
Extending Maple to the Grid:
Design and Implementation

Dana Petcu�y, Diana Dubu�y and Marcin Paprzyckizx� Computer Science Department, Western University of Timişoara, Romaniay Institute e-Austria Timişoara, Romaniaz Computer Science Department, Oklahoma State University, USAx Computer Science Department, SWPS, Warsaw, Poland
Email: fpetcu,ddubug@info.uvt.ro, marcin@cs.okstate.edu

Abstract— One of the important issues facing the development
of the grid as the computational framework of the future is
availability of grid-enabled software. In this context, we discuss
possible approaches to constructing a grid-enabled version of
a computer algebra system. Our case study involves Maple: the
proposed Maple2g package allows the connection between Maple
and the computational grids based on the Globus Toolkit. We
present the design of the Maple2g package and follow with a
thorough discussion of its implementation.

I. I NTRODUCTION

One of the developments that can lead to a wider practical
usage of computational grid technologies is grid-enablingof
computer algebra systems (CAS). These systems are routinely
used by mathematicians and/or engineers to perform complex
calculations and are dully seen as a major source of their
productivity. However, currently, a number of useful function-
alities are implemented in only one particular CAS or as stand-
alone programs; sometimes running best on special hardware
such as a parallel computer. In either case, it is desirable to
be able to augment the CAS with functionality from another
software module. It is the grid technology that should facilitate
the necessary infrastructure to support this process [1].

We thus begin this paper by reviewing, in Section II,
the state of the art of network and grid-aware CAS. In
Section III we follow by summarizing the most important
issues in designing grid-enabled CAS and possible approaches
to addressing them. We proceed with a practical example of
how a CAS can be made grid enabled and for this purpose
Maple became our CAS of choice. The main reason is that,
despite its robustness and ease of use, we were not able to
locate efforts to link Maple with the grid. Furthermore, it is
well known that Maple excels other CASs in solving selected
classes of problems e.g. systems of nonlinear equations or
inequalities [2]. Finally, Maple has already a build-in socket
library for communicating over the Internet, and a library for
parsing XML. These capabilities match very well with our
goal as they suffice to make Maple a client for an external
computational service (in this context one should note a recent
trend to use the XML syntax as a de-facto standard in the grid
community). In Section IV we describe the functionality of
Maple2g, the grid-wrapper for Maple. Maple2g consists of two
parts a CAS-dependent and a grid-dependent one. Therefore,

any change in the CAS or in the grid will be reflected only
in one part of the proposed system. Furthermore, the CAS-
dependent part is relatively simple and easy to be ported to
support another CAS or legacy software. We complete our
description of Maple2g, in Section V, with implementation
details concerning access to grid services. Our attention is
focused on the implementation of the grid service search
facility. Some experimental results are provided in Section VI.
Further research directions are outlined in the last section.

II. CURRENT NETWORK AND GRID-ENABLED CAS

Grid enabling and augmenting mathematical software tools
with functionality from an external software module(s) is the
subject of a number of current research projects. We will thus
summarize the most important developments in this area.

A. Accessing external services

Several projects (e.g. NetSolve [3], Nimrod/G [4], Ninf
[5]) aim at providing simple ways (APIs, GUIs) to execute
software modules available in scientific libraries and/or stand-
alone programs over the Internet/grid. This approach has been
commonly labeled “network-enabled server” (NES) [6]. Fully
developed NES systems are expected to follow the basic
tenets of the grid framework and change the RPC model by
incorporating resource discovery, dynamic problem solving
capabilities, load balancing, fault tolerance, security,etc.

Currently, the NetSolve system [3] seems to be the most
developed NES. It is a grid based server that, among others,
supports Matlab and Mathematica as native clients for grid
computing. NetSolve provides a web tool that users can query
for information concerning all available software modules
within the NetSolve system. Furthermore, NetSolve searches
for computational resources across the network, chooses the
best one available, and using retry for fault-tolerance solves
the problem, and returns the answers to the user. A load-
balancing policy is used by the NetSolve system to ensure
good performance by enabling the system to use available
computational resources as efficiently as possible. Recently,
a proxy was built for the NetSolve client that knows how to
interact with and make use of Globus resources.

MathLink [7] enables Mathematica to interface with exter-
nal programs via an API interface. Such an external program



sends its arguments to a mathematical computation service and
returns result directly into Mathematica.

MathGridLink [8] permits the access to the grid service and
deployment of new services entirely from within Mathematica.
MathGridLink allows two ways of interaction: one from the
view-point of a Mathematica user who wants to use an existing
service, and the other from the viewpoint of a grid user, who
wants to access Mathematica as a grid service.

Finally, the Geodise toolkit [9] is a suite of tools for grid-
services which are presented to the user as Matlab functions.
The user of the Geodise toolkit acts as a client to the remote
computational resources. Users are authenticated, and then
authorized to access resources for which they have rights. The
user is able to discover available resources, to decide where
to run a job, to monitor its status, and to retrieve its results.
The functions implemented in the “language of Matlab” call
Java classes which in turn access the Java CoG API [10].

Note that CASs like Matlab and Mathematica are used
mainly as interfaces for grid services (e.g. in Geodise and
not as tools offering services on grids, while MathGridLink
envisages support of both types of activities. Looking to both
approaches we try to add a new functionality to the system
by developing a wrapper that facilities the development of
grid-oriented high performance computing codes based on a
standard message-passing interface.

B. Availability of interactive mathematical web content

Let us now consider a particular situation of interactive
access to web enabled computational resources. This scenario
can be achieved in a limited way using applets in a web
browser. Observe however that computing even the most
fundamental mathematical operations such as an integral can
require a complicated software module and thus, it is usually
necessary to incorporate existing mathematical software into
a web application to achieve the required functionality. To
implement interactive mathematical web content the following
steps are required [11]: install/maintain the “external” com-
putational component, write the wrapper for this component
to enable it to be called from another program, write an
applet to present the interactive element together with a (most
likely Java) servlet which will interact with the wrapper, and
write the content and embed the applet or form into the
text with the appropriate parameters. JavaMath SDK [12] can
assist the user in this process enabling the development of
conglomerate systems in Java from existing components. It
gives a template for writing wrappers and an API for creating
and using sessions utilizing these components. For example
the code would be part of a servlet on a server, and it would
make use of Maple running on a JavaMath server.

To achieve a single generic mechanism which could be used
for all computation requests with no extra software that needs
to be loaded into the CAS to interface with each new online
service, it is necessary to establish a standard for the request-
response exchanges. Part of this is a standard for the represen-
tation of the mathematical objects to be exchanged. MathML
[13] is well advanced on the path to solving this problem.

In the context of our paper, where one of our goals is
to explore the possibility of adding Maple modules to the
set of grid available services, we note that MapleNet [14]
offers a software platform for effective large-scale deployment
of comprehensive content involving live math computations.
MapleNet client is an applet which encapsulates the mathemat-
ical content; MapleNet publisher offers tools to create applet-
based exploration tools. MapleNet server coordinates all the
essential software infrastructure, including the generalweb
server, math engines, content, and other databases; it manages
concurrent Maple instances as required to serve client connec-
tions for math computation and display services, and it pro-
vides some additional services including user authentication.

C. Parallel/distributed CAS versions

While thus far we have mostly discussed the possibility
of making the CAS available as a part of grid services,
obviously it can be beneficial if the CAS is capable of
utilizing the computational capabilities of the grid itself. In
this context observe that coarse grain parallelism can be very
efficient in an interpreted computation environment such as
the CAS. To be able to facilitate development of coarse-grain
parallel grid distributed CAS applications, a CAS interface to
a message-passing library is needed.

gridMathematica [15] allows the distribution of Mathemat-
ica tasks among different kernels in a distributed environment.
It is built on a PVM-like architecture. A typical installation of
gridMathematica has one master kernel and several computa-
tional kernels: the master kernel handles all inputs, divides
computations into independent subtasks, schedules calcula-
tions for the computation kernels, and collects the results.

There exist more then 30 parallel projects involving Matlab
(for more details and a list of projects see [16]). They use
diverse approaches to achieving their goal(s): compile Matlab
script into a parallel native code, provide a parallel backend
to Matlab using Matlab as a graphical frontend, or coordinate
multiple Matlab processes to work in parallel. For example,
Matlab*P 2.0 [16] is a parallel Matlab environment using the
backend support approach. MatlabMPI [17] implements basic
basic MPI routines like send, recv, size and rank entirely in
Matlab scripts. PVMTB [18] is a complete Matlab interface
to PVM, by means of which Matlab users can prototype
applications in the usual high-level programming environment,
while retaining the ability to make PVM calls.

Distributed version of Maple have been recently reported
in [19] and [20]. For example, Parallel Virtual Maple [19]
(PVMaple), was developed to allow several independent Maple
kernels on various machines connected by a network to
cooperate in solving a problem. This is achieved by wrapping
Maple into an external system which takes care of the parallel
execution of tasks: a special binary, the command-messenger,
is responsible for the message exchanges between the Maple
processes, coordinates the interaction between Maple kernels
via PVM daemons, and schedules tasks among nodes. Initial
experiments show sufficient efficiency in solving large prob-
lems to follow this path in Maple2g which has a number of



similar functionalities with PVMaple [21]. In the context of
this paper it has to be stressed that while there exist attempts
at developingdistributedMaple, there were no attempts at de-
velopinggrid-enabledMaple (and these are somewhat similar,
but different goals), which is the goal of our current research.

In summary, there exist a large number of projects that
attempt at grid enabling known computer algebra systems.
Their main goals are: (1) to make CAS modules available
through the grid, (2) to allow CAS to utilize the grid, (3) to
provide direct, web-based access to CAS modules, and (4)
to develop parallel and/or distributed CAS by utilizing the
networked/grid environment and message-passing parallelism.
Out of these goals 1, 2 and 4 are of particular of interest to us
in this paper. As indicated above, in the case of Maple, goal
3 has been already mostly achieved and thus will be omitted.

III. D EVELOPING A GRID-AWARE CAS EXTENSION

Let us now look in a bit more details into main issues
involved in developing grid enmeshed CAS systems.

Our analysis of the grid aware CAS systems presented in
the previous section indicates, that any such a system must
have at least the following facilities (Figure 1):

Ability to accept services from the grid:
the CAS must be opened to augment its facilities
with external modules, in particular it should be able
to explore computational grid facilities, to connect to
a specific grid service, to use the grid service, and
to translate its results for the CAS interface;

Being a source of grid or web services:
the CAS or some of its facilities must be seen as
grid or web services and allowed to be activated
by remote users under appropriate security and li-
censing conditions; furthermore, deployment of the
services must be done in an easy way from the
inside of the CAS;

Ability to communicate and cooperate over the grid:
similar or different kernels of CASs must be able
cooperate within a grid in solving general problems;
in order to have the same CAS on different com-
putational nodes a “grid-version” of the CAS must
be available; in the case of different CASs, appro-
priate interfaces between them must be developed
and implemented or a common languages for inter-
communication must be adopted.

There exist multiple ways of achieving the above described
functionalities. Rewriting a CAS kernel in order to grid-

Fig. 1. Operating modes between a CAS and a computational grid: (a) CAS
as an interface for the grid services; (b) CAS as grid service; (c) multiple
CAS kernels on user and grid sides

Fig. 2. CAS openness towards grid services: (a) using specific grid-aware
function library; (b) using a general CAS-grid interface

enable it is likely to be a complicated, time-consuming and
high-cost solution. Wrapping the existing CAS kernel in a
special code acting as the interface between the grid, the
user and the CAS can be done relatively easily as an added-
functionality to the CAS. Moreover it can be adapted “on-
the-fly” when new versions of the grid software or the CAS
in question become available. It is therefore the latter solution
that we advocate and pursue here. Let us now describe each
of the three functionalities in more details.

A. CAS input from grids – importing grid services in a CAS

Most CASs have the possibility to launch system commands
or to call external modules written in non-native languages.
Using these facilities special libraries can be constructed in the
CAS language, describing in an user-friendly manner, the calls
to the grid middleware tools, like those provided by the Globus
environment. On the user side, some minimal facilities to
access the computational grid and the CAS must be installed.
The grid facilities which must be provided to the user are those
currently provided by the grid middleware.

The interface between the grid middleware and the CAS
can be written entirely in the CAS language or partially in
the CAS language and partially in some other language, more
appropriate for the grid middleware (for example, in the case
of Globus, such a language would be Java CoG). In the first
approach the added-code is oriented towards a particular CAS
and is not portable (Figure 2). The second approach can be
more flexible in integrating a new CAS in the user environment
and this approach will be pursued here.

It is worth mentioning, that the Geodise project [9] has
already adopted the second approach. The Geodise toolbox
includes a Java-grid client and a special library mapping
current Globus line commands into the Matlab environment.
Java-grid client interacts with the Globus server, sendingand
receiving information from and to the location service(s),
authorization service and metadata archive/query service(s).
Acting on user request, via the special Matlab functions, it
sends to the Matlab interface data concerning the availablegrid
services, and then makes connections to the specific service(s).

B. CAS output toward grids – deploying CAS services on grid

The access to the CAS facilities must be available to the
user of the computational grid.

MapleNet [14], allowing the secure access of a thin-client
to a Maple server, gives a good example for grid-enabling the
CAS: the entire functionality of the CAS can be exposed to
the computational grid (respecting the license conditions). Full



Fig. 3. CAS as grid service: (a) entire functionality exposed as grid-service;
(b) partial exposing; (c) using CAS to create stand-alone grid-services

access to the CAS functionality can further give access to other
grid services. To achieve this the entire CAS kernel is rebuild
to construct a multi-threaded version or a wrapper is build in
order to launch multiple CAS kernels for each user request.

The CAS functionality can be also exposed only partially
with the possibility to install a visibility hierarchy withdiffer-
ent levels of security (Figure 3).

A CAS installed in the user or in the grid environment can
be used to deploy services in other languages than the one
provided by the CAS, using its facilities to export codes.

C. CAS over the grids – grid-aware distributed CAS version

The computational power given by a CAS can be augmented
by using several other CAS kernels (the same or different
CASs) when the problem to be solved can be split between
these kernels or a distributed-memory parallel method is
used in order to solve it. The usage of a standard message-
passing interface for inter-kernel communication allows the
portability of the parallel version of a CAS in particular the
easy deployment on clusters and grids (Figure 4).

The two extreme approaches to design the interaction with
the message-passing interface are minimal, respectively full,
access to the functions of the message-passing interface. In the
first case the set of functions is restricted to those allowing to
send commands and receive results from the remote kernels.
In the second case it is possible to enhance the CAS with
parallel or distributed computing facilities, allowing the access
of the CAS to other parallel codes than the ones written
in the CAS language (the message-passing interface can be
used as interpreter between parallel codes written in different
languages, including those of different CASs).

D. A functional approach

In the next section we describe a prototype of a grid-
enabling wrapper for Maple. Having in mind the above de-
scribed approaches, we have considered the following rolesas
the most appropriate for our prototype:

1) the CAS-grid-interface from Figure 2.b,

Fig. 4. Grid-version of a distributed CAS

2) the CAS-grid-service from Figure 3.b,
3) the master/worker interfaces from Figure 4.
The first selection was made so that any change in the CAS

or in the grid will be reflected only in the corresponding part
of the wrapper. Moreover the CAS-dependent part must be
relatively simple and easy to be ported to support another
CAS or legacy software. The same idea is motivating also
the second selection. Finally, grid enabling should also lead
to the capability for large-scale distributed computing and thus
the last choice.

IV. CASE STUDY: MAPLE2G

We proceed with a practical example of how a CAS, in
our case Maple, can be made grid enabled. Maple2g package
allows the connection between Maple and computational grids
based on the Globus Toolkit.

The prototype of a grid-enabling wrapper for Maple, con-
sists of two parts a CAS-dependent and a grid-dependent one:� m2g, the Maple library of functions allowing the Maple

user to interact with the grid/cluster middleware;� MGProxy, the middleware, a package of Java classes, act-
ing as interface between m2g and the grid environment.

The m2g functions are implemented in the Maple language,
and they call MGProxy which accesses the Java CoG API.

Maple2g has three operating modes:
user mode for external grid-service access;
server mode for exposing Maple facilities as grid services;
parallel mode for cooperative Maple kernels over the grid.

Let us now discuss in more details these operating modes.

A. User mode: grid-service access in Maple2g

In order to make grid services available to the user of the
CAS the coupling with the services exposed within the grid
has to be performed in a transparent way. This implies that the
service methods call should be done only in the CAS native
language syntax. In order to achieve this we have incorporated
a suite of Maple functions which allow the communication
with the services available within the grid in the package m2g.

In the current version of Maple2g we have implemented a
minimal set of functions (described in Table I) allowing access
to the grid services.

MGProxy is activated from inside the Maple environment by
the m2g command m2gMGProxy start. The user command(s)
from the user’s Maple interface are send to the MGProxy via
a socket interface, when m2ggetservice and m2gjobsubmit

TABLE I

M2G FUNCTIONS ENABLINGMAPLE TO USE GRID SERVICES

Function Description
m2g connect() Connection via Java COG to the grid
m2g getservice(; l) Search for a service and give a link to it, retrieve its

location l
m2g jobsubmit(t; ) Based on the service location retrieved in the previous

step, perform a job submission, in the grid environment,
labeledt: the command from the string is send to the
MGProxy which treats it as a grid-service request

m2g results(t) Retrieve the results of the submitted job labeledt



> with(m2g);
[m2g_connect, m2g_getservice, m2g_jobstop,
m2g_jobsubmit, m2g_maple, m2g_MGProxy_end,
m2g_MGProxy_start, m2g_rank, m2g_recv,
m2g_results, m2g_send,m2g_size]

> m2g_MGProxy_start(); m2g_connect();
Grid connection established

> m2g_getservice("newton",‘service_location‘);
["&(resourceManagerContact="myri1.info.uvt.ro")

(count=1) (label="subjob 0")
(directory=/home/Diana)
(executable=/home/Diana/newton)",

"&(resourceManagerContact="myri8.info.uvt.ro")
(count=1) (label="subjob 0")
(directory=/home/Dana/g)
(executable=/home/Dana/g/newton)",]

> m2g_jobsubmit(3,service_location[1]);
job submitted

> m2g_results(3);
Solving nonlinear system with Newton method:
Input in.txt, Output out.txt

> m2g_MGProxy_end();
Grid connection closed

Fig. 5. Accessing in Maple an external numerical nonlinear solver, available
as grid service

are invoked. MGProxy contacts the grid services, queries the
contacted services, and sends to the Maple interface the results
of performed queries. By the m2greceive, the user gets the
results. The Maple commands are passed in the system as
strings and the results are presented in the MathML format.

For example, accessing a grid-service can be achieved
through the sequence of steps presented in Figure 5.
Implementation details are provided in the next section.

B. Server mode: Maple services on grid

Concerning access to Maple as service, Maple2g is similar
to MapleNet [14]. The main difference is that instead a new
version of Maple, we have used the classical kernel and a
wrapper.

In the current version of the Maple2g prototype, the access
to the fully functional Maple kernel is available from the grid:
we have implemented only an account check procedure in
order to verify the user rights to access the licensed version
of Maple provided on the grid. Obviously, our system can be
modified to restrict user-access to a subset of Maple commands
or function libraries, but this type of enhancement is outside
of focus of our current interest.

The user interface activates a simple Java applet which
allows the user to send Maple commands as strings via a
socket connection to a local Maple2g process awaken in the
user mode by the Java applet initialization.

The connection with the remote Maple kernel is established
at the initialization stage by sending a specific string in the for-
mat in which m2gjobsubmit sends the information, specifying
in this case the remote MGProxy as the grid-service. MGProxy
activates a Maple process (which enters an infinite cycle of
interpreting commands incoming via the socket interface from
the MGProxy), acts as a server waiting for external calls,
interprets the requests, sends the authentications requests to
the Maple twin process, waits for the Maple results returned
in the MathML format.

TABLE II

M2G FUNCTIONS FOR REMOTE PROCESS LAUNCH/COMMUNICATIONS

Function/const. Description
m2g maple(p) Startsp processes MGProxy in parallel modes
m2g send(d; t; ) Send at the destination kernel labeledd a message labeledt containing the Maple command; d andt are numbers,

is a string; when ’all’ is used in destination field, is send
to all Maple kernels

m2g recv(s; t) Receive from the source kernel labeleds a message contain-
ing the results from the a previous Maple command which
was labeled witht; when ’all’ is used in source field, a list
is returned with the results from all Maple kernels which
have executed the command labeledt

m2g rank MGProxy rank in the MPI World, can be used in a command
m2g size Number of MGProxy processes, can be used in a command

C. Parallel mode: message passing interface in Maple

Parallel codes using MPICH as the message-passing inter-
face can be easily ported to grid environments due to the
existence of a MPICH-G version which runs on top of the
Globus Toolkit. On other hand, the latest Globus Toolkit is
build in Java, and the Java clients are easier to write. This
being the case, we selected mpiJava [22] as the message-
passing interface between Maple kernels.

In Maple2g a small number of commands have been
implemented and made available to the user, for send-
ing commands to other Maple kernels and for receiving
their results (Table II).

MGProxy is activated from user’s Maple interface with
several other MGProxy copies by m2gmaple command. The
copy with the rank 0 enters in user mode and normally runs in
the user environment, while the others enter in server mode.
Communication between different MGProxy copies is done
via mpiJava.

These facilities are similar to those introduced in the
PVMaple [19] and in the Distributed Maple [20]. The user’s
Maple interface is seen as the master process, while the other
Maple kernels are working in a slave mode. Command sending
is possible not only from the user’s Maple interface, but also
from one kernel to another (i.e. a user command can contain
inside a send/receive command between slaves).

As a side-note, we have tested the feasibility of this ap-
proach to development of distributed Maple applications ona
small PC cluster. We have observed a reasonable speedup ob-
tained when splitting time-consuming computations. Detailed
report as well as a complete description of functionality of
this component of Maple2g can be found in [23].

V. ACCESSING GRID SERVICES FROMMAPLE:
IMPLEMENTATION DETAILS

The Maple functions made available through the Maple2g
package m2g allow the programmatic access to Globus grid
enabled resources. The m2g package translates internally
functions from the syntax familiar to the Maple user into
commands, allowing the initiation and further communication
with the MGProxy middleware.

MGProxy acts as an intermediary between Maple and the
grid and has been written in Java, due to its portability



TABLE III

MGPROXY ACTIVATION AND RETRIEVAL OF GRID SERVICES’ PROCESSING

Action Description
Activate MGProxy User commands in Maple syntax, parsed within the

m2g package, initiate the communication with the
middleware which acts as an intermediary between
Maple and the grids. This is performed via the
commands for external code invocation (including
Java) which are already available in Maple 8

Grid Services’ invocation The user invokes the remote services by issuing
commands in RSL syntax

Job Submission MGProxy activates GridJob, a Java class encapsu-
lating GRAM job that deals with job submission
over the grids

Results Retrieval Results can be requested either during the commu-
nication or after closing the grid connection

Fig. 6. Communication flow when accessing grid services fromMaple

and to the fact that libraries supporting Globus-based grid
computing have been already implemented in Java. Java CoG
(i.e. Commodity Grid) kit provided with Globus integrates the
software for grid computing developed by Globus and the Java
commodity framework, thus facilitating the development and
deployment of grid services, while also permitting the use of
Web services as parts of the grid.

The procedural steps to communicate within the grid start-
ing from the user’s Maple interface are described in Table III
and depicted in Figure 6.

Table IV enumerates the main classes of the MGProxy
package. MGProxy can be viewed as the entry point to the
grid. The commands issued by the user from her Maple
interface are passed as strings to the MGProxy which forwards
these messages further to the MapleListener class responsible
for parsing the messages and calling the appropriate tool for
their management.

For the invocation of grid services MapleListener activates,
according to the request, either MDSService or GridService.
MDSService is responsible for the retrieval of information

TABLE IV

JAVA CLASSES IN MGPROXY PACKAGE

Name Description
MGProxy Activate the Maple link
MapleListener Parse the Maple messages
MDSService Retrieve information regarding the grid resources
GridService Server for GridJob
GridJob Client performing the requested job
MapleService Used for Maple as grid service
MPIMaple Used for parallel Maple

regarding the grid-available resources, including the software
resources. The current version is based on the first of the
two approaches for the discovery of services described below.
GridService acts as a server for the GridJob which is the
client performing the actual task of submitting the job; the
client-server communication being established via sockets.
GridService receives the commands to be send over the grid
to the available services from MapleListener until an ’end of
job’ is signaled, meaning that the connection with the grid is
no longer necessary.

The underlying principles for service retrieval in Globus,
referred to as Monitoring and Discovery Service, can be
implemented in two alternative ways. Either, the “old” MDS
can be used, or the facilities from the new GT3 can be utilized.
In Maple2g we have implemented the first approach. In the
near future, we intend to implement also the second one and
compare their performance.

A. First approach: using the MDS

The Globus toolkit provides a directory service which has
the functionality of the white pages directory and yellow
pages directory and is named the Metacomputing Directory
Service (MDS) [24]. MDS makes available the information
regarding the computational resources within the grid and the
grid network, i.e. information about the hardware, the software
and the system status.

While the White Pages offers the information concerning the
hardware performance, Yellow Pages deal with the computers
of a particular class or with a particular property. This later
organizational principle is what we are interested in.

MDS is based on LDAP (Lightweight Directory Access
Protocol) which is a software protocol for enabling the lo-
calization of organizations, individuals, and other resources
such as files and devices in a network, whether on the public
Internet or on a corporate intranet. LDAP, as a version of
Directory Access Protocol, is part of the X.500, a standard for
directory services in a network. A directory provides informa-
tion within a network about the localization of components.
LDAP allows the search for an individual without knowing
where its particular location.

An LDAP directory is organized in a simple tree hierarchy
consisting of the following levels: root directory, countries,
organizations, organizational units, individuals. An LDAP di-
rectory can be distributed among many servers. Each server
can have a replicated version of the total directory that is
synchronized periodically. A LDAP server is called a Directory
System Agent (DSA). An LDAP server that receives a request
from a user takes responsibility for the request, passing itto
other DSAs as necessary, but ensuring a single coordinated
response for the user.

In order to make use of the LDAP principles within Globus,
several steps have to be performed, namely:

1) Initialization. LDAP schema files must be updated with
the description of the attributes associated with grid-
specific entry classes. The directory structure described



TABLE V

SEQUENCE OF STEPS FOLLOWED IN ORDER TO POPULATE THELDAP

DATABASE AND SEARCH FOR AVAILABLE SERVICES

Command Result
slapd -f<conf file> Activate the LDAP server with the

configuration from slapd.conf
ldapadd -h localhost -a -w<passw>
-x -D <binddn> -f <.ldif file> Populate LDAP database with the en-

tries specified in the LDIF file
ldapsearch -x -s<scope> -b<baseDN> filter -p <ldapport> Search for the objects specified within

the filter starting in the directory from
the baseDN. The scope restricts the
search level

grid-info-mds-core Retrieve the information for the above
queries such as Globus directory, base
DNs of servers, slapd process ids.

ldap stop Stop the ldap server

above has therefore to be adapted such that it would
contain the information regarding the grid resources

2) Population.The LDAP directory has to be further pop-
ulated with information according to the hierarchies
established at the initialization phase.

3) Querying.Is the essential step as it represents the request
for information. The information is retrieved from the
directory service.

For the Initialization step, there exists a naming schema for
the MDS reported in [25]. The MDSService class was imple-
mented starting from the MDSService class proposed in [26].

We have used a combination of LDAP and Globus com-
mands in order to perform the above operations. Alternatively,
Java APIs can be used. The suite of commands and their use
is depicted in Table V.

B. Second approach: using OGSI services from GT3

As an alternative to the MDS the OGSI services from GT3
(Globus Toolkit 3) can be used. Here, the data format is not
LDIF but XML and the reception, storage and delivery of
the data is performed within the Service Data containers. The
schema used is GLUE (Grid Laboratory Uniform Environ-
ment) [27]. The functions provided within Globus GT3 for
the management of data and thus services are described on
the Globus webpage [28] and the functions of interest are
summarized in Table VI.

TABLE VI

OGSISERVICES FOR SERVICE INFORMATION RETRIEVEL

Command Action
ogsi-find-service-data Command-line interface for querying the

service data available from any Grid service
ogsi-find-service-data-by-name Search for Service Data Element values in

a service by name
ogsi-set-service-data-by-name Add Service Data Elem. values to a service
ogsi-delete-service-data-by-name Delete Service Data Elements in a service
ogsi-add-service Add a service to a Service Group Registra-

tion service supporting remote registration
ogsi-remove-service Remove a service from a Service Group

Registration service supporting remote reg-
istration

TABLE VII

GRIJOB METHODS

Method Description
GridJob(C; p; b) Contructor responsible for the initialization of the

contact string variableC, gatekeeper portp and
submission modeb (i.e. whether batch or not)

startGassServer(credent) Starts the Globus GASS Server. Retrieves the output
from the GASS server and sends it to the client via
GridService and MapleListener as a string

initJobOutListeners() Initiate/register listeners for non-batch mode jobs
statusChanged(job) Used to notify the implementer when the status of a

GramJob has changed. A waiting thread is notified
when a job is finished and when this is the case the
URL is returned and output

outputChanged(output) When theoutput is modified, performs an update
GlobusRun(RSL) The default Globus proxy is loaded and user creden-

tials are setup properly. The GASS server is started.
The RSL is formatted accordingly to the expected
structure. A GramJob instance is created and the
object sends a request to the remote host

C. Grid job submission

Once the information regarding the existing services has
been obtained - whether it is a script which is activated within
the Java code or via the functions provided by a Java API
- the subsequent step is to deploy such service in order to
retrieve the result. Information is passed in the form of strings,
the GridJob class being responsible for the job submission to
the service provider which in turn sends back the result of
computation, again in the String format. This result is further
retrieved by the Maple user, which can use it in subsequent
operations. The results are valid even after the connectionis
closed, thanks to the label which identifies them.

The GridJob class incorporates the methods described in
Table VII. It was written starting from the class proposed
in [29]. The GridJob class is responsible for the job submis-
sion. Requests received from the Maple’s user interface in the
RSL syntax are send over the grids to remote resources. The
underlying framework used here is Java CoG. The connection
is established with the remote server, referred to as the ’gate-
keeper’, which is responsible for the execution of the job (i.e.
a binary executable or command to be run remotely). Both the
host and the gatekeeper must comply with the authentication
requirements. The Grid Security Infrastructure (GSI) is used
for enabling secure authentication and communication over
an open network. Globus uses GASS for porting and running
the applications requiring I/O files to the Grid environment.
Therefore, GridJob starts the GASS server and submits all
GRAM job requests to this server. The request is formatted
accordingly in the RSL format. Output of the processed job
is returned through the MGProxy intermediary to Maple into
the user’s interface.

VI. EXPERIMENTAL RESULTS

In order to test the performance of the grid-wrapper (not
the efficiency of problem solving) we have performed several
tests on a small Globus-based grid environment: 2 local PCs
each with a P4 processor running at 1.5 GHz and 256 Mb
of memory, connected in a cluster via a Myrinet switch at



TABLE VIII

TIME RESULTS(MEAN VALUES FOR 5 RUNS)

Package Dimension Local Cluster Remote Maple
Newton 5 eqs. 18 s 38 s 74 s 0.3 s

20 eqs. 435 s 460 s 496 s 934 s
Gauss 5 eqs. 18 s 37 s 73 s 0.01 s

100 eqs. 535 s 557 s 596 s 822 s

full 2Gb/s, and a remote PC (located in Linz), with a P4
processor running at 2.4 GHz and 512 Mb of memory. We
have experimented with two codes:
Newton package: the Maple2g code from Fig.5, a solver for

system nonlinear equations based on Newton’s me-
thod, written in C, and the Maple’sfsolvefunction;

Gauss package:the same Maple2g code, a linear system solver
based on Gauss’ elimination written in Java, and the
Maple’s linsolve function.

The test problem was: solve
Pnj=1 aijxf(i)j = bi; i = 1; : : : ; n,

wheref(i) = 1 in the linear case,f(i) = i in the nonlinear
case, whileA andb are random matrices.

Table VIII presents the most significant results. The user’s
Maple interface was executed on one of the local PCs. The
grid-service was launched on (note that in each case code
solving the problem was executed on a single computer):
Local: the same computer as the Maple user interface;
Cluster: on the other PC in the cluster (see above);
Remote:on the remote PC (in Linz);
Maple: only the local Maple was invoked (no grid).

The results indicate that for large problems, Maple2g user
can efficiently utilize the external code(s) residing on the
grid (the apparent “inefficiency” of Maple is related to the
particular approach to solving our problems and should be
ignored). Times obtained for small problems estimate the
overhead introduced by the Maple external code launcher, the
Maple2g, and the Globus middleware and the network. The
overhead is almost independent of the problem size (small
differences result from the size of exchanged messages).

Separately, we have tested parallel performance of Maple2g
and the detailed results can be found in [23].

VII. C ONCLUDING REMARKS

Developing grid-enabled computer algebra systems is a nec-
essary part of the emergence of true value of grid computing.
Several approaches to construct such systems were discussed
in this paper.

Following one such path, we have developed Maple2g, a
wrapper for Maple, enabling it to access the grid services and
to be accessed as a grid service. Furthermore, Maple2g allows
distribution of computational effort to several Maple kernels
running on a parallel computer, a cluster, or a grid.

At this stage Maple2g exists as a demonstrator system
with all of the functionalities described above implemented.
In the near future it will be further developed to include
facilities existing in other systems, in order for it to become
comparably robust as NetSolve (in issues like load balancing,
fault tolerance, security) or Geodise (in issues like monitoring
and authentication).

We will also perform experiments on the grid on a large
domain of problems. Experimental results will help guide fur-
ther development of the system. Deployment of grid services
from Maple in other languages than Maple using the code
generation tools must be take also into consideration. The
next MGProxy version will allow the cooperation between
different CAS kernels lying on the same or different sites of
a computational grid.

REFERENCES

[1] I. Foster, C. Kesselman,The Grid. Blueprint for a new computing
infrastructure, Morgan-Kaufmann, 1999.

[2] M. Wester, “A critique of the mathematical abilities of CA systems”,
in Computer Algebra Systems: A Practical Guide, ed. M.Wester, John
Wiley & Sons, 1999, http://math.unm.edu/ w̃ester/ casreview.html

[3] H. Casanova and J. Dongarra, “NetSolve: a network serverfor solv-
ing computational science problems”,inInter.J. Supercomputer Appls.&
HPC 11(3), 212–223 1997, http://icl.cs.utk.edu/netsolve/

[4] D. Abramson, J. Giddy, L. Kolter, “High performance parametric
modelling with Nimrod/G: A killer application for the global grid?”,
in Proc. IPDPS, 2000, 520–528, http://www.csse.monash.edu.au/˜
davida/papers/ipdps.pdf

[5] H. Nakada, M. Sato, S. Sekiguchi, “Design and implementations of
Ninf: towards a global computing infrastructure”, inFuture Generation
Computing Systems, Metacomputing Issue, 15(5-6), 1999, 649–658.

[6] S. Matsuoka, H. Casanova, “Network-enabled server systems and the
computational grid”, inProc.GF4-WG3, 2000, http://www.eece.unm.
edu/˜ apm/WhitePapers/GF4-WG3-NES-whitepaper-draft-000705.pdf

[7] Wolfram Research,MathLink,www.wolfram.com/solutions/mathlink/.
[8] D. Tepeneu and T. Ida, “MathGridLink - A bridge between Mathematica

and the Grid”, inProc. JSSST, 2003, in print.
[9] M.H. Eres, G.E. Pound, Z. Jiao, J.L. Wason, F. Xu, A.J. Keane, J.S.

Cox, “Implementation of a grid-enabled problem solving environment
in Matlab”, in Proc. WCPSE, 2003, in print, http://www.geodise.org

[10] Java CoG Kit, http://www-unix.globus.org/cog/java/.
[11] A. Solomon, “Distributed computing for conglomerate mathematical

systems”, inIntegration of Algebra and Geometry Software Systems, eds.
M. Joswig, N. Takayama, http://www.illywhacker.net/papers/webarch.ps

[12] A. Solomon and C.A. Struble, “JavaMath: an API for internet accessible
mathematical services”, inProc.5th Asian Symp.on Computer Mathemat-
ics, World Scientific, 2001, http://javamath.sourceforge.net/.

[13] MathML, The W3C’s Math Homepage, http://www.w3.org/Math/.
[14] MapleNet, http://www.maplesoft.com/maplenet/.
[15] Wolfram Research, gridMathematica, http://www.wolfram.com.
[16] R. Choy, A. Edelman, “Matlab*P 2.0: a unified parallel MATLAB”, in

Proc.2nd Singapore-MIT Alliance Symp., 2003, in print.
[17] J.Kepner,“Parallel programmimg with MatlabMpi”,inProc.HPEC,2001
[18] J.F. Baldomero, “Parallel Virtual Machine Toolbox”, in Proc. MATLAB,

ed. S. Dormido, 1999, 523-532, http://atc.ugr.es/javier-bin/pvmtb eng
[19] D.Petcu,“PVMaple:A distributed approach to cooperative work of Maple

processes”,LNCS1908,eds.J.Dongarra et al.,Springer,2000,216–224.
[20] W. Schreiner, C. Mittermaier, K. Bosa, “Distributed Maple – parallel

computer algebra in networked environments”, inJ. Symbolic Compu-
tation 35(3), Academic Press, 2003, 305–347.

[21] D.Petcu, D.Dubu, M.Paprzycki,“Towards a Grid-aware Computer Alge-
bra System”,LNCS3036, eds.M.Bubak et al, Springer, 2004, 490–494.

[22] mpiJava, http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html
[23] D. Petcu, D. Dubu, M. Paprzycki, “A Grid-based ParallelMaple”,

submitted to EuroPVM/MPI 2004.
[24] G. von Laszewski and I. Foster, “Usage of LDAP in Globus”,

CSE 225 (High Performance Distributed Computing), http://www.
globus.org/mds/globusin ldap.html

[25] MDS 2.2 Schemas. Definition of Schema, http://www.globus.org/mds/
Schema.html

[26] V. Silva, Querying the Grid with the Globus Toolkit Monito-
ring and Discovery Service, http://www-106.ibm.com/developerworks/
grid/library/gr-mds.html

[27] Grid Laboratory Uniform Environment, www.hicb.org/glue/glue.htm
[28] Globus Toolkit 3.2: Developer’s Guide, http://www-unix.globus.org/

toolkit/docs/3.2/developer/commandlineclients.html.
[29] V. Silva, Grid Job submission using the Java CoG Kit, http://www-

106.ibm.com/developerworks/library/gr-gridcog.html


