Software agent computing

1* laboratory activities
at Warsaw University of Technology

Maciej Gawinecki
Systems Research Institute, Polish Academy of Sciences
maciej.gawinecki@ibspan.waw.pl

http://www.ibspan.waw.pl/~gawinec

mailto:maciej.gawinecki@ibspan.waw.pl

Part I:

Motivation
and aim

Aim of this laboratory

B Capture basic knowledge about programming in JADE
B Avoid confusing with vast specifactions

® Build up real agent-based application

Migration vs. RPC (RMI)

Local

\onnent

Local machine 1

Remote
Method

Local machine

Invocation

Remote machine

Remote
component

conversation (AgentB
AY

Remote machine

AgentA

Mobile agents in logistics

Gives possibility to*:

® increase the cost efficiency of the communication
between the logistical objects, e.g. as representatives of:

v vehicles,

v distribution centres,

v packages

v and other components

® cnable new service solutions that have a need for
higher amounts of data to be transmitted, ¢.g:

v sensor data surveillance,
v enriched route planning services

*Becker, M.; Singh, G.; Wenning, B.-L.; Gorg, C.: On Mobile Agents for Autonomous Logistics: An
Analysis of Mobile Agents considering the Fan Out and sundry Strategies. In: International
Journal of Services Operations and Informatics, 1 (2007)

w Migration - when use

“In some cases agents need to migrate in orvder to
accomplish their assigned tasks, as it would otherwise be
impossible to transmit all the data needed for a specific task
due to the limitations imposed by the underlying
communication network.”*

Example:
v wireless networks, which tend to have :
- low and variable throughput,
- high latency,
- highly variable delays
- and 1n some cases long connection establishment times.

*Becker, M.; Singh, G.; Wenning, B.-L.; Gorg, C.: On Mobile Agents for Autonomous Logistics: An
Analysis of Mobile Agents considering the Fan Out and sundry Strategies. In: International
Journal of Services Operations and Informatics, 1 (2007)

Migration — when NOT use

“In other situations conventional communication (moving
the data to the code) is faster because of a low amount of
data to be transmitted and highly complex algorithms
resulting in program code of considerable size working on
the data. *

Example:
v route planner working on a small amount of update
information about traffic jams with present geographical
information with a complex route finding algorithm.

*Becker, M.; Singh, G.; Wenning, B.-L.; Gorg, C.: On Mobile Agents for Autonomous Logistics: An
Analysis of Mobile Agents considering the Fan Out and sundry Strategies. In: International
Journal of Services Operations and Informatics, 1 (2007)

» Simple logistic app — architecture

[=] Container-2

TruckAgent
4

[-] Container-1

[=] Container-3 [=] Mai760ntainer
L - TruckAgent
TruckAgent | SchedulingAgent

/

[

= Co&(ainer—-ﬁl

TruckAgent

W Simple logistic app - seq. diagram

SchedulingAgent Truckaoent-1 Truckagent-rH

==QLIERY-IF==
areouF reeMonday)

==CLERY-IF ==
arevouF nestonday)

==|MFORM==
| answerd

[
| ==INFRM==
| answertiuelfalsed

T |

schedulingAdgentMigrate to first free TruckAgent, e.q. to j

Truckagent-r

==REGILIEST=> |
giverevourscheduleCnihonday) |

==|MFORM==

I
I
Iif answerfSchedule)
I
I

Questions 27

Part 11

Creating
agent

» Local information

B Software:
« JADE, c:\Program Files\ABC\jade
« Ant, c:\Program Files\ABC\ant

m Code:

+ http://www.ibspan.waw.pl/~gawinec/

file:///c:/Program
file:///c:/Program

JADE - how to start?

B JADE, Java Agent DEvelopment Framework
+ software and documentation
+ complies with the FIPA specifications
+ http://jade.tilab.com
+ register at site and jade-dev(@ mailing list !!!

B FIPA, Foundations of Intelligent Physical Agents
+ Specifications
* http://www.fipa.org

B Other documentation:
« Adam buszpa), JADE — materialy dydaktyczne
http://home.agh.edu.pl/~luszpaj/index.php?id=12

w

http://jade.tilab.com/
http://www.fipa.org/

Architecture

Many platforms, many containers

Ifﬁ.,&;;\, ’/f \
‘\h__l___x"' 1,,5_ __/

Main containsr

I -
el J- | 4 Is registered — —
I{ Ad \I [z registered .-~ *so. with 'd JQ -'f‘-‘ala \.
e with -~ : 4 L 58 e ./I S

Container 2 Platform 1 -, Container 1
: =
l P N
--\4-':!:. k>‘_ \ g g_'"‘\
=

I;\ f’ Z “\
o \M_ _/'

Mam container

Platform 2

¢

Launching containers

Launching Main-Container with RMA

> java -cp $CLASSPATH

jade.Boot -gui RMA == Remote

Monitoring Agent
(GUI)

Attaching remote container

> java -cp $CLASSPATH
jade.Boot
-container
-host remoteMachine

Launching RMA at/from remote host

> java -cp $CLASSPATH jade.Boot
-container

-host remoteMachine
rma: jade. tools.rma.rma

Jade Administrator’s Guide, http://jade.tilab.com

Remote Agent Management

(8 RMA @ TestPlatform - JADE Remote Agent Management GUI E|

File Actions Tools Remote Platforms Help
] ADE
o g b

AEIEIEEEERE G E

@ £1 AgentPlatforms name | addresses| state | owner |
@ £0 "TestPlatform” |df@TestPl.. active none |

@ B3 Main-Container
E RMA@TestPlatform

& ams@TestPlatform : L
dfi@ TestPlatr : . .
9 t.(;@m%eff e | v Remote Monitoring Agent
@ test-suite@TestPlatform : v Management Agent

B tester@TestPlatfarm

v White pages GUI — to find agents

v Agent life cycle handling allowing
start, stop, pause, migrate, etc.

v Create and start agents on remote
host

* Assumes container already
registered

v Naturally uses ACL for

communication

Documentation — JADE Administrator’s
Guide

w Identifing an agent

= A type of agent 1s created by extending the jade . core.Agent class

and redefining the setup () method.

= Each Agent instance 1s identified by an AID (jade.core.AID)

v An AID 1s composed of a unique name plus additional addresses

v An agent can retrieve its AID through the getAID () method of the

Agent class

public class TruckAgent extends Agent {

@Override

protected void setup

System.out.println
getAID () .getName

System.out.println

}i

)

)

{

'My name is " +
) ;
'T

o~~~ o~

}

am free on Monday!");

» Code:
ibspan.labl.exl

A

HelloWorild with agents

Launching an agent:
* from GUI

e from command-line

Java

Jade.Boot
hello:ibspan.labl.exl.TruckAgent

W Local names, GUID and addresses

B Agent names are of the form <local-name>@<platform-name>
® The complete name of an agent must be globally unique.

B The default platform name i1s <main-host>:<main-port>/JADE
® The platform name can be set using the —name option

B Within a single JADE platform agents are referred through their names

only. GUID -Globally Unique Identifier

B Given the name of an agent its AID can be created as
+ AID id = new AID(localname, AID.ISLOCALNAME) ;
+ AID id = new AID (name, AID.ISGUID);

B The addresses included in an AID are those of the platform MTPs and are

ONLY used in communication between agents living on different FIPA
platforms 19

w Passing arguments to an agent

B [t is possible to pass arguments to an agent
+ java Jjade.Boot a:myPackage.MyAgent (argl
arg2)
B The agent can retrieve its arguments through the getArguments ()
method of the Agent class

public class TruckAgent extends Agent { .
private boolean isFree = false; > COde-
protected void setup() { : ibspan labl .ex?

isFree = Boolean.parseBoolean((String) args[0]);

System.out.println ("I am " +
(isFree ? "free" : "not free") +

" ||v).
. ’

Jjava
Jade.Boot
hello:ibspan.labl.ex2.TruckAgent (free)

Behavioural programming ()

The actual job that an agent does 1s typically carried out within
“behaviours”

Behaviours are created by extending the
jade.core.behaviours.Behaviour class

To make an agent execute a task it 1s sufficient to create an instance of the
corresponding Behaviour subclass and call the addBehaviour ()

method of the Agent class.

Each Behaviour subclass must implement
+ public void action (): what the behaviour actually does
+ public boolean done (): whether the behaviour is finished

4

w Behavioural programming (111)

» Code: jade.core.behaviours

public abstract class CyclicBehaviour public abstract class OneShotBehaviour
extends SimpleBehaviour ({ extends SimpleBehaviour ({
/** /%%
Default constructor. It does not Default constructor. It does not
set the owner agent. set the owner agent.
*/ */
public CyclicBehaviour () { public OneShotBehaviour () {
super () ; super () ;
} }
/** /**
This constructor sets the owner This constructor sets the owner
agent for this agent for this
CyclicBehaviour OneShotBehaviour .
a The agent this behav1our a The agent this behaviour
must belong to. belongs to.
*/ */
public CyclicBehaviour (Agent a) { public OneShotBehaviour (Agent a) {
super (a) ; super (a) ;
} }
/** /% *
This i1s the method that makes This i1s the method that makes
CyclicBehaviour OneShotBehaviour
cyclic, because it always returns one-shot, because it always
false . returns true
Always false . Always true
* / */
public final boolean done () { public final boolean done () {
return false; return true;
} }
} }

Agent execution thread path

NO

setup ()

X

—"Agent has been killed~ YES

T =01 -,I.-_,'““ﬂ-;—
{dobelete() method callf;_g_,_,f

e -

- .
~—
NO
h

(et the next behaviour from the
pool of active behaviours

L 4
b.action()

.:I -

b.done()?

[YEs
¥

Eemove currentBehaviour from
the pool of active behaviours

¥

takeDown ()

Jade Tutorial: Jade Programming For Beginners, http://jade.tilab.com

™

\ - Initializations
- Addition of initial behaviours

Highlighted in red the
methods that
programmers have to
implement

F"

I o .

| - Agent “life” (execution of
] -

[behaviours)

\ - Clean-up operations

Example of CyclicBehaviour

public class TruckAgent extends Agent {
private boolean isFree = false;
protected void setup() {
Object[] args = getArguments() ;
if (args.length >= 1)

isFree = Boolean.parseBoolean((String) args[0]);

Behaviour b = new OneShotBehaviour (this) {
public void action () {
System.out.println ("I am " +
(1sFree ? "free" : "not free") +
R
}
}i
addBehaviour (b) ;

» Code:
ibspan.labl.ex3

Agent termination

B An agent terminates when its doDelete () method 1s called.
B On termination the agent’s takeDown () method 1s invoked
(intended to include clean-up operations).

public class TruckAgent extends Agent {
private boolean isFree = false;

protected void setup () {
Object[] args = getArguments|();
if (args.length >= 1)
isFree = Boolean.parseBoolean((String) args[0]);

Behaviour b = new CyclicBehaviour (this) ({
public void action () {
System.out.println("I am " +
(isFree ? "free" : "not free") +
" !");
}
}i
addBehaviour (b) ;

iprotected void takeDown () {
System.out.println("Bye...");

Behavioural programming

Models a complex

task i.e. atask thatis
made up by

composing a number
of other tasks.

FSMBehaviour

*re-gistersmte{]

"re-gisterTransitiun[}

Models a complex task
whose sub-tasks
corresponds to the activities

performed in the states of a
Finite State Machine

;_/
/_/
6/
CompositeBehaviour
I]
[|
) lI." = I| \\
II \\
l,-' | \\\
/ | A\

SequentialBehaviour

® 2ddsubBenaviour()

Models a complex task [y

Behaviour

& <<abstract=» action()

==ghstract== donel) Models 2 gel‘lEriC
SonStart() task

“'-:JnEnd[]-

Siblock()

Srestart()

\\E‘:T} []
>
//

\\\\
N
"
\\.
Models a simple task [= ;
i.e. a task that is not SimpleBenaviour
composed of sub-tasks
’_,.r' | |
" [y
/ A
! Y
..‘ ..\'.
J Ay
I AY
/ %,
.r'r. ..\-.
OneShotBehaviour CyclicBehaviour
[| [|
[| [|
\\.
Y
\
\\
\\ Models an atomic Models a cyclic
\, task (its done() task (its done()
™, method retumns frue) method returns
\\ false)
\\\
\-\
ParallelBehaviour
| ‘a-ddSuIJBehavi-:nur:j}

whose sub-tasks are

executed sequentially

Madels a complex task
whose sub-tasks are
executed concurrently

Questions 27

Part 111
Concurrency
to JADE

w Concurrency in JADE

B Agent needs concurrency:

+ to engage in multiple stmultaneous conversations
+ to execute several concurrent tasks

B [et us present it on example:

*

AirConditinioning application, responsible for
> Checking temperature outside
> Checking temparature inside

+ Activities must be performed concurrently with
different freqeuncy

+ Let see different approaches in handling with
concurrency

+ While putting common-used functionality into seperate
class: ibspan.labl.ex3.AirConditioning

w AirConditioning with threads (I)

B Threads are managed by JVM in pre-emptive manner

® This means threads works in competitive way

w AirConditioning with threads (Il)

Input: Output:

final AirConditioning ac = new AirConditioning(36f, Outside: .89621
20f) ; Inside: .098755
Outside: .962685

// Construct task checking temperature outside Inside: .816002
Runnable taskl = new Runnable () { Outside: .905853
public void run() { Outside: .576965
while (true) { Inside: .861654
ac.checkTempOutside () ; Outside: .236443
try { Inside: .615541
Thread.currentThread() .sleep(5000) ; Outside: .940544

} catch (InterruptedException ingore) {} Outside: .02758

}
}
) g

// Construct task checking temperature inside
Runnable task2 = new Runnable () {

// Starts runnable tasks as threads
new Thread (taskl) .start () ;
new Thread (task2) .start () ;

> Code: ibspan.labl.ex3.AirConditioningThreads

AirConditioning with agents (l)

Each JADE agent 1s executed 1n a single Java thread

Behaviours are managed by JADE in non-re-emptive
manner

This means behaviour works in cooperative way
+ Every behaviour must release the control to allow the

other behaviours to be executed

« Behaviour switch occurs only when the action ()

method of the currently scheduled behaviour returns.

JADE scheduler carries out a round-robin policy among all
behaviours in the ready queue

When the pool of active behaviours of an agent is empty the
agent enters the IDLE state and its thread goes to sleep

4

w AirConditioning with agents (II)

Input: Output:

AirConditioning ac; Outside: .89621
_ Outside: .962685
protected wvoid setup () { Outside: 1905853
ac = new AirConditioning(36f, 20f); Outside: .576965
, , Outside: .236443
// Construct behaviour checking temperature Outside: 040544

// outside S, !

: .027

Behaviour bl = new SimpleBehaviour (this) { outside LEVES

while (true) {
ac.checkTempOutside () ;
block (5000) ;

A A — Infinite loop not

_ allowed in non-preemptive
public boolean done () { heduli '
return false; Sneauling...

}
i
addBehaviour (bl) ;

addBehaviour (b2) ;
}

» Code: ibspan.labl.ex3.AirConditioningAgentl

w AirConditioning with agents - :-)

Input: Output:

AirConditioning ac; Outside: .89621
Inside: .098755
protected void setup () { Outside: .962685
ac = new AirConditioning(36f, 20f); Inside: .816002
. Outside: .905853
// Construct behaviour checking temperature Outside: 576965
// outside | | _ Inside: 19.861654
Behaviour bl = new CyclicBehaviour (this) { Outside: 236443
public void action() { Inside: 615541

ac.checkTempOutside () ; . ! !
block (5000) ; Outside: .940544

Outside: .02758

}
)2
addBehaviour (bl) ;

addBehaviour (b2) ;
}

» Code: ibspan.labl.ex3.AirConditioningAgent2

SchedulingAgent states’ flow

?

Send queries to M TruckAgents

I
l

A

Wait for an answer

answers =)
received f Answers++

[answirs == M)

Get location of first free TruckAgent and migrate there

v

Ask Truckagent about detailed schedule on Monday]

l
V)

Receive an answer]

1
®

——

Saving stack

B Everytime a behaviour release control, it 1s the programmer who 1s
responsible for saving a stack

Behaviour b = new SimpleBehaviour (this) ({
private int step = 0;
public void action () {

switch (step) {
// Send queries, about which Truck Agent is free

case O0:

step++; break;
// Collect all answers, cyclicly
case 1:

// 1f (allAnswersCollected)
stept++;

break;
// Get location of first free TruckAgent and migrate there

case 2:

step++; break;

// Ask TruckAgent about detailed schedule on Monday
case 3:

step++; break;

// Receive an answer

case 4:

// 1f (received)
step++; break;

}

public boolean done() { return (step == 5); }

b A

Questions 27

Part 1V:
Agent
communication
in JADE

W Communication model & subsystem

B Every agent has a private queue of ACL messages
® Communication based on asynchronous message passing
B Message format defined by the ACL language (FIPA)

B [f you send a message to another agent and the sub-system can’t find
target, then it sends it to the AMS to handle

B Sending 1s completely transparent to where the agent resides
(local/remote), the platform that takes care of selecting the most
appropriate address and transport mechanism.

Get the message
Prepare the from the message

message to A2 queue and process it
—1

Send the message Post the message in
A2’s message queue

4

W Agent Communication Language

* Structured message, targeted for flexible communication
ACL message

- inform
isender agentil

/v:reneiver hpl-suctioh-server
/ :content
[price (bid goodDZ) 1509
rin-reply-to round-4 | —FParamefer expression

treply—-with khido4d

/ tlanguage =51
Message paramefe tontology hpl-suction

!

Begin me ssage sfrucfure— /_/Me.s.s:zge confenf expression

Commnunicafive act iipe

* Performative = communicative act == speech act (INFORM, QUERY,
REFUSE, ...)

* Addressing: To, From

* ConversationID — Used to link messages in same conversation

* In reply to — Sender uses to help distinguish answersReply with — Another
field to help distinguish answers

* Reply by — Used to set a time limit on an answer

* Language — Specifies which language 1s used in the content

* Ontology — Specifies which ontology 1s used in the content

* Protocol — Specifies the protocol

* Content — This 1s the main content of the message

Agent Communication Language specifactions, http://www.fipa.org/repository/aclspecs.html

http://www.fipa.org/repository/aclspecs.html

The ACLMessage class

B Messages exchanged by agents are instances of the
jade.lang.acl.ACLMessage class.

B Provide accessor methods to get and set all the fields defined
by the ACL language

+ get/setPerformative () ;
+ get/setSender () ;

+ add/getAllReceiver() ;
+ get/setLanguage () ;

+ get/setOntology () ;

+ get/setContent() ;

W Sending and receiving messages

= Sending a message 1s as simple as creating an ACLMessage object
and calling the send () method of the Agent class

ACLMessage msg =
msg.addReceiver (new AID("Peter", AID.ISLOCALNAME)) ;
msg.setLanguage ("English") ;

msg.setOntology ("Weather-Forecast-Ontology") ;
msg.setContent ("Today i1t’s raining");

send (msq) ;

new ACLMessage (ACLMessage.INFORM) ;

= Reading messages from the private message queue 1s
accomplished through the receive () method of the Agent

class.

ACLMessage msg = receive ()
if (msg != null) {
// Process the message

}

Blocking / waiting for a message

B A behaviour that processes incoming messages does not know exactly
when a message will arrive — It should poll the message queue by
continuously calling myAgent. receive ().

® This of course would completely waste the CPU time.

B The block () method of the Behaviour class removes a behaviour from
the agent pool and puts it in a blocked state.

B Fach time a message 1s received all blocked behaviours are inserted back
in the agent pool and have a chance to read and process the message.

public void action () {
ACLMessage msg = myAgent.receive ()
if (msg != null) {
// Process the message
} else {
block () ;
}

Receiving a message

// Prepare behaviour responsible for cyclic reading

Behaviour b = new CyclicBehaviour (this) ({

public void action () {
ACLMessage rcv = receive();
if (rcv != null) {
is base

// Performative (communicative act type)

// for choice of reaction.

 switch (rcv.getPerformative ()) {

_case ACIMessage.QUERY IF: i
// We are assuming this is a question of SchedulingAgent

// about being free on Monday
ACLMessage response = rcv.createReply();
response.setPerformative (ACLMessage. INFORMNM) ;

response.setContent ("" + isFree);
send (response) ;
break;

» Code: ibspan.labl.ex5.TruckAgentl

Selective reading messages

v The receive () method returns the first message in the message
queueand removes it

v If the are two (or more) behaviours receiving messages, one may “steal” a
message that the other one was interested 1n.

v'To avoid this it 1s possible to read only messages with certain characterics
specifying a jade.lang.acl .MessageTemplate parameter in the
receive () method.

// Prepare behaviour responsible for cyclic reading
// a question of SchedulingAgent about being free on Monday
Behaviour b = new CyclicBehaviour (this) ({
public void action () {
. MessageTemplate mt =
| MessageTemplate.MatchPerformative (ACLMessage.QUERY IF);

ﬁACLMessage rcv = receive (mt);

ACLMessage response = rcv.createReply();
response.setPerformative (ACLMessage. INFORM) ;
response.setContent ("" + isFree);
send (response) ;

} else
block () ;

» Code: ibspan.labl.ex5.TruckAgent2

Part 1V:
Debugging
communication
in JADE

Debugging: documentation

B JADE Administrator’s Guide

w

dal@beethoven:1099/JADE - DummyAgent

g | X

General Current message Queued message
i " ,, e | B —
L= W BB 2

EE)

-dn—‘.d.'—’

fACLMessage rEweInpe |

File About

09.03.07 20:14: CONFIRM
09.03.07 20:14: INFORM
09.03.07 20:14: REQUEST
09.03.07 20:14: INFORM
09.03.07 20:14: QUERY-IF

Sender: dal@beethoven:1099.ADE
ReCeivers: trucki@@beethoven: 1099/JADE
Rephy-to:

Communicative act: |confirm |V|
Content:

q] Il [(]
Language: |

Encoding: |

Ontologye |

Protocol: Hull -

¢ B Main-Contain®} ¥ /5 truck@beethoven:1099.JADE

View State Debug

@ Introspeq_|
B truckb

B dal@he
B RMagh

I-DummyAgent

= interacting with JADE
agents

= sending ACL messages

= maintains a list of ACL
messages sent and
received

] amae =

btforms ThisPlatform] -

C
o
19
o
Q
o
Q

sentto tru
recvfrom tr
sentto tru
recv from tr
sentto tru

Introspectori@beel

DummyAgent / IntrospectorAgent

|-Intr0spect0r

= monitoring and
controlling the /life-
cycle of agent

= monitoring agent's
exchanged messages

= monitoring the queue of

behaviours (step-by-

Step execution)

urrert State

Change State

G fuspend
G Wadt
G Wake Up
G Eill

Incoming Messages

Outgoing Messages

l/ Pending r Receed

l/Pending |/Sent |

Incoming Messages -- Pending

Qutgoing Messages - Pending

JTE CONFIRM

9 [Behaviours
1
2

ibspan labt exd TruckAgent? &2
CyrlicBehaviour

sniffert@beethoven:1099/JADE - Sniffer Agent

Actions About

y =HH eeam W

SnifferAgent

ACL Mes=age -

? I‘i‘l AgentF'IathrmS

@ truck@mbeetho
& ams@hbeethove
B RMAGbesthoy
@ snifferi@besty -
B di@beethoven:
@ snifferd-on-tai
B dali@beethove

th L W R = O

Choe. | o
¢ @ Main-Container | ¢

mSnifferAgent

= tracking and displaying
messages from/to
sniffed an agents

= saving tracked
messages

[ACLMessage | Envelope |

Sender:

Receivers:

Rephy-to:

Communicative act:

Content:

dal@heethoven: 1 0990ADE

trucki@bheethoven:1099/JADE

1]

Language:
Encoding:
Ontology:
Protocol:

Conversation-id:

In-rephy-to:
Rephys-with:

Reply-in.

User Properties:

View

Questions 27

Part V:
Planning

mobility —
roadmap

Mobility - seemingly easy

Location remoteDestination = ...; // '@#s$%"& 22!
doMove (remoteDestination) ;

How can I know the name of
remoteDestination ?

Maybe I should type it myself ?

JavaDoc about migration

v Jade.core.Location is an abstract interface, so
application agents are not allowed to create their own locations.

v They must ask the AMS:
v for the list of the available locations and choose one
v or where (at which location) another agent lives.

doMove
public void doMove(Location destination)

Make this agent move to a remote location. This method is intended to support agent mobility and is
called either by the Agent Platform or by the agent itself to start a migration process. It should be noted
that this method just changes the agent state to AP TRANSIT. The actual migration takes place

asynchronously.
NOT available in MIDP

Parameters:
destination - The Location to migrate to.

public interface Location extends Serializable, Concept

Abstract interface to represent JADE network locations. This interface can be used to access
information about the various places where a JADE mobile agent can migrate.

file:///c:/ibspan/software/jade3.4/doc/api/jade/core/Location.html
file:///c:/ibspan/software/jade3.4/doc/api/jade/util/leap/Serializable.html
file:///c:/ibspan/software/jade3.4/doc/api/jade/content/Concept.html

Mobility MindMap

Moving to
remote
destination

Defining
destination

destination

Ontology-based
communication
with AMS

W Agent Management Reference Model

Software

B An Agent Management System (AMS):

L 2

*

mandatory component of the AP.
exerts supervisory control over use of
the AP.

only one 1n a single AP

maintains a directory of AIDs

offers white pages services

to other agents.

cach agent must register with an AMS
in order to get a valid AID

Agent Platform

Agent

Agent
Management
System
A

Directory
Facilitator

Message Transport System

Message Transport System

Agent Platform

B An Message Transport Service (MTS) 1s the default communication
method between agents on different AP

B An Agent Platform (AP) provides the physical infrastructure in which
agents can be deployed.

FIPA Agent Management Specification, http://www.fipa.org/specs/fipa00023/SC00023K.pdf i|umi

http://www.fipa.org/specs/fipa00023/SC00023K.pdf

w AMS as White Pages service

AMS answers with the list of the available locations — scenario 1.

1. Agent A asks AMS about all possible containers in the

platform.
2. Agent A receives set of locations from AMS.

3. Agent A migrates to the randomly chosen location.

AMS answers with the location, where another agent lives — scenario 2.

1. Agent A takes as an argument name of agent B.
2. Agent A asks AMS about location (container) of agent B.
3. Agent A receives response from AMS about the location.

4. Agent A migrates to the location of agent B.

Questions 27

Part VI:
Introduction
to semantics of

communication
in JADE

w Ontologies: Documentation

B A complete tutorial 1s available on the JADE site
JADE Tutorial Application-defined Content
Languages and Ontologies,
http://jade.tilab.com/doc/CLOntoSupport.pdf

B API documentation (Javadoc): jade.content
package and subpackage

®m Sample code: examples.content package in the
examples included in the JADE distribution.

http://jade.tilab.com/doc/CLOntoSupport.pdf

Communicative act type: Defines semantical
tructure of message content.

Content: That part of a communicative act which represents the
domain dependent component of the communication. T

:content ((action
(agent-identifier :name ams@Zadig:1099/JADE)
(where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))
‘)-) e e e oo eh ook ee oo
__:language FIPA-SLO0 !

__:ontology JADE-Agent-Management
:protocol fipa-request

anguage: Denotes the encoding scheme of the content of the action.
Brings representation of message, e.g FIPA SL or it subsets (SLO, SL1).

Ontology: Denotes the ontology which 1s used to give a meaning to the
symbols in the content expression. An ontology gives meanings to
symbols and expressions within a given domain language.

vSummary: The sender requests the receiver to perform some action.

v’ Message content: An action description.

v Description: The action can be any action the receiver is capable of
performing: pick up a box, book a plane flight, change a password
etc. An important use of the request act is to build composite
conversations between agents, where the actions that are the object
of the request act are themselves communicative acts such as inform.

(REQUEST
:content ((“action”
(ActorOfAction) 3
(ActionName (ActionParameters))

)) (REQUEST
- :sender (agent-identifier :name dal@Zadig:1099/JADE)
) :receiver (set (agent-identifier :name ams@Zadig:1099/JADE))
:content ((action

(agent-identifier :name ams@Zadig:1099/JADE)
(where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))
))
:language FIPA-SLO
:ontology JADE-Agent-Management
:protocol fipa-request

vSummary: The sender informs the receiver that a given
proposition is true.
v’ Message content: A proposition (i.e. predicate, here “result”)

(INFORM
:sender (agent-identifier :name ams@Zadig:1099/JADE)
:receiver (set (agent-identifier :name dal@Zadig:1099/JADE))
:content ((result
(action
(agent-identifier :name ams@Zadig:1099/JADE)
(where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))
)
(set (location
:name Container-1
:protocol JADE-IPMT

:address Zadig:1099/JADE.Container-1

))
(INFORM
:content ((“result” | |
‘ (“action” |
(ActorOfAction) 3
(ActionName (ActionParameters))
) 3
5 (ResultOfAction) 3
) 3
)

W Working with the AMS - summary

B The AMS (Agent Management System) represents the authority in
a JADE platform.

B All platform management actions (creating/killing agents, killing
containers...) are under the control of the AMS.

B Other agents can request the AMS to perform these actions by
using
+ The Fipa-Request Interaction Protocol
+ The SL language
* The JADE-Agent-Management ontology and related actions

B The AID of the AMS can be retrieved through the getAMS ()
method of the Agent class

4

Handling content expressions

Inside an ACLMessage

Inside the agent code

Information
represented as a string or a
sequence of bytes
(EASY TO TRANSFER)

.
,‘_

JADE
support for
handling
content
expressions

Information

represented as Java objects
(EASY TO HANDLE)

class Person {
private String name;
int age;

public String getName () ;
public void setName (String n) ;
public int getage()

public void setAgen(int a);

v Creating the Ontology (domain specific) Loncep FEMTEE
v Defining the schemas ontology elements
v Defining the corresponding Java classes ‘
+chiﬁrﬂﬁ”' H
v Handling content expressions as Java objects Person | 1 FatherOf
=1 P
+father "

v Using the ContentManager to fill and parse

message contents 1

Person john = new Person ("John", 35);
Person bill = new Person("Bill", 67);
FatherOf £ = new FatherOf ()
f.setFather (bill) ;

f.addChildren (john) ;
(father-of

(person :name Bill :age 67)

(set (person :name John :age 35)))

Registering language and ...

// register the SLO content language
getContentManager () .registerLanguage (new SLCodec (),
FIPANames.ContentLanguage.FIPA SLO);

// register the mobility ontology

getContentManager ()
.registerOntology (MobilityOntology.getInstance()) ;

Creating request to AMS

private ACLMessage prepareRequestToAMS (AID agent) {

ACLMessage request = new ACLMessage (ACLMessage.REQUEST) ; » Code:
request.addReceiver (getAMS ()) ; ibspan .labl .ex6
request.setLanguage (FIPANames.ContentlLanguage.FIPA SLO);
request.setOntology (MobilityOntology.NAME) ; B -AgentA

(

request.setProtocol (FIPANames.InteractionProtocol

.FIPA REQUEST) ;

public class WherelsAgentAction
// creates the content of the ACLMessage implements AgentAction {
Action act = new Action(); private AID agentName;
act.setActor (getAMS ()) ; public WhereIsAgentAction() {}
e public void setAgentIdentifier (AID id)
 WhereIsAgentAction action = new WherelsA { agentName = id; }
~action.setAgentIdentifier (agent) ; public AID getAgentIdentifier ()
~act.setAction(action); { return agentName; }

getContentManager () .fillContent (request, act);
} catch (CodecException ignore) {
} catch (OntologyException ignore) {}

(REQUEST
return request; :sender (agent-identifier :name dal@Zadig:1099/JADE)
} :receiver (set (agent-identifier :name ams@Zadig:1099/JADE))
:content ((action

(agent-identifier :name ams@Zadig:1099/JADE)
(where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))
))
:language FIPA-SLO
:ontology JADE-Agent-Management
:protocol fipa-request

Parsing answer from AMS

(INFORM
:sender (agent-identifier :name ams@Zadig:1099/JADE) > Code:
:receiver (set (agent-identifier :name dal@Zadig:1099/JADE)) ib 1abl
:content ((result 1 span .4a
(action .ex6.AgentA

(agent-identifier :name ams@Zadig:1099/JADE)
(where-is-agent (agent-identifier :name Peter@Zadig:1099/JADE))

. (set (location

| :name Container-1

:protocol JADE-IPMT

:address Zadig:1099/JADE.Container-1

Y)Y T private Location parseAMSResponse (ACLMessage response) {
:ieply_Witglgilg Result results = null;
: language -
:ontology JADE-A try |
:protocol fipa-r teshlEsSiS
(Result)getContentManager ()

.extractContent (response) ;
} ecatch (UngroundedException e) {
} catch (CodecException e) {
} catch (OntologyException e) {}

Iterator it = results.getltems () .iterator();

Location loc = null;
if (it.hasNext())
loc = (Location) it.next();

return loc;

Questions 27

Part VII:
Agent
mobility
in JADE

Mobility: documentation

Documentation

= Chapter 3.7 in the Programmers guide included in the JADE
distribution provides a detailed explanation of the mobility
support

= API documentation (Javadoc): jade.core.Agent class,
jade.core.Location interface and
jade.domain.mobility package

= Sample code: examples .mobile package in the examples
included in the JADE distribution.

* In FIPA Agent Management Support for Mobility
Specification

http://www.fipa.org/specs/tfipa00087/index.html I
U

http://www.fipa.org/specs/fipa00087/index.html

Mobility example from JADE

» Code: examples.mobile in JADE package

GLUI of mobile

STOP COUNTER. CONTINUE COUNTER. Counter wvalue:
Available Locations

8] Marne Protocol Address
Main-ContainerggA. . |Main-Container JADE-IMTP P22213

Container-1&@JADE... |Container-1 JADE-IMTP beethoven

Visited Locations
| Frotocol Address

Refresh Locations

1°* mobile application

1. Agent A takes as an argument name of agent B.
2. Agent A asks AMS about location (container) of agent B.
3. Agent A receives response from AMS about the location.

4. Agent A migrates to the location of agent B.

»Code: ibspan.labl.ex4

2" mobile application

1. Agent A asks AMS about all possible containers in the
platform.

2. Agent A receives set of locations from AMS.

3. Agent A migrates to the randomly chosen location.

»Code: ibspan.labl.ex5

W JADE - weak or strong mobility ?

= We usually say JADE supports ""not-so-weak mobility":

v’ mobility of status:

v JADE does not support mobility of Java stacktrace, as in e.g.
Nomad system*

v In respect to non-premptive behaviour sheduling: before
migration agent have to wait before currently scheduled
behaviour finishes its cycle.

v JADE agents can migrate in the middle of a conversation and a
programmer can exploit the behaviour composition capability in
order to define an arbitrarily fine-grained sequence of states in
which an agent 1s allowed to migrate

v mobility of code:

v If the code of the moving agent is not available on the
destination container it 1s automatically retrieved on demand.

* Mobile Agent Virtualization Patent Approved, http://www.gridtoday.com/grid/697387.html| iumi

http://www.gridtoday.com/grid/697387.html

@ Intra- and inter-platform mobility

v Intra-platform mobility is that, mobile agent can navigate across
different agent containers but it 1s confined to a single JADE platform

v Inter-platform mobility provides agent with nagivating among Agent
Platforms

v FIPA defines extensions that are necessary to the AMS to support
mobility.

v JADE containers are not FIPA compliant (FIPA does not specify them)
v “It should be noted that the concept of an AP does not mean that all
agents resident on an AP have to be co-located on the same host
computer.”*
v Therefore FIPA does not specify intra-platform migration

v JADE supports intra-platform migration by adaptation of inter-
platform migration specification

v JADE does not support inter-platform mobility, by Migration Add-

On does: http://jade.tilab.com
* FIPA Agent Management Specification, http://www.fipa.org/specs/fipa00023/SC00023K.pdf ™

http://jade.tilab.com/
http://www.fipa.org/specs/fipa00023/SC00023K.pdf

Guidelines for mobility

Agj it 5 Quit (A)

1. Request (Move A)

B [n order to be able to move, an agent
must be Serializable

B Mobility can be
+ self-initiated through the
doMove () method of the Agent

class
+ forced by the AMS (following a
request from another agent)

B Besides mobility also agent cloning is
available (method doClone ())

Agent
Platform

3. Request (Move A)

Agent
Platform

Agent
Al

Simple Mobility Protocol

(example)

4. Execute (A)

4

Questions 27

w Let us experiment with our app!

»Code: ibspan.labl.ex7 package

»Code: ibspan.labl.ex8 package

B Re-implement presented application by use of any of complex
behaviours (SequentialBehaviour, FSMBehaviour)
+ Documentation
> examples.behaviours.ComplexBehaviourAgent,

examples.behaviours.FSMAgent classes in JADE
package
> JADE Programmer’s Guide, http://jade.tilab.com

B Think about agents modelling some phenomen from real world

http://jade.tilab.com/

w Acknowledgements

B Michat Szymczak, Pawel Kaczmarek and Mateusz
Kruszyk for proposing tutorial content

B Maria Ganzha, Pawel Kobzdej and Marcin
Paprzycki for veryfing content and lots of comments

B Martin L. Griss and Robert R. Kessler for their
tutorial ‘Making Java Agents and JBuilder Work for
You'

