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Abstract 

In this paper we apply integer programming (IP) based 
techniques to the problem of delay balancing in 
wave-pipelined circuits. The proposed approach considers 
delays, as well as fan-in and fan-out associated with every 
node in the circuit. After a weighted graph representation 
of the circuit is formed a node collapsing procedure is 
used to preprocess (reduce the size of) the system and 
obtain the final formulation of the IP problem, which is 
solved by using a branch and bound heuristic to obtain a 
minimum delay in the circuit. We also compare the 
proposed technique with application – to the same 
problem – of a linear programming solver. 
 
1. Introduction 
 
Wave-pipelining is one of widely used methods for 
designing high throughput VLSI circuits and its goal is to 
maximize utilization of the combinational logic without 
use of intermediate latches and registers [4]. Two common 
assumptions made in wave-pipelining are: (1) the total 
length of the logic path in a circuit is “long enough” to 
cause delay variations, and (2) the total data dispersion is 
small i.e. locality of data or logic signals in a circuit is 
high [13]. These assumptions make it possible for the 
system to have several waves (logic signals) that propagate 
simultaneously (locality) across the circuitry (logic path is 
long), thus allowing for a higher throughput. Some of 
basic concepts involved in wave-pipelined systems are [8]: 
• clock skew – represents arrival of a signal at different 

times at the clock inputs of different flip-flops due to 
the propagation delay denoted as tprop 

• speedup – signifies improvement in the circuit 
performance resulting from the fact that N data waves 
propagate simultaneously through the circuit (note 
that in standard pipelines, the speedup is associated 
with number of pipeline stages). 

• timing constraints – denote constrains imposed on the 
circuit by the timing factors and are represented by: 

 
Tclk > Tdiff + clocking overhead 

 
where Tdiff is the difference between the maximum 
and minimum delays (Tdiff  = Dmax - Dmin), while 
the clocking overhead is Tsetup + T hold  + (2 * clock 
skew), where Tsetup is the setup time and Thold is the 
hold time. 

When data is fed into the wave-pipelined circuit, the 
main goal of system design is to effectively pipeline the 
flow of data waves without the use of intermediate 
stoppages such as latches and registers to achieve the 
maximum throughput (rate of pipelining) [14]. The key 
idea here is to allow multiple waves of data to propagate 
through the logic circuit, which is designed so that data 
waves do not overlap. In this context, the two most 
desirable features of wave-pipelined systems are [16]:  
• most logic paths have the same depth, 
• fan-in/fan-out of the elements are the same.  
To achieve this goal, logic restructuring for delay 
balancing is applied. 

It should be noted, that due to the following factors, the 
design of wave-pipelined systems is quite complex and 
challenging: 
• it depends strongly on nature of the circuit, i.e. the 

logic family to which a given circuit belong to, 
• it is vulnerable to the process, volume and 

temperature (PVT) variations [13] – in other words, 
changes in the operating environment have a direct 
effect on the design of the system as they affect the 
delay in wave-pipelined circuits, and  

• both maximum delay Dmax and minimum delay Dmin 
have to be considered in designing wave-pipelined 
circuits – logic waves can be neither too fast nor too 
slow (while in conventional pipeline circuits, only the 
maximum delay has to be considered). 

The aim of our work is to investigate how integer 
programming based techniques can be applied to logic 
restructuring in wave-pipelined circuits. We proceed as 
follows. In the next section we briefly summarized related 



work. We follow by a description of integer programming 
techniques arising in the context of logic restructuring and 
the branch and bound heuristics. In Section 5 we present 
results of our experimental work and follow with 
description of possible future research directions. 
 
2. Related Work 
 
In design of wave-pipelined systems, one of fundamental 
approaches used in logic restructuring is node collapsing 
[13]. This process results in balanced circuit configuration 
and helps further conditioning of the circuit to confirm to 
the minimum timing requirements [5, 6]. Furthermore, it 
can be applied as a pre-processing stage of solving the 
logic restructuring problem. 

Thus far, the problem of logic restructuring in wave-
pipelined circuits has been solved mostly by utilizing 
linear programming (LP) techniques [2, 3]. Here, the 
ultimate goal was to minimize the difference in path 
delays of the circuit (to achieve maximum rate pipelining 
with minimal number of circuit nodes [4]). LP techniques 
used to address problem of delay balancing in have been 
applied at different levels [7, 17, 18]: 

• By Berkelaar et al at the transistor level [24]. 
• By Agrawal et al at the gate level [25]. 

Both these techniques are essentially the same and try to 
minimize the overall power dissipation of the circuit by 
reducing the gate load capacitance. 

Finally, it was suggested that integer programming (IP) 
can be applied to logic restructuring in wave-pipelined 
circuits. Such suggestion has been made in [1], which an 
overview of how IP can be applied to various resource 
allocation problems. However, beyond a suggestion made, 
there was not an instance of IP being actually applied to 
logic restructuring. 

 
3. Integer Programming Approach 
 
Basic steps involved in solving the problem of logic 
restructuring in wave-pipelined circuits are: 

• initial formulation of the IP problem, 
• optimizing the circuit using the node collapsing 
• solving the IP problem using branch and cut 

algorithm, 
• quantitative analysis of the results, 

where the second step, while highly desirable, can be 
omitted if only a pure IP problem is to be solved. The role 
of node collapsing is to reduce the total number of nodes 
(simplify the circuit design) and improve its overall 
balance). 

An integer programming problem is an optimization 
problem of the form: 
 

Min (or Max) cx 

 
where, x ∈ X; X = Zⁿ ∩ {x € Rⁿ | Ax ≤ b}, Zⁿ denotes the 
set of all integers, Rⁿ represents the set of all real n-vectors 
[10]. Finally, Ax ≤ b is referred to as the formulation of the 
Set X. An important factor involved in prictivcal use of 
integer programming is a correct – from the perspective of 
the problem to be solved – formulation of the particular IP 
problem (as an integer programming problem can have 
several formulations). In the case of the logic restructuring 
we apply a formulation based on weighted graph 
representation of the circuit [1]. Here, the weighted graph 
representation has the form G(d, fin, fout), where, d is the 
delay (weight of the path), fin is the fan-in of the node and 
fout represents fan-out of the node. In Figure 1 we depict a 
simple one-bit adder (top panel) and its weighted graph 
representation. Here, each node has fan-in value 2 and 
fan-out value 1. 
  

 

 
 

Figure 1 Sample one-bit adder and its weighted-graph 
representation; first digit – fan-in, second digit – fan-out. 

 
The value in each of the nodes of the weighted-graph is 

used as input to the branch and bound algorithm (which is 
used to solve the IP problem). An optimal solution to the 
logic restructuring (and thus the IP) problem is a sequence 
of nodes that give the minimum delay in the circuit. The 
heuristic technique used here, in one run through the 
circuit, explores every possible permutation of nodes, i.e. 
every possible path in the graph before arriving at a 
solution. 

The initial step of the solution process, before the IP 
problem is solved is node collapsing. Node collapsing is 
one of the most widely used circuit optimization tools in 
practice [5, 6, 9, 13]. As a result, the total number of logic 
gates is reduced and a balanced circuit configuration is  



   
step # P – current node Delay dij f(u) value number of 

nodes – n 
nodes compared 

1. A 0 0 7 - 
2. B 1 1 6 {A,B} 
3. C 2 2 5 {A,B,C} 
4. D 3 5[AC,CD] 4 {A,B,C,D} 
5. E 4 5[AC,CE] 3 {A,B,C,D,E} 
6. F 0 (no edge) 5[AC,CE] 2 {A,B,C,D,E,F} 
7. G 0 (no edge) 5[AC,CE] 1 all nodes. 

Table 1. Operation and results of the branch and bound algorithm. 
 
obtained. The circuit after the node collapsing procedure 
becomes the actual input into the IP solver. 

Identifying various constraints involved in the integer 
programming problem forms an important part of the 
problem-solving process. The typical constraints involved 
in this IP problem are:  

• node constraints – set up a specific domain for 
each circuit parameter, and  

• assignment constraints – represent the nature of 
the inputs of every gate.  

These constraints define the domain of parameters 
associated with every node in the circuit and may also be 
used to specify lower and upper bounds on selected values 
of each circuit parameter. This latter situation results in 
reduced number of constraints in the case if integer 
programming compared with that in the case of linear 
programming based approach. The objective function of 
the IP takes into account each of these constraints. The 
lower bound is given by fin ≥ 1 i.e. minimum of one input, 
while the upper bound is given by the maximum number 
of inputs at any node in the circuit ≤ fin.  

After circuit constraints are defined, the next step is the 
definition of the objective function. This function defines 
mathematically the basic objective of the integer 
programming problem. It is given by the equation: 

 
Min ∑ i, j di j xi j  

 
where dij denotes the arc-costs (delay) between nodes i and 
j, while the xij = 1, if path (i, j) exists in the graph, and 0 
otherwise (this is an assignment constraint). 

Problem prepared in the above described way can be 
solved, and one of the best approaches to the solution of 
an IP problem (especially in the case of data 
representation based on a weighted graph) is a branch and 
bound approach described in the next section.  
 
4. The Branch and Bound Algorithm 
 
The optimal solution to the integer programming problem 
is a sequence (or its permutation) of nodes that results in 
the minimum delay for the circuit. Note that an IP 

problem, in general, is NP-hard – as it is a subset of the 3-
SAT Circuit Satisfiability problem [12]. When an integer 
programming formulation of the logic restructuring 
problem is to be solved, we can apply the branch and 
bound algorithm as a solution heuristic. Let us denote by n 
the number of nodes, f(u) function that gives the best 
possible permutation of the circuit and p pointer to the 
current node in the subsequence. The proposed branch and 
bound approach consists of the following steps: 
 

1. Increment the pointer p by one 
2. f(p) = f(p) + 1 – update the best possible 

permutation based on the current node 
3. for any node k = 2… (p - 1), if f(p) = f(k) then 

proceed to step 2 – this will ensure that the same 
node has not been selected more than once 

4. for any two nodes i, j, if di > dj then include node 
j in the formulation for f(p) – here di refers to the 
delay associated with node i in the circuit. 

5. if p = n - 1, then proceed to step 6, otherwise go 
to step 2 

6. compute value of f(p) for the entire sequence of 
nodes – this will give an optimal solution to the 
problem. 

 
Not that the bounding condition of the algorithm is given 
by f1 < f(u) where f1 = ∑p 

k=2 ∑k-1 
l=1 {dkl f(k) f(l)}and dkl 

denotes the delay between any two nodes k and l in the 
circuit. 

In Table 1 we present a sample run of thus described 
algorithm applied to the 7 node 1 bit adder represented in 
Figure 1. As follows form the algorithm, the branch and 
bound process stops after 7 steps, when all nodes of the 
adder have been visited. In the case of one-bit adder 
represented in Figure 1, and solution of which is illustrated 
in Table 1, the optimal f(u) = 5 (see column f(u) value). 
 
5. Experimental results 
 
Let us now illustrate the performance of the integer 
programming approach to the problem of logic 
restructuring in wave-pipelined circuits by a number of 



examples. The first experiment uses standard CMOS 
circuit logic gates and the results representing values of 
parameters Dmin and Dmax for increasing total number of 
nodes and edges in the circuit are depicted in Table 2 and 
Figure 2 (data represented in Figure 2 originates from 
columns Dmin and Dmax in Table 2). 
 

Case # Dmin Dmax # of edges 
(in graph) 

# of nodes 

1 3 8 10 7 
2 4 12 12 8 
3 6 14 15 10 
4 8 18 21 25 
5 12 21 32 40 

Table 2. Effects of circuit complexity on the circuit 
parameters Dmax and Dmin; times in nano seconds. 
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Figure 2. Dmin and Dmax as a function of the number of 
nodes in the circuit. 

 
A few observations can be made. (1) As it is easy to see, 

plots of Dmax and Dmin are not linear when the number of 
nodes increases initially (7, 8, 10 nodes). It is only when 
the total number of nodes is larger than 10, when the 
further growth of both Dmin and Dmax becomes practically 
linear. (2) Furthermore, when the number of nodes is 
increasing initially from 7 to 10, the increase in the value 
of Dmax is more substantial than the corresponding increase 
in the value of Dmin. For larger number of nodes, both Dmin 
and Dmax grow at a similar rate. (3) Finally, in the case of 
the 1-bit adder circuit (7 nodes, 10 edges → row 1 in 
Table 2), the value of Dmax - Dmin = 5, which is exactly the 
optimal value of f(u) obtained when the integer 
programming approach was applied to it (see Table 1). 

In the next series of experiments we have compared the 
performance of the linear programming and integer 
programming based approaches to logic restructuring. 
Before we proceed further, a few observations about 
interactions between the problem we are solving and the 
two approaches to its solution (note that these points are 
not specific to the IP and LP as such, but originate from 
the problem we are solving). 

 

 

Table 3. Linear vs. integer programming based 
approaches. 

 
Nature of the Constraints: Some of the constraints 

involved in the linear programming problem formulation 
may be nonlinear in nature. For instance, the expression 
for the propagation delay is given by [10]: 

 
 Tprop= ∆ + (Cin * Sk) 

 
where, ∆ denotes an internal time delay of the node, Cin is 
the input capacitance of the gate and Sk is a constant factor 
that relates the value of ∆ to the input capacitance. This 
makes it difficult for some circuits to be modeled as a 
linear programming problems. On the other hand, an IP 
formulation of the problem has only linear constraints to 
consider. 

Objective Function: Since the input capacitance is 
related to the power dissipated by the gate the LP problem 
aims to minimize the power requirements [10]. The IP 
problem, on the other hand, takes into account the fan-in 
(fin) and fan-out (fout) of the nodes, thus minimizing the 
delay requirements. 
Circuit Complexity: As the number of nodes in the circuit 
increase, the non-linear problem solvers in LP techniques 
become more complex in nature. This increases the 
optimization time [11].    

 



 Dmin D max # of steps (LP) # of steps (IP) Dmax - Dmin 
1. 3 8 10 7 5 
2. 4 12 12 8 8 
3. 6 14 15 9 8 
4. 12 21 23 14 9 
5. 8 18 18 11 10 
6. 10 22 25 16 12 
7. 13 27 28 19 14 
8. 15 31 31 23 16 
9. 18 38 33 27 20 

Table 4. Comparing LP and IP based approaches. 
 

In the IP approach, the heuristic-technique applied is more 
efficient as well as simpler and thus faster to implement 
due to the weighted-graph representation.    LP problem 
cannot use the weighted-graph representation due to the 
non-linearity of certain constraints.    

These considerations have been summarized in Table 3 
to give a complete picture of differences between the 
linear programming and integer programming based 
approaches as applied to the logic restructuring problem in 
the case of wave pipelining circuits. 

We have applied linear programming and integer 
programming based techniques to nine different circuits 
and compared number of steps necessary to obtain the 
solution. The results are summarized in Table 4. 

As we can see, the non-linear nature of some of the 
constraints involved in the LP makes it difficult for it to 
solve larger circuits using the linear programming 
approach. In the case of the integer programming 
approach, this problem is taken care of by restricting the 
domain of the constraints to be linear in nature. This is 
achieved through assignment constraints and the 
subsequent weighted-graph representation. 

Furthermore, the number of iterations required to solve 
the problem using LP is always larger than that in the IP 
approach and this difference can be attributed to the 
nonlinearities materializing in the LP approach. This in 
turn increases the total time needed for circuit 
optimization. Obviously, here we are solving a set of 
problems that are characterized by a very small number of 
nodes, but as the number of nodes increases, this effect 
will become more and more significant.  

Finally, the additional cost in the LP approach is 
incurred due to the nonlinear nature of the node 
constraints. Since the number of iterations required is 
proportional to the optimization time, the time required for 
delay balancing also increases. The heuristic technique 
used i.e. the branch and bound algorithm along with the 
lesser number of constraints approach accounts for the 
lesser number of iterations in the IP approach. 

 

 

Figure 3. Dmin as a function of the number of iterations. 
 

 

Figure 4. Number of iterations as the function of  the 
difference Dmin - Dmax. 

 



 

Figure 5. Simulation circuit for a 1-bit adder  
 
 Circuit  Output Pins Minimum Delay  

(without node collapsing)  
Minimum Delay  
(with node collapsing) 

1. One-Bit Adder Sum and Carry 7 2.5 
2. Four-Bit Adder Sum and First Carry 8 2.5 
3. Four-Bit Adder Sum, First Carry and Second Carry 10 2.55 
4. Four-Bit Adder All pins included. 11 2.6 
5. Eight-Bit 

Adder 
All pins up to and including the fourth 
carry. 

12.5 2.6 

6. Eight-bit 
Adder 

All pins up to and including the fifth 
carry. 

14 2.61 

7. Eight-Bit 
Adder 

All pins up to and including the sixth 
carry. 

15 2.62 

8. Eight-Bit 
Adder 

All pins included. 16 2.62 

Table 5. Minimum delay Dmin values for the adder circuit. 
 

To illustrate these points further, in Figure 3 we depict 
the relationship between the # of iterations and the value 
of Dmin.. Note that the increase of the value of Dmin. 
indicates that the difference Dmin - Dmax. is reduced for a 
certain Dmin. value with a minimal variation. Therefore, 
executing larger # of iterations results in a narrower gap 
between Dmax.and Dmin.. This allows one to realize 
balancing of delay between the shortest and longest paths, 
which is one of the important characteristics of the 
wave-pipelined circuits. 

Finally in Figure 4 we compare the performance of 
linear programming and integer programming based 
approaches in terms of number of iterations as the function 
of the difference between the values of Dmax and Dmin. In 
other words, we want to see how many iterations of either 
approach are necessary to achieve the same reduction in 
the value of Dmin - Dmax..The plot clearly shows the lesser 
number of iterations in IP for various values of the delay 
difference, when compared to that in LP.  

In the last series of experiments we have gone beyond 
the single bit adder and applied the proposed techniques to 

a number of found and 8 bit adders. Each of the 
subsequent adder circuits uses the design of the 1-bit 
adder, depicted in Figure 5, as the basis. For each adder 
we have applied the complete logic restructuring process 
as described in Section 2. Then we have applied the Pspice 
simulator to evaluate the resulting circuits obtained in two 
ways, with and without node collapsing. For the node 
collapsing we have implemented the procedure dscribed in 
[5, 6, 9]. Table 5 shows the minimum delay Dmin values (in 
ns) for the two cases. 

It can be easily seen that the difference between the 
minimum delay values gradually increases with an 
increase in the complexity of the circuit. This gives an 
idea about the effectiveness of the branch and bound 
heuristic and the node collapsing procedures. Furthermore, 
the Dmin value after node collapsing does not change by a 
significant amount. This is due to the fact that the ripples 
carry characteristics in the adder circuits result in the 
saturation of the minimum delay value in the circuit. 

 
 



6. Concluding remarks 
 

In this paper we have addressed the problem of logic 
restructuring in wave-pipelined circuits and showed that it 
can be effectively solved using an integer programming 
based optimization. The success of optimization depends 
on how well the circuit is first conditioned using the node 
collapsing procedure is carried out followed by the 
subsequent circuit optimization. The results of our 
experiments showed that the number of nodes in the 
optimized circuit was reduced by about a factor of 1.5 in 
comparison to the original circuit, which without loss of 
generality will result in a reduced power consumption that 
is critical in asynchronous circuits. The branch and bound 
heuristic used to solve the delay balancing in wave 
pipelined circuits was found to be more effective in case 
of the IP approach than the conventional LP approach. The 
difference between the minimum and maximum delays in 
the circuit depended on the circuit configuration as well as 
the degree of the node collapsing procedure. 

The following are some of the topics where additional 
research could be carried out in logic restructuring for 
delay balancing. (1) Analysis of the additional cost – the 
additional overhead involved in the IP approach that needs 
to be analyzed in greater detail would be the cost incurred 
in the weighted-graph representation of the given circuit 
i.e. the additional cost incurred in pre-conditioning the 
circuit before applying the heuristic procedure. (2) 
Trade-off between the reduction rates – The reduction 
rates between the delay difference (Dmax – Dmin) and the 
number of iterations for both the LP and IP approaches 
needs to be considered. This will give a better focus on 
how efficient the heuristic search has been applied in the 
IP approach. A trade-off analysis needs to be done on 
whether it is the delay difference or the number of 
iterations which is the deciding factor. 
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