
Logic Restructuring for Delay Balancing in Wave-Pipelined Circuits: an Integer
Programming Approach

Srivastav Sethupathy, Nohpill Park
Computer Science Department

OSU
Stillwater, OK, USA
npark@cs.okstate.edu

Marcin Paprzycki (contact author)
Computer Science Institute

SWPS
Warsaw, Poland

marcin.paprzycki@swps.edu.pl

Abstract

In this paper we apply integer programming (IP) based
techniques to the problem of delay balancing in
wave-pipelined circuits. The proposed approach considers
delays, as well as fan-in and fan-out associated with every
node in the circuit. After a weighted graph representation
of the circuit is formed a node collapsing procedure is
used to preprocess (reduce the size of) the system and
obtain the final formulation of the IP problem, which is
solved by using a branch and bound heuristic to obtain a
minimum delay in the circuit. We also compare the
proposed technique with application – to the same
problem – of a linear programming solver.

1. Introduction

Wave-pipelining is one of widely used methods for
designing high throughput VLSI circuits and its goal is to
maximize utilization of the combinational logic without
use of intermediate latches and registers [4]. Two common
assumptions made in wave-pipelining are: (1) the total
length of the logic path in a circuit is “long enough” to
cause delay variations, and (2) the total data dispersion is
small i.e. locality of data or logic signals in a circuit is
high [13]. These assumptions make it possible for the
system to have several waves (logic signals) that propagate
simultaneously (locality) across the circuitry (logic path is
long), thus allowing for a higher throughput. Some of
basic concepts involved in wave-pipelined systems are [8]:
• clock skew – represents arrival of a signal at different

times at the clock inputs of different flip-flops due to
the propagation delay denoted as tprop

• speedup – signifies improvement in the circuit
performance resulting from the fact that N data waves
propagate simultaneously through the circuit (note
that in standard pipelines, the speedup is associated
with number of pipeline stages).

• timing constraints – denote constrains imposed on the
circuit by the timing factors and are represented by:

Tclk > Tdiff + clocking overhead

where Tdiff is the difference between the maximum
and minimum delays (Tdiff = Dmax - Dmin), while
the clocking overhead is Tsetup + T hold + (2 * clock
skew), where Tsetup is the setup time and Thold is the
hold time.

When data is fed into the wave-pipelined circuit, the
main goal of system design is to effectively pipeline the
flow of data waves without the use of intermediate
stoppages such as latches and registers to achieve the
maximum throughput (rate of pipelining) [14]. The key
idea here is to allow multiple waves of data to propagate
through the logic circuit, which is designed so that data
waves do not overlap. In this context, the two most
desirable features of wave-pipelined systems are [16]:
• most logic paths have the same depth,
• fan-in/fan-out of the elements are the same.
To achieve this goal, logic restructuring for delay
balancing is applied.

It should be noted, that due to the following factors, the
design of wave-pipelined systems is quite complex and
challenging:
• it depends strongly on nature of the circuit, i.e. the

logic family to which a given circuit belong to,
• it is vulnerable to the process, volume and

temperature (PVT) variations [13] – in other words,
changes in the operating environment have a direct
effect on the design of the system as they affect the
delay in wave-pipelined circuits, and

• both maximum delay Dmax and minimum delay Dmin
have to be considered in designing wave-pipelined
circuits – logic waves can be neither too fast nor too
slow (while in conventional pipeline circuits, only the
maximum delay has to be considered).

The aim of our work is to investigate how integer
programming based techniques can be applied to logic
restructuring in wave-pipelined circuits. We proceed as
follows. In the next section we briefly summarized related

work. We follow by a description of integer programming
techniques arising in the context of logic restructuring and
the branch and bound heuristics. In Section 5 we present
results of our experimental work and follow with
description of possible future research directions.

2. Related Work

In design of wave-pipelined systems, one of fundamental
approaches used in logic restructuring is node collapsing
[13]. This process results in balanced circuit configuration
and helps further conditioning of the circuit to confirm to
the minimum timing requirements [5, 6]. Furthermore, it
can be applied as a pre-processing stage of solving the
logic restructuring problem.

Thus far, the problem of logic restructuring in wave-
pipelined circuits has been solved mostly by utilizing
linear programming (LP) techniques [2, 3]. Here, the
ultimate goal was to minimize the difference in path
delays of the circuit (to achieve maximum rate pipelining
with minimal number of circuit nodes [4]). LP techniques
used to address problem of delay balancing in have been
applied at different levels [7, 17, 18]:

• By Berkelaar et al at the transistor level [24].
• By Agrawal et al at the gate level [25].

Both these techniques are essentially the same and try to
minimize the overall power dissipation of the circuit by
reducing the gate load capacitance.

Finally, it was suggested that integer programming (IP)
can be applied to logic restructuring in wave-pipelined
circuits. Such suggestion has been made in [1], which an
overview of how IP can be applied to various resource
allocation problems. However, beyond a suggestion made,
there was not an instance of IP being actually applied to
logic restructuring.

3. Integer Programming Approach

Basic steps involved in solving the problem of logic
restructuring in wave-pipelined circuits are:

• initial formulation of the IP problem,
• optimizing the circuit using the node collapsing
• solving the IP problem using branch and cut

algorithm,
• quantitative analysis of the results,

where the second step, while highly desirable, can be
omitted if only a pure IP problem is to be solved. The role
of node collapsing is to reduce the total number of nodes
(simplify the circuit design) and improve its overall
balance).

An integer programming problem is an optimization
problem of the form:

Min (or Max) cx

where, x ∈ X; X = Zⁿ ∩ {x € Rⁿ | Ax ≤ b}, Zⁿ denotes the
set of all integers, Rⁿ represents the set of all real n-vectors
[10]. Finally, Ax ≤ b is referred to as the formulation of the
Set X. An important factor involved in prictivcal use of
integer programming is a correct – from the perspective of
the problem to be solved – formulation of the particular IP
problem (as an integer programming problem can have
several formulations). In the case of the logic restructuring
we apply a formulation based on weighted graph
representation of the circuit [1]. Here, the weighted graph
representation has the form G(d, fin, fout), where, d is the
delay (weight of the path), fin is the fan-in of the node and
fout represents fan-out of the node. In Figure 1 we depict a
simple one-bit adder (top panel) and its weighted graph
representation. Here, each node has fan-in value 2 and
fan-out value 1.

Figure 1 Sample one-bit adder and its weighted-graph
representation; first digit – fan-in, second digit – fan-out.

The value in each of the nodes of the weighted-graph is

used as input to the branch and bound algorithm (which is
used to solve the IP problem). An optimal solution to the
logic restructuring (and thus the IP) problem is a sequence
of nodes that give the minimum delay in the circuit. The
heuristic technique used here, in one run through the
circuit, explores every possible permutation of nodes, i.e.
every possible path in the graph before arriving at a
solution.

The initial step of the solution process, before the IP
problem is solved is node collapsing. Node collapsing is
one of the most widely used circuit optimization tools in
practice [5, 6, 9, 13]. As a result, the total number of logic
gates is reduced and a balanced circuit configuration is

step # P – current node Delay dij f(u) value number of

nodes – n
nodes compared

1. A 0 0 7 -
2. B 1 1 6 {A,B}
3. C 2 2 5 {A,B,C}
4. D 3 5[AC,CD] 4 {A,B,C,D}
5. E 4 5[AC,CE] 3 {A,B,C,D,E}
6. F 0 (no edge) 5[AC,CE] 2 {A,B,C,D,E,F}
7. G 0 (no edge) 5[AC,CE] 1 all nodes.

Table 1. Operation and results of the branch and bound algorithm.

obtained. The circuit after the node collapsing procedure
becomes the actual input into the IP solver.

Identifying various constraints involved in the integer
programming problem forms an important part of the
problem-solving process. The typical constraints involved
in this IP problem are:

• node constraints – set up a specific domain for
each circuit parameter, and

• assignment constraints – represent the nature of
the inputs of every gate.

These constraints define the domain of parameters
associated with every node in the circuit and may also be
used to specify lower and upper bounds on selected values
of each circuit parameter. This latter situation results in
reduced number of constraints in the case if integer
programming compared with that in the case of linear
programming based approach. The objective function of
the IP takes into account each of these constraints. The
lower bound is given by fin ≥ 1 i.e. minimum of one input,
while the upper bound is given by the maximum number
of inputs at any node in the circuit ≤ fin.

After circuit constraints are defined, the next step is the
definition of the objective function. This function defines
mathematically the basic objective of the integer
programming problem. It is given by the equation:

Min ∑ i, j di j xi j

where dij denotes the arc-costs (delay) between nodes i and
j, while the xij = 1, if path (i, j) exists in the graph, and 0
otherwise (this is an assignment constraint).

Problem prepared in the above described way can be
solved, and one of the best approaches to the solution of
an IP problem (especially in the case of data
representation based on a weighted graph) is a branch and
bound approach described in the next section.

4. The Branch and Bound Algorithm

The optimal solution to the integer programming problem
is a sequence (or its permutation) of nodes that results in
the minimum delay for the circuit. Note that an IP

problem, in general, is NP-hard – as it is a subset of the 3-
SAT Circuit Satisfiability problem [12]. When an integer
programming formulation of the logic restructuring
problem is to be solved, we can apply the branch and
bound algorithm as a solution heuristic. Let us denote by n
the number of nodes, f(u) function that gives the best
possible permutation of the circuit and p pointer to the
current node in the subsequence. The proposed branch and
bound approach consists of the following steps:

1. Increment the pointer p by one
2. f(p) = f(p) + 1 – update the best possible

permutation based on the current node
3. for any node k = 2… (p - 1), if f(p) = f(k) then

proceed to step 2 – this will ensure that the same
node has not been selected more than once

4. for any two nodes i, j, if di > dj then include node
j in the formulation for f(p) – here di refers to the
delay associated with node i in the circuit.

5. if p = n - 1, then proceed to step 6, otherwise go
to step 2

6. compute value of f(p) for the entire sequence of
nodes – this will give an optimal solution to the
problem.

Not that the bounding condition of the algorithm is given
by f1 < f(u) where f1 = ∑p

k=2 ∑k-1
l=1 {dkl f(k) f(l)}and dkl

denotes the delay between any two nodes k and l in the
circuit.

In Table 1 we present a sample run of thus described
algorithm applied to the 7 node 1 bit adder represented in
Figure 1. As follows form the algorithm, the branch and
bound process stops after 7 steps, when all nodes of the
adder have been visited. In the case of one-bit adder
represented in Figure 1, and solution of which is illustrated
in Table 1, the optimal f(u) = 5 (see column f(u) value).

5. Experimental results

Let us now illustrate the performance of the integer
programming approach to the problem of logic
restructuring in wave-pipelined circuits by a number of

examples. The first experiment uses standard CMOS
circuit logic gates and the results representing values of
parameters Dmin and Dmax for increasing total number of
nodes and edges in the circuit are depicted in Table 2 and
Figure 2 (data represented in Figure 2 originates from
columns Dmin and Dmax in Table 2).

Case # Dmin Dmax # of edges
(in graph)

of nodes

1 3 8 10 7
2 4 12 12 8
3 6 14 15 10
4 8 18 21 25
5 12 21 32 40

Table 2. Effects of circuit complexity on the circuit
parameters Dmax and Dmin; times in nano seconds.

Effect of Min. & Max. Delays

0

5

10

15

20

25

0 10 20 30 40 50

Number of Nodes

D
el

ay
 [

in
 N

an
o

 S
ec

s]

Min Delay

Max Delay

Figure 2. Dmin and Dmax as a function of the number of
nodes in the circuit.

A few observations can be made. (1) As it is easy to see,

plots of Dmax and Dmin are not linear when the number of
nodes increases initially (7, 8, 10 nodes). It is only when
the total number of nodes is larger than 10, when the
further growth of both Dmin and Dmax becomes practically
linear. (2) Furthermore, when the number of nodes is
increasing initially from 7 to 10, the increase in the value
of Dmax is more substantial than the corresponding increase
in the value of Dmin. For larger number of nodes, both Dmin
and Dmax grow at a similar rate. (3) Finally, in the case of
the 1-bit adder circuit (7 nodes, 10 edges → row 1 in
Table 2), the value of Dmax - Dmin = 5, which is exactly the
optimal value of f(u) obtained when the integer
programming approach was applied to it (see Table 1).

In the next series of experiments we have compared the
performance of the linear programming and integer
programming based approaches to logic restructuring.
Before we proceed further, a few observations about
interactions between the problem we are solving and the
two approaches to its solution (note that these points are
not specific to the IP and LP as such, but originate from
the problem we are solving).

Table 3. Linear vs. integer programming based
approaches.

Nature of the Constraints: Some of the constraints

involved in the linear programming problem formulation
may be nonlinear in nature. For instance, the expression
for the propagation delay is given by [10]:

 Tprop= ∆ + (Cin * Sk)

where, ∆ denotes an internal time delay of the node, Cin is
the input capacitance of the gate and Sk is a constant factor
that relates the value of ∆ to the input capacitance. This
makes it difficult for some circuits to be modeled as a
linear programming problems. On the other hand, an IP
formulation of the problem has only linear constraints to
consider.

Objective Function: Since the input capacitance is
related to the power dissipated by the gate the LP problem
aims to minimize the power requirements [10]. The IP
problem, on the other hand, takes into account the fan-in
(fin) and fan-out (fout) of the nodes, thus minimizing the
delay requirements.
Circuit Complexity: As the number of nodes in the circuit
increase, the non-linear problem solvers in LP techniques
become more complex in nature. This increases the
optimization time [11].

 Dmin D max # of steps (LP) # of steps (IP) Dmax - Dmin
1. 3 8 10 7 5
2. 4 12 12 8 8
3. 6 14 15 9 8
4. 12 21 23 14 9
5. 8 18 18 11 10
6. 10 22 25 16 12
7. 13 27 28 19 14
8. 15 31 31 23 16
9. 18 38 33 27 20

Table 4. Comparing LP and IP based approaches.

In the IP approach, the heuristic-technique applied is more
efficient as well as simpler and thus faster to implement
due to the weighted-graph representation. LP problem
cannot use the weighted-graph representation due to the
non-linearity of certain constraints.

These considerations have been summarized in Table 3
to give a complete picture of differences between the
linear programming and integer programming based
approaches as applied to the logic restructuring problem in
the case of wave pipelining circuits.

We have applied linear programming and integer
programming based techniques to nine different circuits
and compared number of steps necessary to obtain the
solution. The results are summarized in Table 4.

As we can see, the non-linear nature of some of the
constraints involved in the LP makes it difficult for it to
solve larger circuits using the linear programming
approach. In the case of the integer programming
approach, this problem is taken care of by restricting the
domain of the constraints to be linear in nature. This is
achieved through assignment constraints and the
subsequent weighted-graph representation.

Furthermore, the number of iterations required to solve
the problem using LP is always larger than that in the IP
approach and this difference can be attributed to the
nonlinearities materializing in the LP approach. This in
turn increases the total time needed for circuit
optimization. Obviously, here we are solving a set of
problems that are characterized by a very small number of
nodes, but as the number of nodes increases, this effect
will become more and more significant.

Finally, the additional cost in the LP approach is
incurred due to the nonlinear nature of the node
constraints. Since the number of iterations required is
proportional to the optimization time, the time required for
delay balancing also increases. The heuristic technique
used i.e. the branch and bound algorithm along with the
lesser number of constraints approach accounts for the
lesser number of iterations in the IP approach.

Figure 3. Dmin as a function of the number of iterations.

Figure 4. Number of iterations as the function of the
difference Dmin - Dmax.

Figure 5. Simulation circuit for a 1-bit adder

 Circuit Output Pins Minimum Delay

(without node collapsing)
Minimum Delay
(with node collapsing)

1. One-Bit Adder Sum and Carry 7 2.5
2. Four-Bit Adder Sum and First Carry 8 2.5
3. Four-Bit Adder Sum, First Carry and Second Carry 10 2.55
4. Four-Bit Adder All pins included. 11 2.6
5. Eight-Bit

Adder
All pins up to and including the fourth
carry.

12.5 2.6

6. Eight-bit
Adder

All pins up to and including the fifth
carry.

14 2.61

7. Eight-Bit
Adder

All pins up to and including the sixth
carry.

15 2.62

8. Eight-Bit
Adder

All pins included. 16 2.62

Table 5. Minimum delay Dmin values for the adder circuit.

To illustrate these points further, in Figure 3 we depict
the relationship between the # of iterations and the value
of Dmin.. Note that the increase of the value of Dmin.
indicates that the difference Dmin - Dmax. is reduced for a
certain Dmin. value with a minimal variation. Therefore,
executing larger # of iterations results in a narrower gap
between Dmax.and Dmin.. This allows one to realize
balancing of delay between the shortest and longest paths,
which is one of the important characteristics of the
wave-pipelined circuits.

Finally in Figure 4 we compare the performance of
linear programming and integer programming based
approaches in terms of number of iterations as the function
of the difference between the values of Dmax and Dmin. In
other words, we want to see how many iterations of either
approach are necessary to achieve the same reduction in
the value of Dmin - Dmax..The plot clearly shows the lesser
number of iterations in IP for various values of the delay
difference, when compared to that in LP.

In the last series of experiments we have gone beyond
the single bit adder and applied the proposed techniques to

a number of found and 8 bit adders. Each of the
subsequent adder circuits uses the design of the 1-bit
adder, depicted in Figure 5, as the basis. For each adder
we have applied the complete logic restructuring process
as described in Section 2. Then we have applied the Pspice
simulator to evaluate the resulting circuits obtained in two
ways, with and without node collapsing. For the node
collapsing we have implemented the procedure dscribed in
[5, 6, 9]. Table 5 shows the minimum delay Dmin values (in
ns) for the two cases.

It can be easily seen that the difference between the
minimum delay values gradually increases with an
increase in the complexity of the circuit. This gives an
idea about the effectiveness of the branch and bound
heuristic and the node collapsing procedures. Furthermore,
the Dmin value after node collapsing does not change by a
significant amount. This is due to the fact that the ripples
carry characteristics in the adder circuits result in the
saturation of the minimum delay value in the circuit.

6. Concluding remarks

In this paper we have addressed the problem of logic
restructuring in wave-pipelined circuits and showed that it
can be effectively solved using an integer programming
based optimization. The success of optimization depends
on how well the circuit is first conditioned using the node
collapsing procedure is carried out followed by the
subsequent circuit optimization. The results of our
experiments showed that the number of nodes in the
optimized circuit was reduced by about a factor of 1.5 in
comparison to the original circuit, which without loss of
generality will result in a reduced power consumption that
is critical in asynchronous circuits. The branch and bound
heuristic used to solve the delay balancing in wave
pipelined circuits was found to be more effective in case
of the IP approach than the conventional LP approach. The
difference between the minimum and maximum delays in
the circuit depended on the circuit configuration as well as
the degree of the node collapsing procedure.

The following are some of the topics where additional
research could be carried out in logic restructuring for
delay balancing. (1) Analysis of the additional cost – the
additional overhead involved in the IP approach that needs
to be analyzed in greater detail would be the cost incurred
in the weighted-graph representation of the given circuit
i.e. the additional cost incurred in pre-conditioning the
circuit before applying the heuristic procedure. (2)
Trade-off between the reduction rates – The reduction
rates between the delay difference (Dmax – Dmin) and the
number of iterations for both the LP and IP approaches
needs to be considered. This will give a better focus on
how efficient the heuristic search has been applied in the
IP approach. A trade-off analysis needs to be done on
whether it is the delay difference or the number of
iterations which is the deciding factor.

References

[1] J.F. Bard, Integer Programming, Edition 2, Chapter 3,
John Wiley & Sons, New York (1988).

[2] J.Fishburn, “Clock Skew Optimization”, IEEE
Transactions on Computers, Vol. 39, Issue 7, July
1990, Page(s) 945-951.

[3] D.Roy and M.Ciesielski, “Clock period minimization
with multiple wave propagation”, Proceedings of the
28th Design Automation Conference on, July 1991.

[4] Burleson et al., “Wave-Pipelining: A tutorial and
research Survey”, IEEE Transactions on VLSI
Systems, Vol. 6, Issue 3, Sep 1998.

[5] T.S. Kim et al., “Logic restructuring for wave-
pipelined circuits”, Proceedings of the IEEE
International workshop on Logic Synthesis, Sep 1993.

[6] Cao et al., “Non-Crossing Ordered BDD for Physical
Synthesis of Regular Circuit Structure”, Proceedings
of the ICCD, July 2003.

[7] Bertsimas D, Introduction to Linear Optimization,
Chapter 3, Athena Scientific, New York (1997).

[8] Morris M., Digital Design, Edition 3, Chapters 5 & 6,
Aug (2001).

[9] http://jason.sdsu.edu/minc/13.pdf.
[10] Chris J. Meyers. Asynchronous Circuit Design,

Chapter 5, Wiley (2001).
[11] Brian et al., Surfing in Wave-Pipelined Circuits, John

Wiley & Sons, New York (1999). Page(s) 35-40.
[12] Cormen, et. al. Introduction to Algorithms, McGraw

Hill (1990).
[13] Woo Kim, Yong Kim, “Automating Wave-Pipelined

Circuit Design”, IEEE Design & Test of Computers,
Vol. 20, Nov 2003.

[14] Vijay Sundararaian et al, “Synthesis of Low Power
CMOS VLSI Circuits Using Dual Supply Voltages”,
Proceedings of the 36th ACM/IEEE conference on
Design automation, Pages: 72 - 75 , 1999

[15] Manfred Padberg, Minendra P. Rijal, Location,
Scheduling, Design & Integer Programming, Wiley,
July 1996.

[16] Michael J. Brusco, “Optimal Solution Methods for the
Minimum-backtracking row layout problem”, IIE
Transactions, Vol. 36, No.2, Feb. 2004, Page(s) 181-
189.

[17] Michel Berkelaar and Koen van Eijk, “Efficient and
Effective Redundancy Removal for Million-Gate
Circuits”, DATE 2002

[18] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. F.
Jukl, P. Kozak, and M. Wiesel, “Chip layout
optimization using critical path weighting," Proc. of
ACM/IEEE 21st Des. Auto. Conf., (Albuquerque,
N.M.), pp. 133-136, June 25-27, 1984.

