @Override
 protected void setup() {
 System.out.println("My name is " +
 getAID().getName());
 System.out.println("I am free on Monday!");
 };
}

➢ Code:
 ibspan.lab1.ex1

18

HelloWorld with agents

Launching an agent:

● from GUI

● from command-line

java
 jade.Boot
 hello:ibspan.lab1.ex1.TruckAgent

19

Local names, GUID and addresses
■ Agent names are of the form <local-name>@<platform-name>

■ The complete name of an agent must be globally unique.

■ The default platform name is <main-host>:<main-port>/JADE

■ The platform name can be set using the –name option

■ Within a single JADE platform agents are referred through their names
only.

■ Given the name of an agent its AID can be created as
 AID id = new AID(localname, AID.ISLOCALNAME);
 AID id = new AID(name, AID.ISGUID);

■ The addresses included in an AID are those of the platform MTPs and are
ONLY used in communication between agents living on different FIPA
platforms

✔GUID -Globally Unique Identifier

20

Passing arguments to an agent
■ It is possible to pass arguments to an agent

 java jade.Boot a:myPackage.MyAgent(arg1
arg2)

■ The agent can retrieve its arguments through the getArguments()
method of the Agent class
public class TruckAgent extends Agent {
 private boolean isFree = false;
 protected void setup() {
 Object[] args = getArguments();
 if (args.length >= 1)
 isFree = Boolean.parseBoolean((String) args[0]);

 System.out.println("I am " +
 (isFree ? "free" : "not free") +
 " !");
 }
}

java
 jade.Boot
 hello:ibspan.lab1.ex2.TruckAgent(free)

➢ Code:
 ibspan.lab1.ex2

21

Behavioural programming (I)
■ The actual job that an agent does is typically carried out within

“behaviours”

■ Behaviours are created by extending the
jade.core.behaviours.Behaviour class

■ To make an agent execute a task it is sufficient to create an instance of the
corresponding Behaviour subclass and call the addBehaviour()
method of the Agent class.

■ Each Behaviour subclass must implement
 public void action(): what the behaviour actually does
 public boolean done(): whether the behaviour is finished

22

Behavioural programming (III)

public abstract class CyclicBehaviour
 extends SimpleBehaviour {
 /**
 Default constructor. It does not
 set the owner agent.
 */
 public CyclicBehaviour() {
 super();
 }

 /**
 This constructor sets the owner
 agent for this
 <code>CyclicBehaviour</code>.
 @param a The agent this behaviour
 must belong to.
 */
 public CyclicBehaviour(Agent a) {
 super(a);
 }

 /**
 This is the method that makes
 <code>CyclicBehaviour</code>
 cyclic, because it always returns
 <code>false</code>.
 @return Always <code>false</code>.
 */
 public final boolean done() {
 return false;
 }
}

public abstract class OneShotBehaviour
 extends SimpleBehaviour {
 /**
 Default constructor. It does not
 set the owner agent.
 */
 public OneShotBehaviour() {
 super();
 }

 /**
 This constructor sets the owner
 agent for this
 <code>OneShotBehaviour</code>.
 @param a The agent this behaviour
 belongs to.
 */
 public OneShotBehaviour(Agent a) {
 super(a);
 }

 /**
 This is the method that makes
 <code>OneShotBehaviour</code>
 one-shot, because it always
 returns <code>true</code>.
 @return Always <code>true</code>.
 */
 public final boolean done() {
 return true;
 }
}

➢Code: jade.core.behaviours

23

Agent execution thread path

Jade Tutorial: Jade Programming For Beginners, http://jade.tilab.com

24

Example of CyclicBehaviour
public class TruckAgent extends Agent {
 private boolean isFree = false;
 protected void setup() {
 Object[] args = getArguments();
 if (args.length >= 1)
 isFree = Boolean.parseBoolean((String) args[0]);

 Behaviour b = new OneShotBehaviour(this) {
 public void action() {
 System.out.println("I am " +
 (isFree ? "free" : "not free") +
 " !");
 }
 };
 addBehaviour(b);
 }
}

✔ Usage of anonymous classes

✔ for introducing new

✔ behaviours is common

✔ pattern in JADE

✔ programming

➢ Code:
 ibspan.lab1.ex3

25

Agent termination
■ An agent terminates when its doDelete() method is called.
■ On termination the agent’s takeDown() method is invoked

(intended to include clean-up operations).
public class TruckAgent extends Agent {
 private boolean isFree = false;
 protected void setup() {
 Object[] args = getArguments();
 if (args.length >= 1)

 isFree = Boolean.parseBoolean((String) args[0]);
else {

 doDelete();
 return;
 }

 Behaviour b = new CyclicBehaviour(this) {
 public void action() {
 System.out.println("I am " +
 (isFree ? "free" : "not free") +

" !");
 }
 };
 addBehaviour(b);
 }

 protected void takeDown() {
 System.out.println("Bye...");
 }
}

26

Behavioural programming (II)

<numer>

✔Questions ??

<numer>

Part III:
Concurrency

to JADE

<numer>

Concurrency in JADE
■ Agent needs concurrency:

 to engage in multiple simultaneous conversations
 to execute several concurrent tasks

■ Let us present it on example:

 AirConditinioning application, responsible for
➔ Checking temperature outside
➔ Checking temparature inside

 Activities must be performed concurrently with
different freqeuncy

 Let see different approaches in handling with
concurrency

 While putting common-used functionality into seperate
class: ibspan.lab1.ex3.AirConditioning

<numer>

AirConditioning with threads (I)
■ Threads are managed by JVM in pre-emptive manner

■ This means threads works in competitive way

<numer>

AirConditioning with threads (II)

final AirConditioning ac = new AirConditioning(36f,
 20f);

// Construct task checking temperature outside
Runnable task1 = new Runnable() {
 public void run() {
 while (true) {
 ac.checkTempOutside();
 try {
 Thread.currentThread().sleep(5000);

 } catch (InterruptedException ingore) {}
 }
 }
};

// Construct task checking temperature inside
Runnable task2 = new Runnable() {
...

// Starts runnable tasks as threads
new Thread(task1).start();
new Thread(task2).start();

Input: Output:
Outside: 36.89621
 Inside: 20.098755
Outside: 36.962685
 Inside: 19.816002
Outside: 35.905853
Outside: 37.576965
 Inside: 19.861654
Outside: 39.236443
 Inside: 19.615541
Outside: 38.940544
Outside: 39.02758

➢Code: ibspan.lab1.ex3.AirConditioningThreads

<numer>

AirConditioning with agents (I)
■ Each JADE agent is executed in a single Java thread

■ Behaviours are managed by JADE in non-re-emptive
manner

■ This means behaviour works in cooperative way
 Every behaviour must release the control to allow the

other behaviours to be executed

 Behaviour switch occurs only when the action()
method of the currently scheduled behaviour returns.

■ JADE scheduler carries out a round-robin policy among all
behaviours in the ready queue

■ When the pool of active behaviours of an agent is empty the
agent enters the IDLE state and its thread goes to sleep

<numer>

AirConditioning with agents (II)

 AirConditioning ac;

 protected void setup() {
 ac = new AirConditioning(36f, 20f);
 // Construct behaviour checking temperature
 // outside
 Behaviour b1 = new SimpleBehaviour(this) {

 public void action() {
 while(true) {

 ac.checkTempOutside();
block(5000);

 }
 }

 public boolean done() {
 return false;
 }
 };
 addBehaviour(b1);

 ...
 addBehaviour(b2);
 }

Input: Output:
Outside: 36.89621
Outside: 36.962685
Outside: 35.905853
Outside: 37.576965
Outside: 39.236443
Outside: 38.940544
Outside: 39.02758

➢Code: ibspan.lab1.ex3.AirConditioningAgent1

Infinite loop not
allowed in non-preemptive
sheduling!!!

✗W
RONG

<numer>

AirConditioning with agents - :-)

 AirConditioning ac;

 protected void setup() {
 ac = new AirConditioning(36f, 20f);
 // Construct behaviour checking temperature
 // outside
 Behaviour b1 = new CyclicBehaviour(this) {
 public void action() {
 ac.checkTempOutside();

 block(5000);
 }

};
addBehaviour(b1);

 ...

 addBehaviour(b2);
 }

Input: Output:
Outside: 36.89621
 Inside: 20.098755
Outside: 36.962685
 Inside: 19.816002
Outside: 35.905853
Outside: 37.576965
 Inside: 19.861654
Outside: 39.236443
 Inside: 19.615541
Outside: 38.940544
Outside: 39.02758

➢Code: ibspan.lab1.ex3.AirConditioningAgent2

✔ CORRECT

<numer>

SchedulingAgent states' flow

<numer>

Saving stack
■ Everytime a behaviour release control, it is the programmer who is

responsible for saving a stack
Behaviour b = new SimpleBehaviour(this) {
 private int step = 0;
 public void action() {
 switch (step) {
 // Send queries, about which Truck Agent is free
 case 0:
 ...

 step++; break;
 // Collect all answers, cyclicly
 case 1:
 ...

 // if (allAnswersCollected)
 step++;

 break;
 // Get location of first free TruckAgent and migrate there
 case 2:

 ...
 step++; break;

 // Ask TruckAgent about detailed schedule on Monday
 case 3:

 ...
 step++; break;

 // Receive an answer
 case 4:

 ...
 // if (received)
 step++; break;

 }

 public boolean done() { return (step == 5); }
};

<numer>

✔Questions ??

<numer>

Part IV:
Agent

communication
in JADE

<numer>

Communication model & subsystem
■ Every agent has a private queue of ACL messages

■ Communication based on asynchronous message passing

■ Message format defined by the ACL language (FIPA)

■ If you send a message to another agent and the sub-system can’t find
target, then it sends it to the AMS to handle

■ Sending is completely transparent to where the agent resides
(local/remote), the platform that takes care of selecting the most
appropriate address and transport mechanism.

<numer>

Agent Communication Language

Agent Communication Language specifactions, http://www.fipa.org/repository/aclspecs.html

● Structured message, targeted for flexible communication

● Performative = communicative act == speech act (INFORM, QUERY,
REFUSE, …)

● Addressing: To, From
● ConversationID – Used to link messages in same conversation
● In reply to – Sender uses to help distinguish answersReply with – Another

field to help distinguish answers
● Reply by – Used to set a time limit on an answer
● Language – Specifies which language is used in the content
● Ontology – Specifies which ontology is used in the content
● Protocol – Specifies the protocol
● Content – This is the main content of the message

http://www.fipa.org/repository/aclspecs.html

<numer>

The ACLMessage class
■ Messages exchanged by agents are instances of the
jade.lang.acl.ACLMessage class.

■ Provide accessor methods to get and set all the fields defined
by the ACL language

 get/setPerformative();
 get/setSender();
 add/getAllReceiver();
 get/setLanguage();
 get/setOntology();
 get/setContent();


<numer>

Sending and receiving messages

ACLMessage msg = new ACLMessage(ACLMessage.INFORM);
msg.addReceiver(new AID("Peter", AID.ISLOCALNAME));
msg.setLanguage("English");
msg.setOntology("Weather-Forecast-Ontology");
msg.setContent("Today it’s raining");
send(msg);

ACLMessage msg = receive();
if (msg != null) {

// Process the message
}

 Sending a message is as simple as creating an ACLMessage object
and calling the send() method of the Agent class

 Reading messages from the private message queue is
accomplished through the receive() method of the Agent
class.

<numer>

Blocking / waiting for a message
■ A behaviour that processes incoming messages does not know exactly

when a message will arrive – It should poll the message queue by
continuously calling myAgent.receive().

■ This of course would completely waste the CPU time.

■ The block() method of the Behaviour class removes a behaviour from
the agent pool and puts it in a blocked state.

■ Each time a message is received all blocked behaviours are inserted back
in the agent pool and have a chance to read and process the message.

public void action() {
ACLMessage msg = myAgent.receive();
if (msg != null) {

// Process the message
} else {

block();
}

}

✔ This is th
e strongly

✔ recommended pattern to

✔ receive messages

✔ within a behaviour

<numer>

Receiving a message

// Prepare behaviour responsible for cyclic reading
Behaviour b = new CyclicBehaviour(this) {
 public void action() {
 ACLMessage rcv = receive();
 if (rcv != null) {
 // Performative (communicative act type) is base
 // for choice of reaction.
 switch(rcv.getPerformative()) {
 case ACLMessage.QUERY_IF:

 // We are assuming this is a question of SchedulingAgent
 // about being free on Monday
 ACLMessage response = rcv.createReply();

 response.setPerformative(ACLMessage.INFORM);
 response.setContent("" + isFree);
 send(response);
 break;
 ...

➢Code: ibspan.lab1.ex5.TruckAgent1

<numer>

Selective reading messages

// Prepare behaviour responsible for cyclic reading
// a question of SchedulingAgent about being free on Monday
Behaviour b = new CyclicBehaviour(this) {
 public void action() {
 MessageTemplate mt =
 MessageTemplate.MatchPerformative(ACLMessage.QUERY_IF);
 ACLMessage rcv = receive(mt);

if (rcv != null) {
 ACLMessage response = rcv.createReply();
 response.setPerformative(ACLMessage.INFORM);
 response.setContent("" + isFree);
 send(response);
 } else
 block();
 }
};
...

✔The receive() method returns the first message in the message
queueand removes it

✔If the are two (or more) behaviours receiving messages, one may “steal” a
message that the other one was interested in.

✔To avoid this it is possible to read only messages with certain characterics
specifying a jade.lang.acl.MessageTemplate parameter in the
receive() method.

➢Code: ibspan.lab1.ex5.TruckAgent2

<numer>

Part IV:
Debugging

communication
in JADE

<numer>

Debugging: documentation
■ JADE Administrator’s Guide

<numer>

DummyAgent / IntrospectorAgent

DummyAgent
 interacting with JADE

agents
 sending ACL messages
 maintains a list of ACL

messages sent and
received

DummyAgent
 interacting with JADE

agents
 sending ACL messages
 maintains a list of ACL

messages sent and
received

Introspector
 monitoring and

controlling the life-
cycle of agent

 monitoring agent's
exchanged messages

 monitoring the queue of
behaviours (step-by-
step execution)

<numer>

SnifferAgent

SnifferAgent
 tracking and displaying

messages from/to
sniffed an agents

 saving tracked
messages

<numer>

✔Questions ??

<numer>

Part V:
Planning
mobility –
roadmap

<numer>

Mobility – seemingly easy

Location remoteDestination = ...; // !@#$%^& ??!!
doMove(remoteDestination);

How can I know the name of
remoteDestination ?

Maybe I should type it myself ?

<numer>

JavaDoc about migration

doMove
public void doMove(Location destination)

Make this agent move to a remote location. This method is intended to support agent mobility and is
called either by the Agent Platform or by the agent itself to start a migration process. It should be noted
that this method just changes the agent state to AP_TRANSIT. The actual migration takes place
asynchronously.
NOT available in MIDP

Parameters:
destination - The Location to migrate to.

public interface Location extends Serializable, Concept

Abstract interface to represent JADE network locations. This interface can be used to access
information about the various places where a JADE mobile agent can migrate.

✔ jade.core.Location is an abstract interface, so
application agents are not allowed to create their own locations.

✔ They must ask the AMS:
✔ for the list of the available locations and choose one
✔ or where (at which location) another agent lives.

file:///c:/ibspan/software/jade3.4/doc/api/jade/core/Location.html
file:///c:/ibspan/software/jade3.4/doc/api/jade/util/leap/Serializable.html
file:///c:/ibspan/software/jade3.4/doc/api/jade/content/Concept.html

<numer>

Mobility MindMap

mobility

Defining
destination

Obtaining
destination
from AMS

What is
AMS ??!!

Ontology-based
communication

with AMS

Moving to
remote

destination

<numer>

Agent Management Reference Model

■ An Agent Management System (AMS):
 mandatory component of the AP.
 exerts supervisory control over use of

the AP.
 only one in a single AP
 maintains a directory of AIDs
 offers white pages services

to other agents.
 each agent must register with an AMS

in order to get a valid AID

FIPA Agent Management Specification, http://www.fipa.org/specs/fipa00023/SC00023K.pdf

■ An Message Transport Service (MTS) is the default communication
method between agents on different AP

■ An Agent Platform (AP) provides the physical infrastructure in which
agents can be deployed.

http://www.fipa.org/specs/fipa00023/SC00023K.pdf

<numer>

AMS as White Pages service

1. Agent A asks AMS about all possible containers in the
 platform.
2. Agent A receives set of locations from AMS.
3. Agent A migrates to the randomly chosen location.

1. Agent A takes as an argument name of agent B.
2. Agent A asks AMS about location (container) of agent B.
3. Agent A receives response from AMS about the location.
4. Agent A migrates to the location of agent B.

AMS answers with the list of the available locations – scenario 1.

AMS answers with the location, where another agent lives – scenario 2.

but...

AMS speaks in ontology !

<numer>

✔Questions ??

<numer>

Part VI:
Introduction

to semantics of
communication

in JADE

<numer>

Ontologies: Documentation
■ A complete tutorial is available on the JADE site

JADE Tutorial Application-defined Content
Languages and Ontologies,
http://jade.tilab.com/doc/CLOntoSupport.pdf

■ API documentation (javadoc): jade.content
package and subpackage

■ Sample code: examples.content package in the
examples included in the JADE distribution.

http://jade.tilab.com/doc/CLOntoSupport.pdf

<numer>

(REQUEST
 :sender (agent-identifier :name da1@Zadig:1099/JADE)
 :receiver (set (agent-identifier :name ams@Zadig:1099/JADE))
 :content ((action
 (agent-identifier :name ams@Zadig:1099/JADE)
 (where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))
))
 :language FIPA-SL0
 :ontology JADE-Agent-Management
 :protocol fipa-request
)

Ontology: Denotes the ontology which is used to give a meaning to the
symbols in the content expression. An ontology gives meanings to
symbols and expressions within a given domain language.

Language: Denotes the encoding scheme of the content of the action.
Brings representation of message, e.g FIPA SL or it subsets (SLO, SL1).

Content: That part of a communicative act which represents the
domain dependent component of the communication.

Communicative act type: Defines semantical
structure of message content.

<numer>

REQUEST

(REQUEST
 ...
 :content ((“action”
 (ActorOfAction)
 (ActionName (ActionParameters))
))
 ...
)

(REQUEST
 :sender (agent-identifier :name da1@Zadig:1099/JADE)
 :receiver (set (agent-identifier :name ams@Zadig:1099/JADE))
 :content ((action
 (agent-identifier :name ams@Zadig:1099/JADE)
 (where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))
))
 :language FIPA-SL0
 :ontology JADE-Agent-Management
 :protocol fipa-request
)

✔Summary: The sender requests the receiver to perform some action.
✔Message content: An action description.
✔Description: The action can be any action the receiver is capable of

performing: pick up a box, book a plane flight, change a password
etc. An important use of the request act is to build composite
conversations between agents, where the actions that are the object
of the request act are themselves communicative acts such as inform.

<numer>

(INFORM
 :sender (agent-identifier :name ams@Zadig:1099/JADE)
 :receiver (set (agent-identifier :name da1@Zadig:1099/JADE))
 :content ((result
 (action
 (agent-identifier :name ams@Zadig:1099/JADE)
 (where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))
)
 (set (location
 :name Container-1
 :protocol JADE-IPMT
 :address Zadig:1099/JADE.Container-1
))
))
 :reply-with da1@Zadig:1099/JADE976984777740
 :language FIPA-SL0
 :ontology JADE-Agent-Management
 :protocol fipa-request
)

INFORM
✔Summary: The sender informs the receiver that a given

proposition is true.
✔Message content: A proposition (i.e. predicate, here “result”)

(INFORM
 ..
 :content ((“result”
 (“action”
 (ActorOfAction)
 (ActionName (ActionParameters))
)
 (ResultOfAction)
))
 ...
)

<numer>

Working with the AMS – summary
■ The AMS (Agent Management System) represents the authority in

a JADE platform.

■ All platform management actions (creating/killing agents, killing
containers...) are under the control of the AMS.

■ Other agents can request the AMS to perform these actions by
using

 The Fipa-Request Interaction Protocol
 The SL language
 The JADE-Agent-Management ontology and related actions

■ The AID of the AMS can be retrieved through the getAMS()
method of the Agent class

<numer>

Handling content expressions

<numer>

How it works

✔Creating the Ontology (domain specific)
✔Defining the schemas ontology elements
✔Defining the corresponding Java classes

✔Handling content expressions as Java objects

✔Using the ContentManager to fill and parse
message contents

Person john = new Person("John", 35);
Person bill = new Person("Bill", 67);
FatherOf f = new FatherOf();
f.setFather(bill);
f.addChildren(john);

(father-of
 (person :name Bill :age 67)
 (set (person :name John :age 35)))

<numer>

Registering language and ...

// register the SL0 content language
getContentManager().registerLanguage(new SLCodec(),
 FIPANames.ContentLanguage.FIPA_SL0);

// register the mobility ontology
getContentManager()
 .registerOntology(MobilityOntology.getInstance());

<numer>

Creating request to AMS
private ACLMessage prepareRequestToAMS(AID agent) {
 ACLMessage request = new ACLMessage(ACLMessage.REQUEST);
 request.addReceiver(getAMS());
 request.setLanguage(FIPANames.ContentLanguage.FIPA_SL0);
 request.setOntology(MobilityOntology.NAME);
 request.setProtocol(FIPANames.InteractionProtocol
 .FIPA_REQUEST);
 // creates the content of the ACLMessage
 Action act = new Action();
 act.setActor(getAMS());

 WhereIsAgentAction action = new WhereIsAgentAction();
 action.setAgentIdentifier(agent);
 act.setAction(action);

 try {
 getContentManager().fillContent(request, act);
 } catch (CodecException ignore) {
 } catch (OntologyException ignore) {}
 return request;
}

(REQUEST
 :sender (agent-identifier :name da1@Zadig:1099/JADE)
 :receiver (set (agent-identifier :name ams@Zadig:1099/JADE))
 :content ((action
 (agent-identifier :name ams@Zadig:1099/JADE)
 (where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))
))
 :language FIPA-SL0
 :ontology JADE-Agent-Management
 :protocol fipa-request
)

public class WhereIsAgentAction
 implements AgentAction {
 private AID agentName;
 public WhereIsAgentAction() {}
 public void setAgentIdentifier(AID id)
 { agentName = id; }
 public AID getAgentIdentifier()
 { return agentName; }
}

➢Code:
ibspan.lab1.ex6
.AgentA

<numer>

Parsing answer from AMS
(INFORM
 :sender (agent-identifier :name ams@Zadig:1099/JADE)
 :receiver (set (agent-identifier :name da1@Zadig:1099/JADE))
 :content ((result
 (action
 (agent-identifier :name ams@Zadig:1099/JADE)
 (where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))
)
 (set (location
 :name Container-1
 :protocol JADE-IPMT
 :address Zadig:1099/JADE.Container-1
))
))
 :reply-with da1@Zadig:1099/JADE976984777740
 :language FIPA-SL0
 :ontology JADE-Agent-Management
 :protocol fipa-request
)

private Location parseAMSResponse(ACLMessage response) {
 Result results = null;
 try {
 results =
 (Result)getContentManager()
 .extractContent(response);
 } catch (UngroundedException e) {
 } catch (CodecException e) {
 } catch (OntologyException e) {}
 Iterator it = results.getItems().iterator();

 Location loc = null;
 if (it.hasNext())
 loc = (Location) it.next();

 return loc;
}

➢Code:
ibspan.lab1
.ex6.AgentA

<numer>

✔Questions ??

<numer>

Part VII:
Agent

mobility
in JADE

<numer>

Mobility: documentation

Documentation

 Chapter 3.7 in the Programmers guide included in the JADE
distribution provides a detailed explanation of the mobility
support

 API documentation (javadoc): jade.core.Agent class,
jade.core.Location interface and
jade.domain.mobility package

 Sample code: examples.mobile package in the examples
included in the JADE distribution.

 In FIPA Agent Management Support for Mobility
Specification
http://www.fipa.org/specs/fipa00087/index.html

http://www.fipa.org/specs/fipa00087/index.html

<numer>

Mobility example from JADE

➢Code: examples.mobile in JADE package

<numer>

1st mobile application

1. Agent A takes as an argument name of agent B.

2. Agent A asks AMS about location (container) of agent B.

3. Agent A receives response from AMS about the location.

4. Agent A migrates to the location of agent B.

➢Code: ibspan.lab1.ex4

<numer>

2nd mobile application

1. Agent A asks AMS about all possible containers in the
 platform.

2. Agent A receives set of locations from AMS.

3. Agent A migrates to the randomly chosen location.

➢Code: ibspan.lab1.ex5

<numer>

JADE – weak or strong mobility ?
 We usually say JADE supports "not-so-weak mobility":

✔mobility of status:
✔JADE does not support mobility of Java stacktrace, as in e.g.

Nomad system*
✔In respect to non-premptive behaviour sheduling: before

migration agent have to wait before currently scheduled
behaviour finishes its cycle.

✔JADE agents can migrate in the middle of a conversation and a
programmer can exploit the behaviour composition capability in
order to define an arbitrarily fine-grained sequence of states in
which an agent is allowed to migrate

✔mobility of code:
✔If the code of the moving agent is not available on the

destination container it is automatically retrieved on demand.

* Mobile Agent Virtualization Patent Approved, http://www.gridtoday.com/grid/697387.html

http://www.gridtoday.com/grid/697387.html

<numer>

Intra- and inter-platform mobility
✔ Intra-platform mobility is that, mobile agent can navigate across

different agent containers but it is confined to a single JADE platform
✔ Inter-platform mobility provides agent with nagivating among Agent

Platforms
✔ FIPA defines extensions that are necessary to the AMS to support

mobility.

✔ JADE containers are not FIPA compliant (FIPA does not specify them)
✔ “It should be noted that the concept of an AP does not mean that all

agents resident on an AP have to be co-located on the same host
computer.”*

✔ Therefore FIPA does not specify intra-platform migration

✔ JADE supports intra-platform migration by adaptation of inter-
platform migration specification

✔ JADE does not support inter-platform mobility, by Migration Add-
On does: http://jade.tilab.com

* FIPA Agent Management Specification, http://www.fipa.org/specs/fipa00023/SC00023K.pdf

http://jade.tilab.com/
http://www.fipa.org/specs/fipa00023/SC00023K.pdf

<numer>

Guidelines for mobility
■ In order to be able to move, an agent

must be Serializable
■ Mobility can be

 self-initiated through the
doMove() method of the Agent
class

 forced by the AMS (following a
request from another agent)

■ Besides mobility also agent cloning is
available (method doClone())

Simple Mobility Protocol
(example)

<numer>

✔Questions ??

<numer>

Let us experiment with our app!

➢Code: ibspan.lab1.ex8 package

➢Code: ibspan.lab1.ex7 package

<numer>

Homework
■ Re-implement presented application by use of any of complex

behaviours (SequentialBehaviour, FSMBehaviour)
 Documentation

➔ examples.behaviours.ComplexBehaviourAgent,
examples.behaviours.FSMAgent classes in JADE
package

➔ JADE Programmer’s Guide, http://jade.tilab.com

■ Think about agents modelling some phenomen from real world

✔Questions ??

http://jade.tilab.com/

<numer>

Acknowledgements
■ Michał Szymczak, Paweł Kaczmarek and Mateusz

Kruszyk for proposing tutorial content

■ Maria Ganzha, Paweł Kobzdej and Marcin
Paprzycki for veryfing content and lots of comments

■ Martin L. Griss and Robert R. Kessler for their
tutorial 'Making Java Agents and JBuilder Work for
You'

