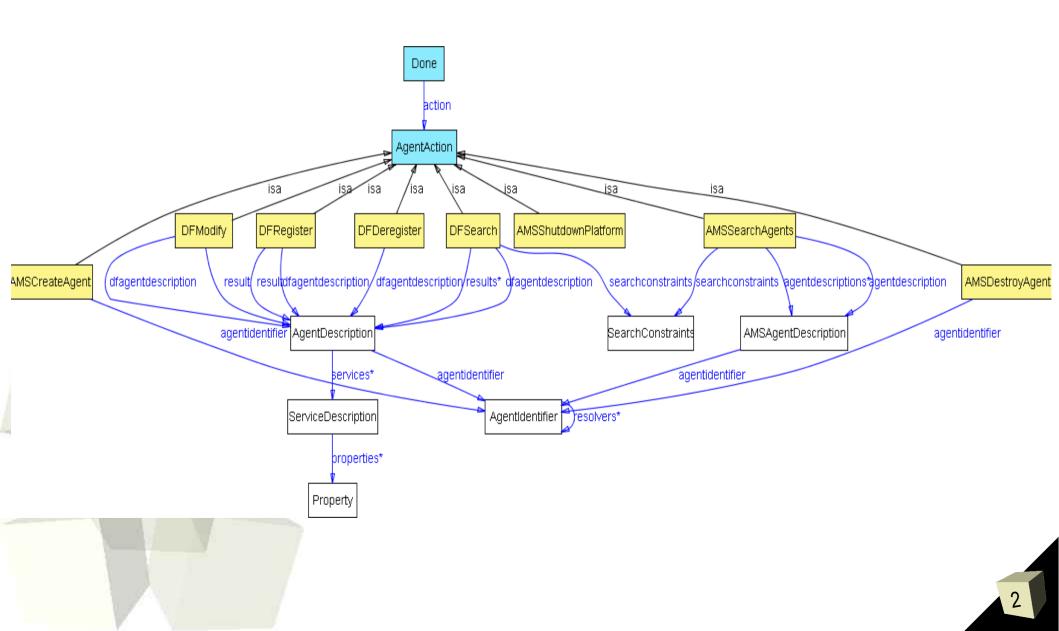
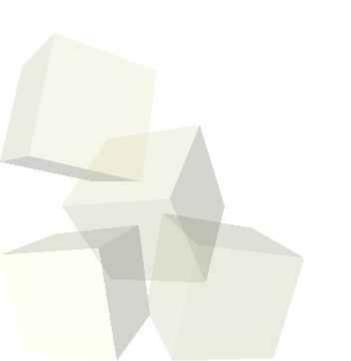


Software agent computing

3rd laboratory activities at Warsaw University of Technology


Maciej Gawinecki

Systems Research Institute, Polish Academy of Sciences maciej.gawinecki@ibspan.waw.pl http://www.ibspan.waw.pl/~gawinec

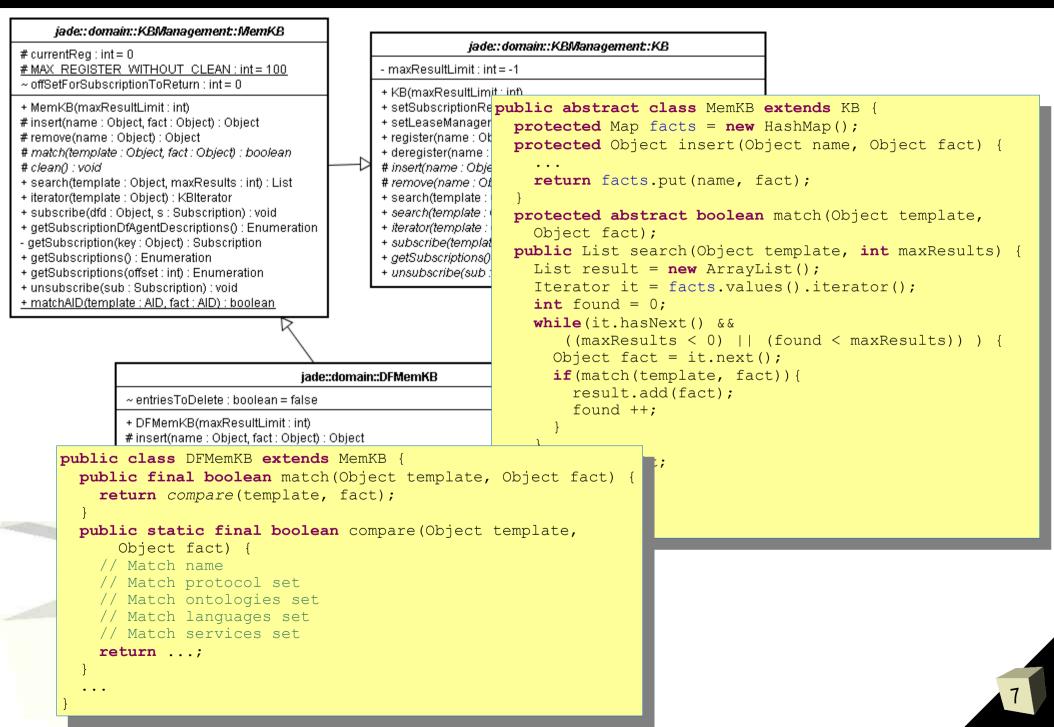

FIPA AMS Ontology

Combining protocols and ontology by JADE agents

Goal-directed agents build with use Jadex BDI reasoning engine

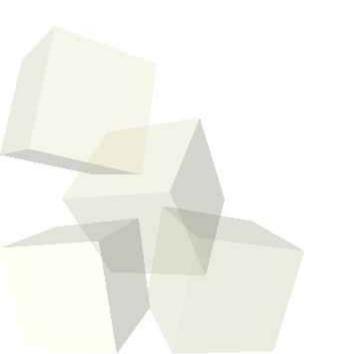
Ontology and protocols in JADE

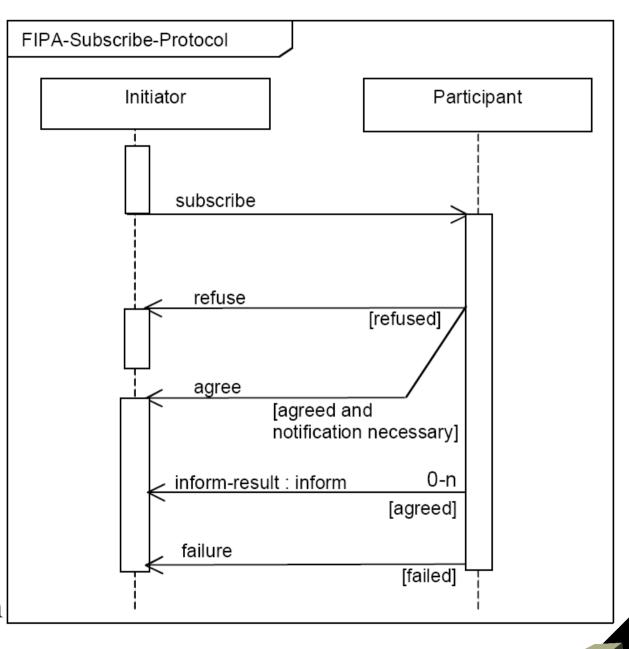
Utilizing in ontology


- 1. Creating JADE-compliant ontology
 - Tools:
 - Protege
 - Templates:
- 2. Converting ontology into Java beans
 - Tools:
 - Jadex Ontology Beananizer
 - Acklin's Ontology BeanGenerator
- 3. Creating knowledge-base
 - 1.Tools:

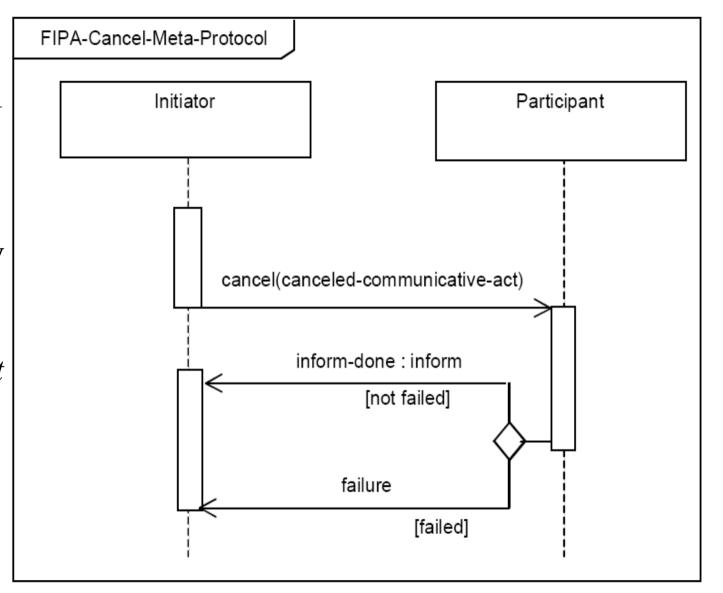
1.JADE Semantic Add-On

- 4. Communicating and processing knowledge
 - 1.Tools:
 - 1.JADE
 - 2.JADE Semantic Add-On


jade::content::Conten	Concept jade::domain::FIPAAgentManagement::DFAgentDescription
 type : String ownership : String setName(n : String) : void getName() : String setType(t : String) : void getType() : String addProtocols(ip : String) : void removeProtocols(ip : String) : boolean clearAllProtocols() : lterator addOntologies(o : String) : void removeOntologies(o : String) : boolean clearAllOntologies() : lterator addLanguages(1 : String) : void removeLanguages(1 : String) : boolean clearAllLanguages() : lterator addLanguages() : lterator setOwnership(o : String) : void getAllLanguages() : lterator setOwnership(o : String) : void getAllLanguages() : lterator setOwnership() : String) : void getAllProperties(p : Property) : void removeProperties(p : Property) : boolean clearAllProperties() : void getAllProperties() : void 	 DFAgentDescription() setName(n : AID) : void getName() : AID setLeaseTime(absoluteTime : Date) : void getLeaseTime(absoluteTime : Date) : void getLeaseTime() : Date setRelativeLeaseTime(relativeTime : long) : void checkLeaseTimeExpired() : boolean addServices(a : ServiceDescription) : void removeServices(a : ServiceDescription) : void getAllServices() : lterator addProtocols(ip : String) : void removeProtocols(ip : String) : boolean clearAllProtocols() : lterator addOntologies(o : String) : void removeOntologies(o : String) : boolean clearAllOntologies() : lterator addLanguages(1 : String) : void removeLanguages(1 : String) : boolean clearAllLanguages() : lterator


Subscription

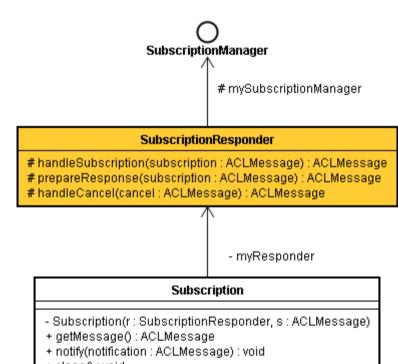
Protocol documentationJADE implementation support


FIPA Subscribe Protocol

- Allows the *Initiator* to send a subscribe message to the *Participant* indicating its desired subscription.
- The Participant:
 - responds to the query request by either accepting (*agree*) or rejecting (*refuse*) the subscription
 - communicates all content matching the *subscriptions condition* using an an *inform* communicative act with a *result* predicate as content

FIPA Cancel Meta Protocol

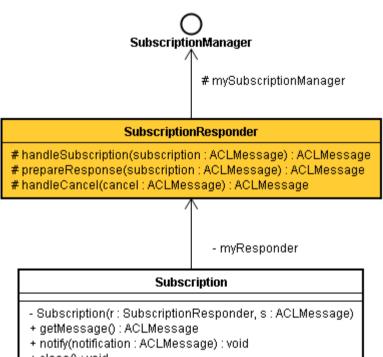
- The *Participant* continues to send inform-results until either
 - the *Initiator* cancels, communicated by sending a *cancel* message,
 - or the *Participant* experiences a failure, communicated with a *failure* message.



Subscription Initiator behaviour

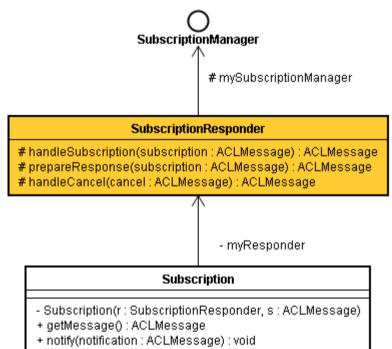
- The implementation of the interaction provides a set of callback methods to handle each state of the protocol
 - these are called when a certain type of message (based on its communicative act) is received.
 - >protected handleAgree(ACLMessage agree)
 - >protected handleRefuse(ACLMessage refuse)
 - >protected handleInform(ACLMessage inform)
- Method for canceling the subscription:
 - public cancel(AID receiver, boolean ignoreResponse)
 - Cancel the subscription to agent receiver. This method retrieves the subscription message sent to receiver and sends a suitable *cancel* message.
 - The content slot of this *cancel* message is filled in by means of the *fillCancelContent()* method.

Subscription Responder behaviour

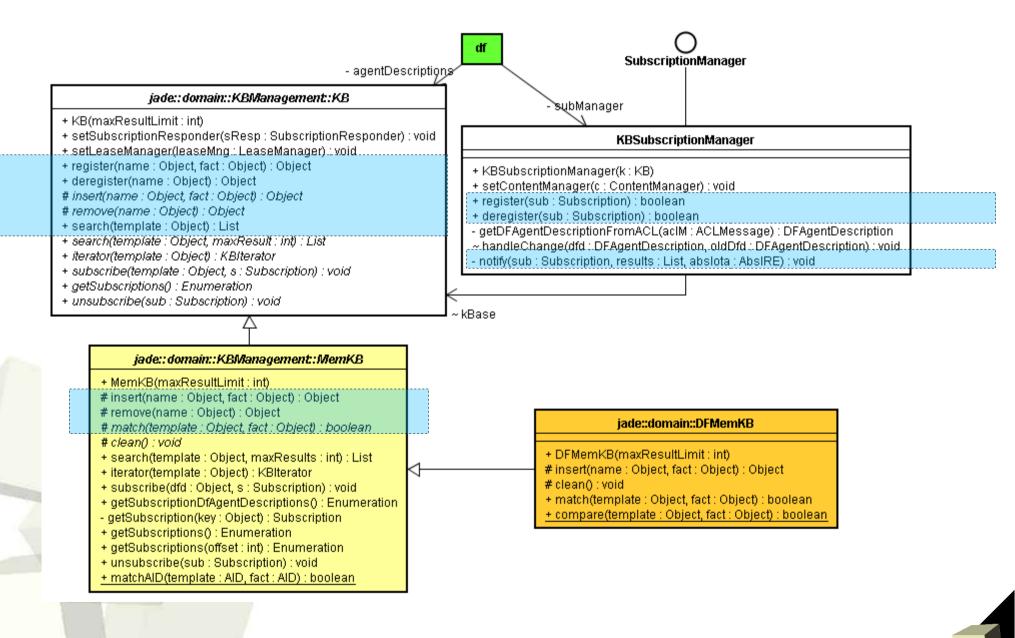

- Implements the *FIPA-Subscribe* interaction protocol from the point of view of a *responder* to subscription message.
- It is very important to pass the right message template to its constructor as it is used to select the ACLMessage to be served.
- Examples
 - Directory Facilitator Agent (jade.domain.df.java)
 - **JMSPubSub Agent** add-on utility

+ close() : void

Subscription Manager


- When a new subscription message arrives, the
 SubscriptionResponder invokes the register () method of its SubscriptionManager.
- When a cancel message is received the deregister() method is called.
- The applications
 SubscriptionManager is expected to implement the register() and deregister() methods.

+ close() : void


Subscription

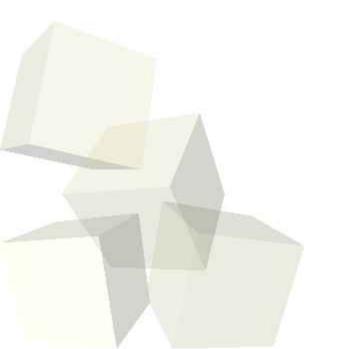
- When a notification has to be sent to a subscribed agent the notification message should not be directly sent to the subscribed agent, but should be passed to the Subscription object representing the subscription of that agent by means of its notify() method.
- This method should be call instead of directly using the send() method of the Agent class, as it automatically handles sequencing and protocol fields appropriately.

+ close() : void

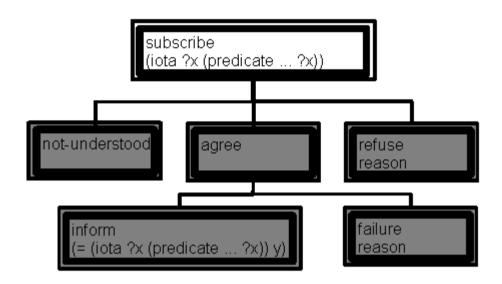
Example: DF Agent

15

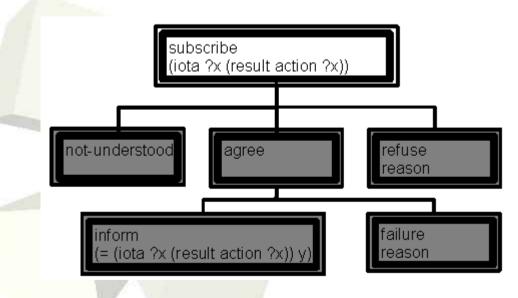
Communicative Act Categotegories


Communicative act	Information passing	Requesting information	Negotiation	Action performing	Error handling	
accept-proposal			~			
 agree				√		
 cancel				\checkmark		
cfp			~			
confirm	\checkmark					
disconfirm	\checkmark					
failure					\checkmark	
 inform	\checkmark					
inform-if (macro act)	\checkmark					
inform-ref (macro act)	~					
not-understood					\checkmark	
propose			~			
query-if		√				
query-ref		\checkmark				
 refuse				\checkmark		
reject-proposal			~			
request				✓		
request-when				✓		
request-whenever				✓		
 subscribe		\checkmark				

16


Protocol Notation

- Rectangle with double edges communication act
- White rectlange action performed by *initiator*
- Gray rectangle action performed by *others participants* of a protocol



Subscribe Protocol Syntax

Requesting general information fulfilling given predicate

Requesting result of given action

(iota x (P x))

the *x* such that *P* [is true] of *x*

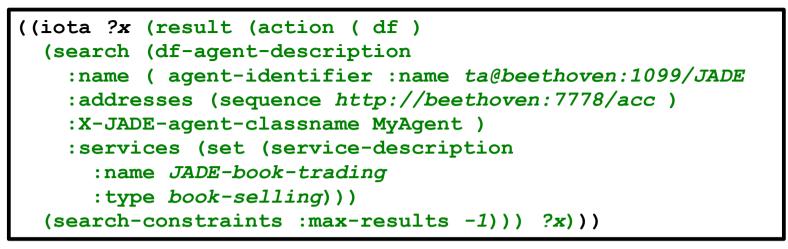
(= x y)

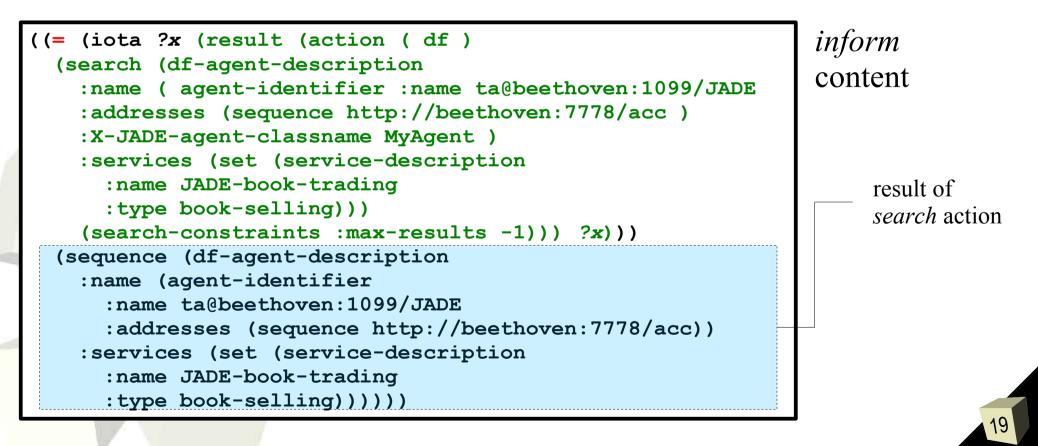
binary predicate of equality

?x

notion of variable

action = "action" actor action-name actor


AID of agent requested to act


result action y

y is result computational action a

Example: Subscribing at DF

subscribe content

DF Agent Description frame

Frame	df-agent-description]		
Ontology	fipa-agent-management			
Parameter	Description	Presence	Туре	Reserved Values
name	The identifier of the agent.	Optional	[8]	
			agent-identifier	
services	A list of services supported	Optional	Set of	
	by this agent.		service-description	
protocols	A list of interaction protocols	Optional	Set of string	See [FIPA00025]
	supported by the agent.			
ontologies	A list of ontologies known by	Optional	Set of string	fipa-agent-management
	the agent.			
languages	A list of content languages	Optional	Set of string	fipa-sl
	known by the agent.		_	fipa-sl0
				fipa-sl1
				fipa-sl2
lease-time	The duration or time at	Optional	[10]	
	which the lease for this		datetime	
	[9]			
	registration will expire			

FIPA Agent Management Specification, http://www.fipa.org/specs/fipa00023/index.html

Service Description frame

Frame	service-description			
Ontology	fipa-agent-management			
Parameter	Description	Presence	Туре	Reserved Values
name	The name of the service.	Optional	string	
type	The type of the service.	Optional	string	[11]
				fipa-df
				fipa-ams
protocols	A list of interaction protocols	Optional	Set of string	
	supported by the service.	-	_	
ontologies	A list of ontologies	Optional	Set of string	fipa-agent-management
	supported by the service.			
languages	A list of content languages	Optional	Set of string	
	supported by the service.	-	_	
ownership	The owner of the service	Optional	string	
properties	A list of properties that	Optional	Set of property	
	discriminate the service.			

FIPA Agent Management Specification, http://www.fipa.org/specs/fipa00023/index.html

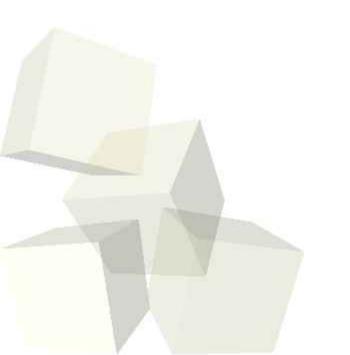
• Summary:

The act of requesting a persistent intention to notify the sender of the value of a reference, and to notify again whenever the object identified by the reference changes.

- Message content:
 A definite descriptor
- Description:

[...] *A subscription set up by a subscribe act is terminated by a cancel act.*

Subscriptions condition


Example

Agent i wishes to be updated on the exchange rate of Francs to Dollars, and makes a subscription agreement with j (an exchange rate server)

(subscribe						
:sender i						
:receiver	`j					
:content	(iota	\mathbf{x}	(xch-rate	FFr	USD	?x))
)						<i>'</i>

- General
 - T. R. Gruber. *A translation approach to portable ontologies*. Knowledge Acquisition, 5(2):199-220, 1993. http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
- N. F. Noy, D. L. McGuinness (2001), *Tutorial: Ontology Development 101* http://protege.stanford.edu/publications/ontology_development/ontology101.html

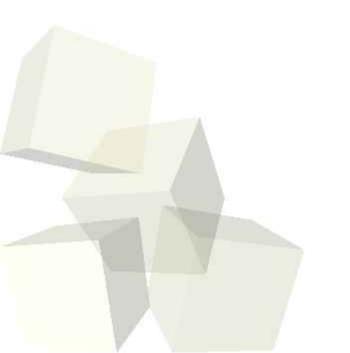
- An ontology provides a common vocabulary for researchers who need to share information in the domain. Some of the reasons to create an ontology are:
 - To share common understanding of the structure of information among people or software agents
 - To enable reuse of domain knowledge
 - To make domain assumptions explicit
 - To separate domain knowledge from operational knowledge
 - To analyze domain knowledge

Ontology in Protégé

■ Ontology:

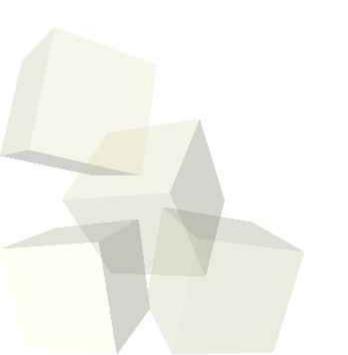
"Specification of conceptualization"*

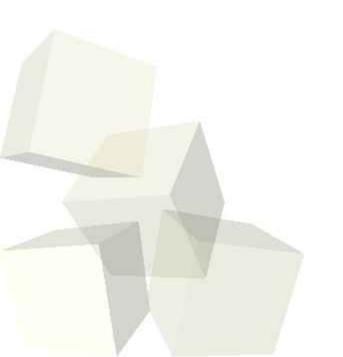
- i.e. specification of
 - → what **exists**
 - → what are **relations** among parts
- In context of Protégé**:
 - Description of:
 - → classes (concepts) in a domain of discourse
 - slots (properties) of each class describing various features and attributes of the class
 - An ontology together with a set of individual **instances** of classes constitutes a **knowledge base**.


* T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition, 5(2):199-220, 1993.

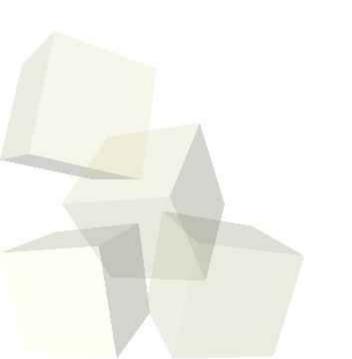
** N. F. Noy, D. L. McGuinness (2001), Tutorial: Ontology Development 101

Protégé-Frames


 Getting Started with Protégé-Frames http://protege.stanford.edu/doc/tutorial/get_started/get-started.pdf


Importing JADE base ontology

- Open Project->Manage Included Projects... menu item
- Click Add Project button (with + icon)
- Choose beanynizer_default.pprj project and click OK.


Creating own ontology

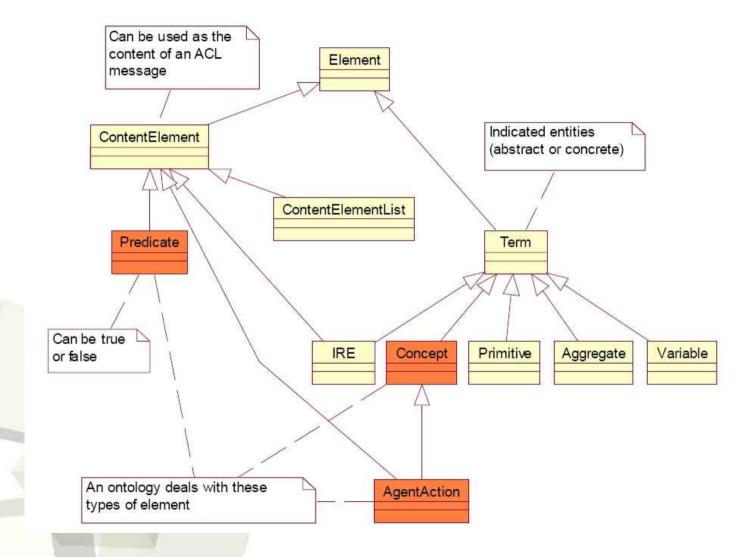
- Choose Create New Project button or open File->New Project... menu item.
- Select a project type: Protégé Files (.pont and .pins) and click OK.
- Save project (enter only desired project path name) and click OK.

Switching Jadex Beanynizer plugin

- Open Project->Configure... menu item.
- Turn on Beaninizer option in Widgets tab and click OK.
- Switch into Jadex Beanynizer tab.

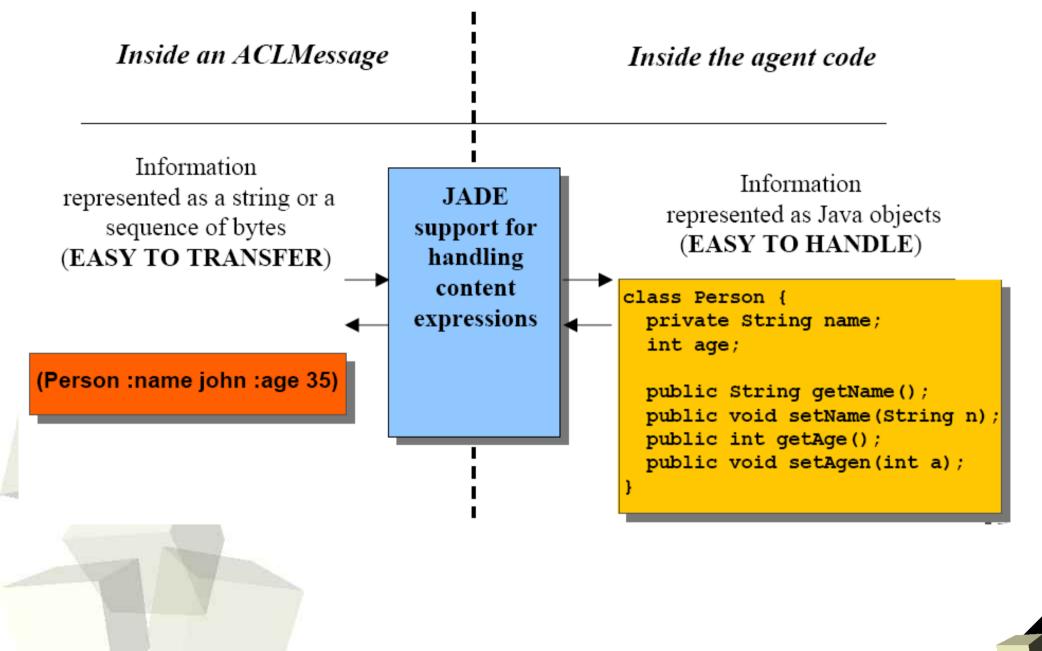
Bean base ontology in Protégé

Base ontology is defined in


beanynizer_default.pprj Protégé project file from Jader Beanynizer plugin.

R	beanyn	izer_def	ault Pr	otég	é 3.2 b	eta (fi	le:\C:\	ibspan	\softwa	re∖ja	dex-bea	nynizer-0.9	5-k	eta1\onto\beanyniz	er_def	ault.pprj	j, Proté	égé Files	(.pon	t and		0) 🕒
File	Edit	Project	Windo	w	Tools	Help																	
	B		ot	P	Ē	×	è	4		4	•									\triangleleft	🛛 р	rot	égé
	Classe		Slots										_								7		
	ASS BRO		SIDES						SS EDITO)R													
	For Project: beanynizer_default For Class: AgentAction (instance of BEANYNIZER-CLASS)														R	-D-	×						
			· ·			0.0	_			-					,				~			4=	
	ss Hiera	archy		10	. •	¥ 🗙	•	Nam						Documentation			Co	nstraints	\$	14	*	•	•
	THING		~~					Age	ntAction					Base class for all age (e.g. sent in request n									
1	 SYS Cond 	TEM-CLA	SS											(e.g. seni in request n	nessayı	55).							
		AgentActi	on					Role															
		agent-ider						Abs	tract 😳			•											
	Predi	-						Ten	nplate Si	lote								2	ዲ	¥	100	-	- C
										ame		Cardinality		Түре				Other F					
								Clas	ss Name						Supe	rclass							
														Interface									
						•	88	Pael	kage				_		Addit	ional Inte	erface	9			ዲ	•	
Sur	erclass	200				•	Ű.		.content													_	
· · ·	Concept							lade	.content														
								Gen	eration	Optio	ons												
								Exte						-									

The *Classes Tab* is an ontology editor which you can use to define *classes* and class *hierarchy*, *slots* and *slot-value restrictions*, *relationships* between classes and properties of these relationships.


JADE Content Reference Model

Base ontology is realized by the following concepts in JADE:

32

Handling content expressions

Semantic Add-on vs. Jadex

Semantic Add-on

- allows for communications on a semantic level, which means that the agent can understand each other
- +JADE = a step towards a real communicationoriented middleware
- Jadex
 - addresses the internal reasoning process of agents
 - an implementation of a **hybrid** (reactive and deliberative) agent architecture for representing mental states in JADE agents following the BDI model.

Jadex as realization of BDI Architecture

- Deciding on what goals to achieve and how to achieve them
 - **Beliefs**: the information an agent has about its surroundings
 - **Desires**: the things that an agent would like to see achieved
 - Intentions: the desires that an agent is working on; also involves a deeper personal commitment
- A BDI architecture addresses how beliefs, desires and intentions are represented, updated, and processed

Jadex, BDI extension to JADE

- Jadex open source project http://vsis-www.informatik.uni-hamburg.de/projects/jadex/
- Background: two different type agent platform exists:
 - **FIPA-compliant platforms** mainly addressing openness and middleware issues (with to respect FIPA standards)
 - **Reasoning-centered platforms** focusing on the behaviour model of a single agent, e.g. trying to achieve rationality and goal-directedness.
- Jadex fill the gap between middleware and reasoning-centered systems.

Launching sample

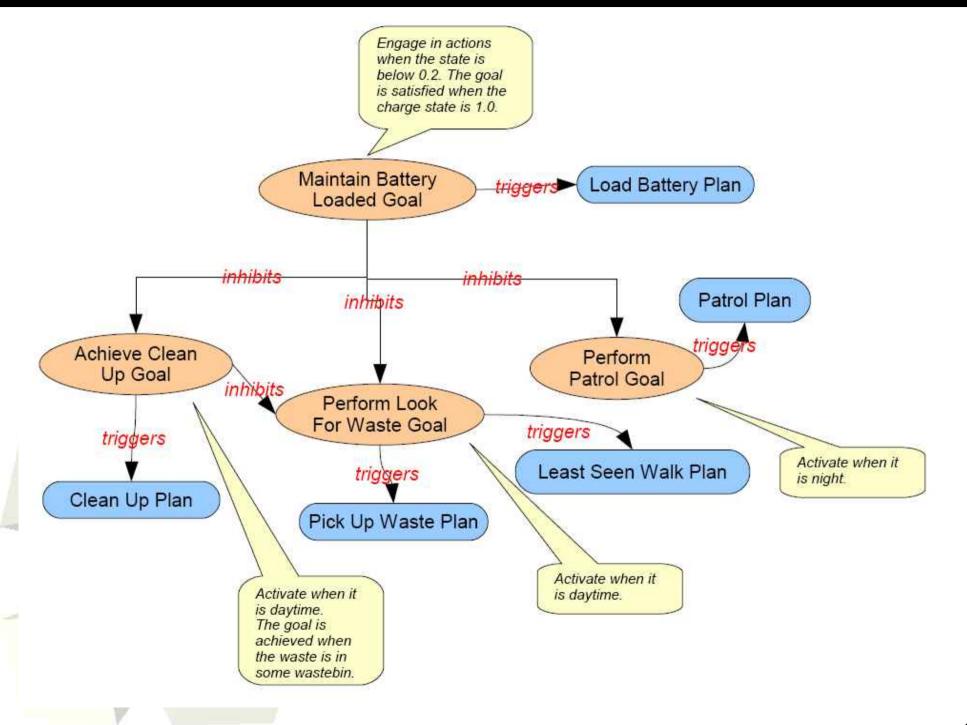
- Unpack the distribution
- Set the *classpath*:
 - Java: .;C:\Java\jdk1.5.0_04\lib;
 - JADE: C:\jade\lib\jade.jar; C:\jade\lib\jadeTools.jar;
 C:\jade\lib\Base64.jar; C:\jade\lib\http.jar;
 C:\jade\lib\iiop.jar;
 - Jadex: C:\jadex-0.94\lib\jadex_rt.jar; C:\jadex-0.94\lib\jibx-run.jar; C:\jadex-0.94\lib\xpp3.jar; C:\jadex-0.94\lib\jadex_standalone.jar; C:\jadex-0.94\lib\jadex_tools.jar; C:\jadex-0.94\lib\GraphLayout.jar; C:\jadex-0.94\lib\jhall.jar; C:\jadex-0.94\lib\jadex_examples.jar

• Start the *platform*:

java jadex.adapter.standalone.Platform

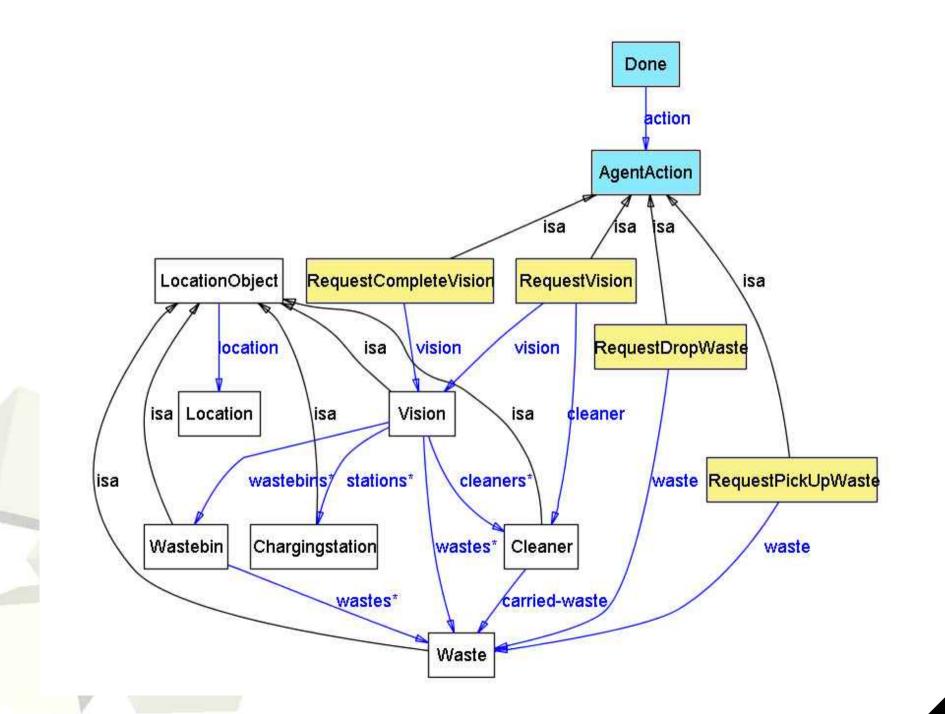
The Jadex Control Center will appear

The cleanerworld is based on the idea that an autonomous cleaning robot has the task to clean up dirt in some environment.

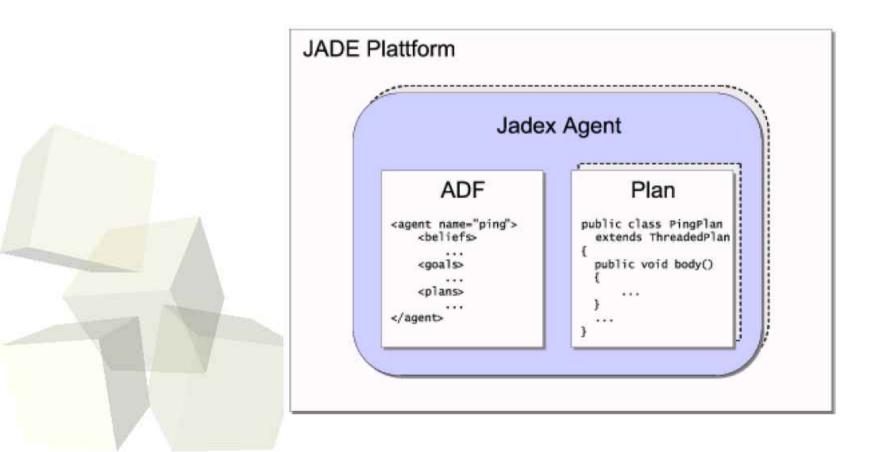

In our scenario of the cleaner world the main system objectives are to keep clean a building at day, e.g. a museum, and to guard the building at night.

To be more concise we think of a group of cleaning robots that are located in the building and try to accomplish the overall system goals by pursuing their own goals in coordination with other individuals.

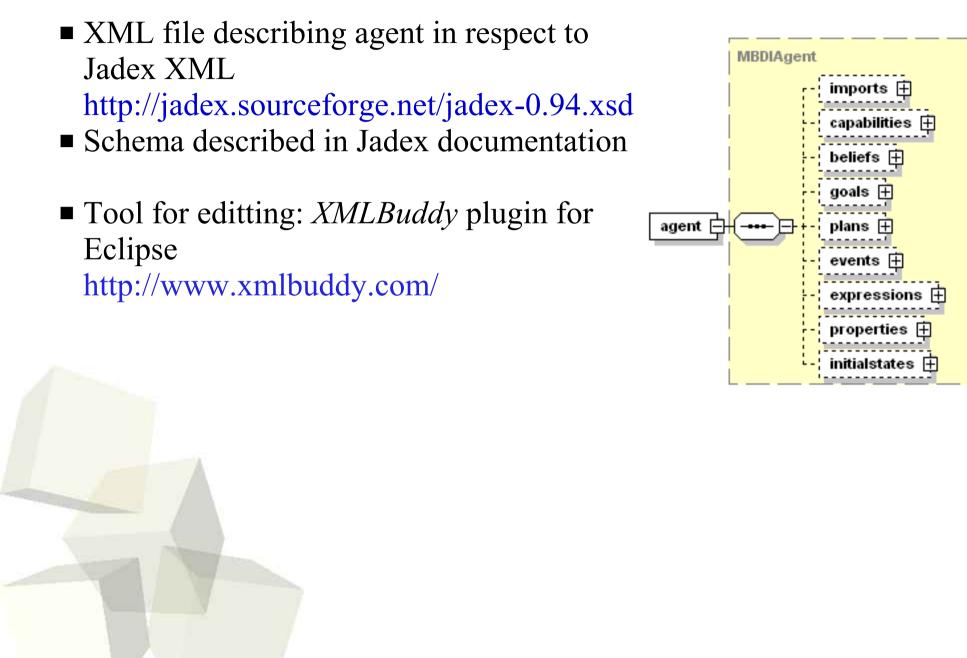
Key goals of World Cleaner


- Therefore, three key goals for an individual cleaning robot were identified.
 - First, it should **clean its environment at day** by removing dirt whenever possible. The cleaning robot therefore has to pick-up any garbage and carry it to a near waste bin.
 - Secondly, it has to **guard the building at night** by performing patrols that should be based on varying routes. Any suspicious occurrences that it recognises during its patrols should be reported to some superordinated authority.
 - Thirdly, it should keep operational by **monitoring its internal states** such as the charge state of its battery or recognised malfunctions. Whenever its battery state is low it has to move to the charging station.

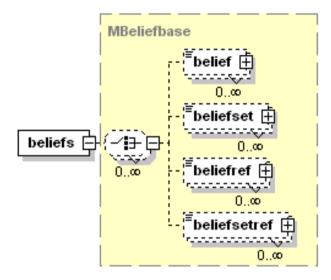
Cleaner: Top Level Goals & Plans


41

CleanerWorld Ontology



Jadex Agent


- A Jadex agent has two basic parts:
 - An Agent Definition File (ADF) written in XML
 - A set of Java classes, which specialize Jadex built-in classes, to specify how *plans* (*intentions*) are constructed out of *beliefs* and *goals* (*desires*)

Agent Definition File

Beliefs in the ADF

Belief

A single-valued piece of agent knowlegde.

BeliefSet

A multi-valued piece of agent knowlegde.

fact

An expression that evaluated to a default value.

<beliefs> <belief name="environment" class="IEnvironment"> <!-- local environment (comment out for remote) --> <!--<fact>Environment.getInstance()</fact>--> </belief> <!-- The points used for patrolling at night. --> <beliefset name="patrolpoints" class="Location"> <fact>new Location(0.1, 0.1)</fact> <fact>new Location(0.1, 0.9)</fact> <fact>new Location(0.3, 0.9)</fact> <fact>new Location(0.3, 0.1)</fact> <fact>new Location(0.5, 0.1)</fact> <fact>new Location(0.5, 0.9)</fact> <fact>new Location(0.7, 0.9)</fact> <fact>new Location(0.7, 0.1)</fact> <fact>new Location(0.9, 0.1)</fact> <fact>new Location(0.9, 0.9)</fact> </beliefset> </beliefs>

45

Access to beliefs within Plan body

```
/**
* Patrol along the patrol points.
*/
public class PatrolPlan extends Plan {
  //----- constructors ------
  /**
   * Create a new plan.
   */
 public PatrolPlan() {
  getLogger().info("Created: "+this);
  1
  //----- methods ------
  /**
   * The plan body.
   */
 public void body() {
   Location[] loci =
     (Location[])getBeliefbase().getBeliefSet("patrolpoints").getFacts();
    for(int i=0; i<loci.length; i++) {</pre>
      IGoal moveto = createGoal("achievemoveto");
     moveto.getParameter("location").setValue(loci[i]);
     dispatchSubgoalAndWait(moveto);
```

Object Query Language-like queries

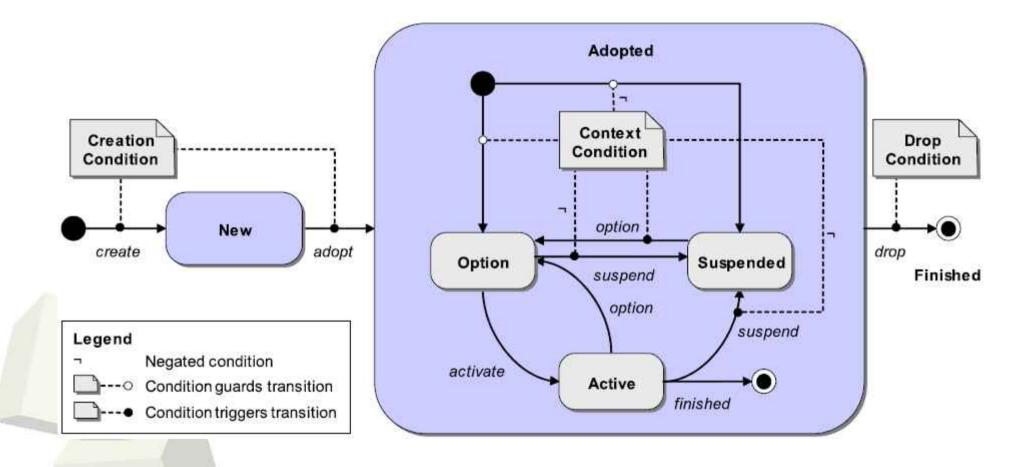
OQL syntax in EBNF:

```
select expression ::= "SELECT"("ALL" | "ANY" | "IOTA")?
(
  (expression "FROM"("$" identifier "IN" expression) (",""$" identifier "IN" expression)* )
  | ("$" identifier "FROM"expression)
  ("WHERE" expression)?
  ("ORDER""BY"expression ("ASC" | "DESC")? )?
```

Query example inside of Query Goal:

```
<!-- Try to find a not full waste bin that

is as near as possible to the agent. -->


<querygoal name="querywastebin" exclude="never">

<parameter name="result" class="Wastebin" direction="out">

value evaluationmode="dynamic">

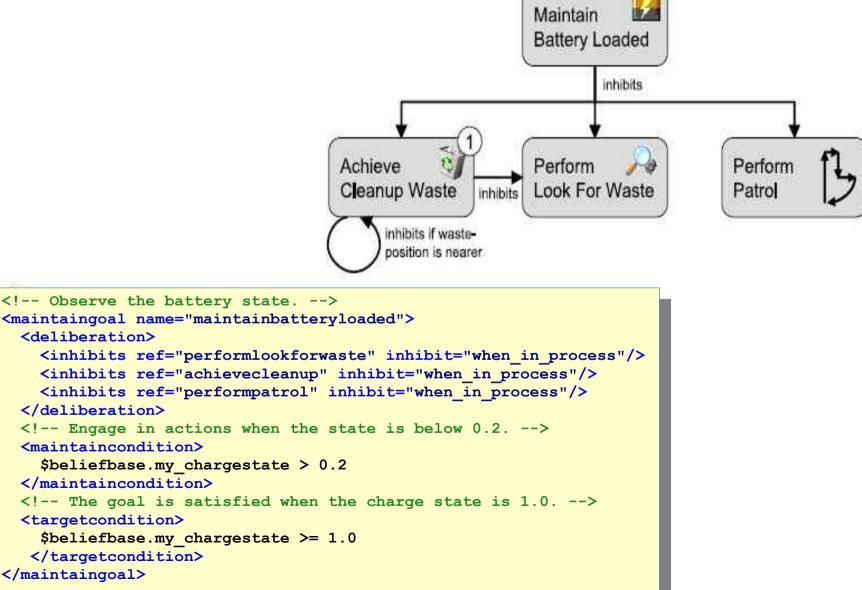
select one Wastebin $wastebin
from $beliefbase.wastebins
where !$wastebin.isFull()
order by
$beliefbase.my_location.getDistance($wastebin.getLocation())
</parameter>
</parameter>
</parameter>
```

Goal lifecycle

Situation of conflicting goals

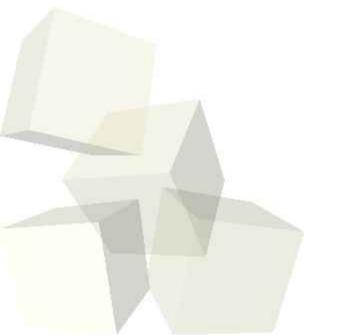
- Goal-oriented agent is capable of purisying multiple goals simultaneously
- Some goals could be conflicted
 - Example:
 - → Agent cannot both Maintain Battery Loaded and Perform Look For Waster, or Perform Patrol
 - → Agent cannot look for a new waste, if the old one has not been cleaned up
- Some goals require limitation in number of activated instances:
 - Example
 - → For improved *performance*, the cleaner should alsway clean up the nearest piece of waste first

Goals deliberation strategy (1)

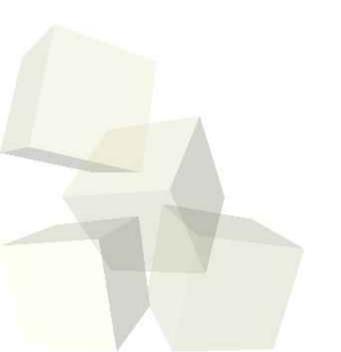

- Goals deliberation allows for avoiding activatation of conflicted goals
- Jadex uses *Easy Deliberation* strategy for this purpose
- Driving factors:
 - **Cardinalities** for goal instances Only *x* instances of a certain type of goal is allowed to be active simultanously
 - → Example:
 - Achieve Cleanup Waste goal with cardininality of 1
 - Inhibition links:

Goals which has been activated should suspend goals inhibited by it

- → Example:
 - If an agent *Maintains Battery Loaded* then it inbits realization of all other goals


Goals deliberation strategy (2)

Graph consitisting of inhibiting arc should be acvelic to avoid cycles in deliberations


Only on demand

- 1: *Deliberate a new option* Check which inhibited goals should be suspended
- 2: *Deliberate a deactive goals* Check which inhibited goals should be reactivated.

Goal types in Jadex

- Perform
- Achieve
- Query
- Maintain

Goal elements: conditions

CreationCondition

A condition that creates a new goal of the given type when triggered.

DropCondition

If the dropcondition triggers the goal instance is dropped.

Deliberation

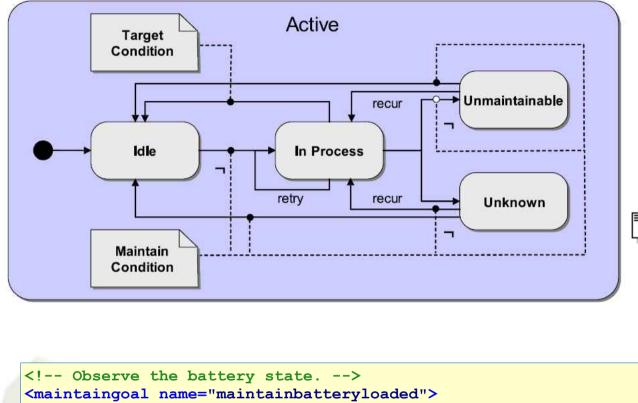
The goal deliberation setting for the *easy deliberation* strategy.

ContextCondition

The context condition is checked during the whole execution time of a goal. If it becomes invalid the goal will become suspended and is not actively pursued until reactivation.

MaintainCondition

The mandatory maintain condition represents a world state that should be monitored and re-established whenever it gets violated.


TargetCondition

A specalisation of the maintain condition taht should be re-established when the maintain condition is violated.

FailureCondition

Can be used to explicitly state when a goal cannot be pursued any longer and is failed.

Maintain goal states

<deliberation>

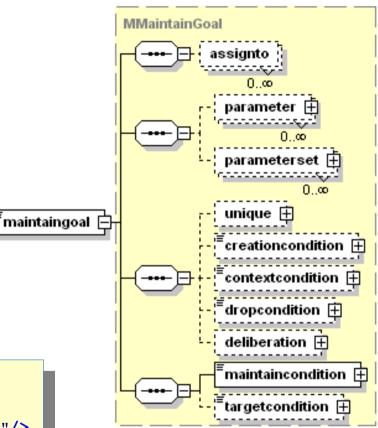
```
<inhibits ref="performlookforwaste" inhibit="when_in_process"/>
<inhibits ref="achievecleanup" inhibit="when in process"/>
```

```
<inhibits ref="performpatrol" inhibit="when_in_process"/>
```

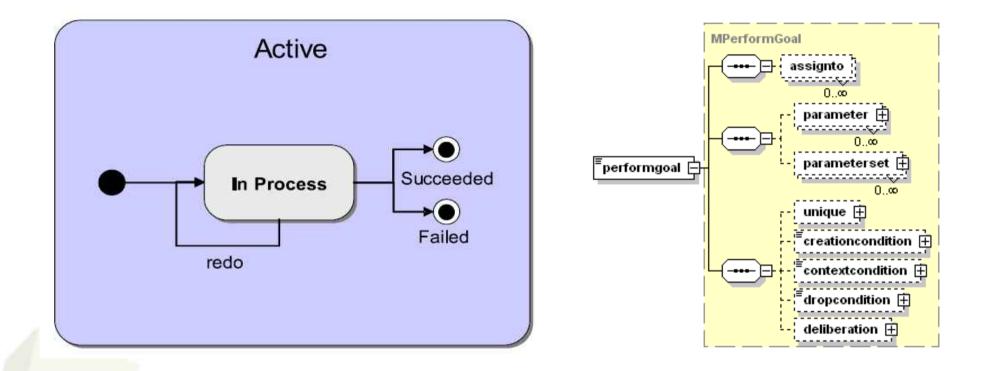
</deliberation>

```
<!-- Engage in actions when the state is below 0.2. -->
<maintaincondition>
```

```
$beliefbase.my_chargestate > 0.2
```

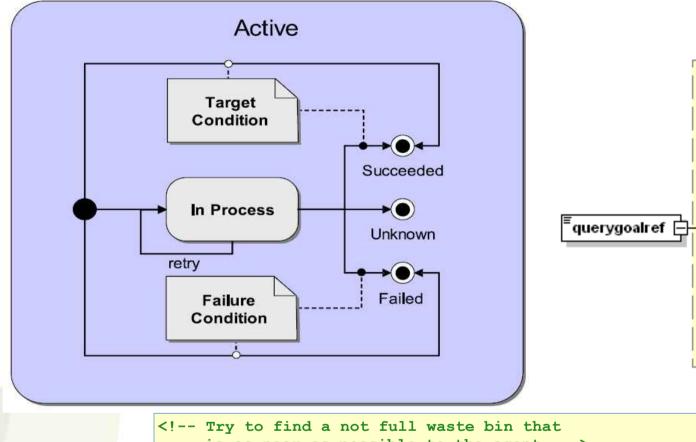

```
</maintaincondition>
```

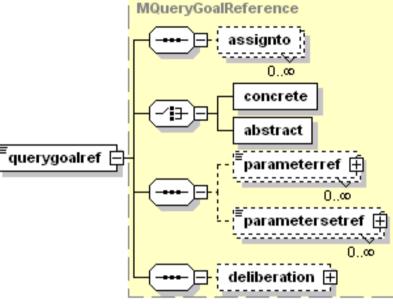
```
<!-- The goal is satisfied when the charge state is 1.0. -->
<targetcondition>
```


```
$beliefbase.my_chargestate >= 1.0
```

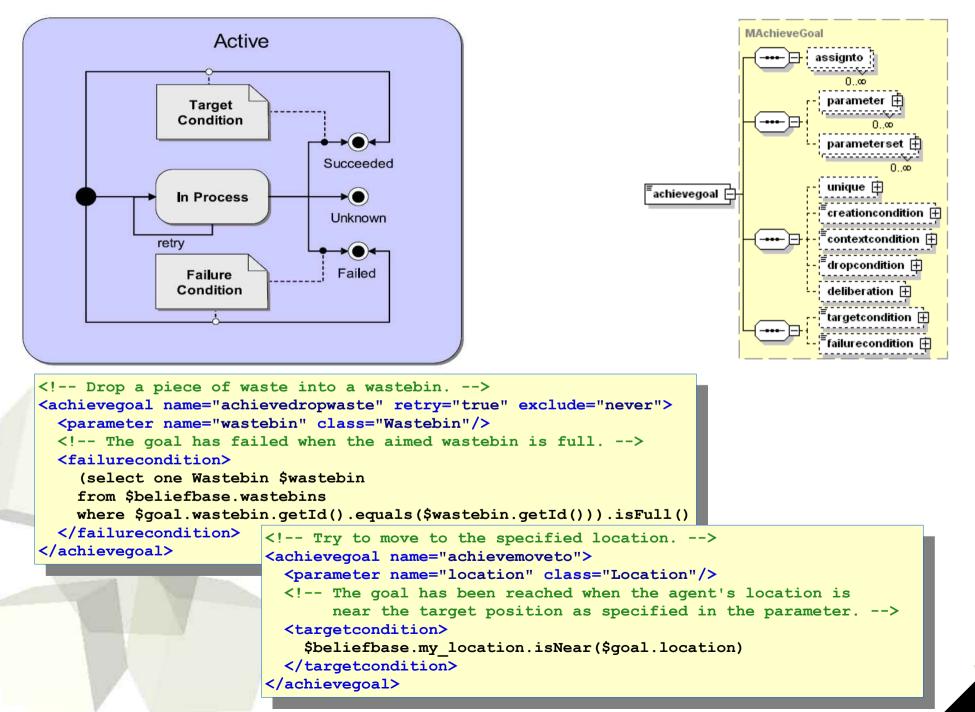
```
</targetcondition>
```

```
</maintaingoal>
```

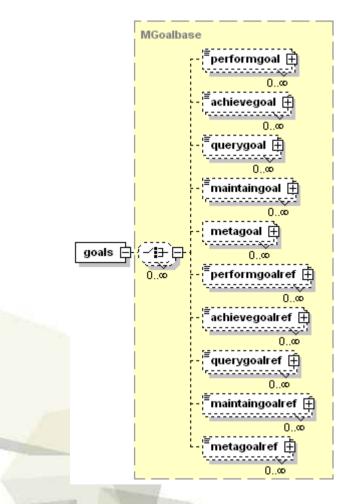



Perform goal

<!-- Look out for waste when nothing better to do, what means that
 the agent is not cleaning, not loading and it is daytime. -->
<performgoal name="performlookforwaste" retry="true" exclude="never">
 <contextcondition>
 \$beliefbase.daytime
 </contextcondition>
 </performgoal>


Query goal

<!-- Try to find a not full waste bin that is as near as possible to the agent. --> <querygoal name="querywastebin" exclude="never"> <parameter name="result" class="Wastebin" direction="out"> <value evaluationmode="dynamic"> select one Wastebin \$wastebin from \$beliefbase.wastebins where !\$wastebin.isFull() order by \$beliefbase.my_location.getDistance(\$wastebin.getLocation()) </value> </parameter> </querygoal>


Achieve goal

Jadex: Getting Started

Goal structure in ADF

60