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Abstract—Recently, we have introduced an approach to basic
sparse matrix computations on multicore cache based machines
using recursive partitioning. Here, the memory representation of
a sparse matrix consists of a set of submatrices, which are used
as leaves of a quad-tree structure. In this paper, we evaluate the
performance impact, on the Sparse Matrix-Vector Multiplication
(SpMV), of a modification to our Recursive CSR implementation,
allowing the use of multiple data structures in leaf matrices
(CSR/COO, with either 16/32 bit indices).

I. INTRODUCTION

IT IS known that computations with sparse matrices incur

very poor memory performance: indirect addressing causes

unpredictable run-time dependencies in memory read/write

access; memory access has poor data locality (just to name

a two key aspects; see also [1], [2], [3]). To address these

issues, recently, we have proposed a recursive approach to

sparse matrix representation. In [4] we have outlined the

proposed method and reported initial experiments with the

SpMV operation. In the follow-up [5], we have evaluated its

performance for the triangular solve and SpMV for symmetric

matrices. Experimental results lead us to modify the storage

scheme in order to reduce the indexing overhead. Encouraging

results of an approach employing 16-bit indices have been

reported in [6]. Here, we continue investigations leading to

the development of methods that can reduce impact of indirect

addressing, by reducing the memory traffic incurred in access-

ing index data. Specifically, we employ index compression,

and diversify the representation of leaf submatrices with the

intent of raising the floating point performance of the SpMV

by saving memory bandwidth.

Proceeding, we outline the RCSR storage format with index

compression in Section II. Next, we describe modifications

to the sparse matrix representations in Section III. Setup for

performed experiments can be found in Section IV, while in

Section V we analyze the obtained results.

II. THE RECURSIVE STORAGE FORMAT AND INDEX

COMPRESSION

We (logically) organize a sparse matrix as a quad-tree

structure, with nodes consisting of submatrices arising from

a recursive partitioning into quadrants. While intermediate

nodes are used only as a pointer structure, leaf nodes hold

actual subarrays with index and numerical values. The SpMV

algorithm described in [5] is independent from the actual

format of leaf matrices. It only assumes a coarse recursive

partitioning in leaf submatrices. Similarly to blocking used in

dense matrix computations, submatrices at leaf level should

be sized (in terms of their memory footprint during the SpMV)

in relation to the cache sizes of the machine.

In this context, we have investigated a variation to the

leaf matrices format, obtained by converting some of the

Compressed Sparse Rows (CSR) leaves of a matrix to use

16 bit column indices (and thus, reducing the memory traffic).

As motivated in Section I (and in the literature; e.g.: [1]),

index compression techniques are particularly effective with

many active cores. Here, techniques which may not be optimal

on a single core (because of a slight memory-bandwidth-to-

computation trade-off, in the form of pointer arithmetics), may

show their potential when working with multiple cores (where

the memory traffic is heavier). As a motivation of our “16-

bit” approach, we observe that after partitioning a large sparse

matrix (in the RCSR format), it is likely to have many of the

leaf submatrices dimensioned less than 216. Thus, using a 16

bit (halfword) index type in their CSR column indices arrays is

possible, and could lead to savings in memory traffic. We name

this variant RCSRH. Obviously, for matrices dimensioned

less than 216, the conversion to RCSRH is possible for all

submatrices. The outcome of our experiments (documented in

[6]) was encouraging: using halfword indices by itself yielded

up to a 25% floating point speedup (with a saving in memory

usage up to a 16%) on unsymmetric matrices, and 30% on

symmetric ones. However, in a number of cases, the RCSRH

variant was not helpful. One of the perceived reasons was

that CSR itself does not always fit into leaf submatrices, and

thus we have decided to convert some leaf matrices to the

COOrdinate (COO) format. Let us discuss this change with

more detail.

III. RECURSIVE STORAGE FORMAT WITH CSR AND COO

LEAVES

In this section, we motivate quantitatively why and when

storing some submatrices as COO instead of CSR could reduce

index overhead, and the way we have chosen to use COO to

enhance RCSR.

A matrix is stored in the RCSR format as a quad-tree

structure with CSR ([7, Section. 4.3.1]) submatrices at the
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leaf level of a recursive bipartitioning (see [4]). To store an

r × c matrix with n nonzeroes in CSR, we use an array JA

(of size n) with column indices, and a row pointers array PA

(of size r + 1), referencing rows in the JA array. Array JA

stores column indices for nonzeroes in a row-major order. The

array of coefficients (V A) is laid in the same order as JA. To

store a matrix in a plain COO format, two n-sized arrays for

(row,column) indices (IA,JA) are required. By denoting as

I(r, n) the index space requirements for an r× c matrix (with

n nonzeroes) instance we have ICSR(r, n)
.
= 4(r + 1) + 4n

and ICOO(r, n)
.
= 4n+ 4n bytes. Let us call CSRH the CSR

format implementation with 16 bit JA indices, and COOH, a

COO format implementation with 16 bit IA and JA indices.

For these variants, we have ICSRH(r, n)
.
= 4(r + 1) + 2n

and ICOOH(r, n)
.
= 2n+2n bytes. This means that for some

values of (r, n), COO/COOH would use less indexing space

than CSR/CSRH; specifically, ICOO(r, n) < ICSR(r, n) when

n < r+1, and ICOOH(r, n) < ICSRH(r, n) when n < 2r+2.

For this paper, we modified the matrix constructor code to use

CSRH whenever a CSR submatrix is dimensioned less than

216. Similarly, we use COOH whenever a COO submatrix

is dimensioned less than 216; we choose to use COO when

n < r+1. We adopt COO/COOH as row-major sorted (so we

have the same memory access pattern of CSR for JA and V A

arrays). In [4] and [6], we have described the cutoff function δ

as our heuristic regulating subdivision into submatrices; in this

paper, we use slightly differing matrix assembly criteria. While

we still use the δh function from [6], we limit subdivisions by

forcing each submatrix not to use more indexing space than a

fullword COO storage of it would require. The other rules for

subdivision are still the same as imposed by δh. Please refer

to [8] for a full discussion on the new constructor layout.

We call the hybrid format resulting from these modifications

Recursive Sparse Blocks (RSB).

IV. EXPERIMENTAL SETUP AND METHODOLOGY

In order to compare the new approach with previously

documented experiments using RCSR format (see [6]), we

measured performance on the same test set of 36 matrices:

12 of them are symmetric (See Table I), 12 are square

unsymmetric (See Table II), and 12 are non square (See

Table III). For readability reasons, in Sec. V we left matrices

with less significant results (marked with an asterisk (*), in

the tables) out of the plots; so the commentary of them is

indirect. Furthermore, we have used the same two machines

(summarized in table IV). Recall, that M2 is a lightly loaded

network server, while M1 is a dedicated machine.

For each matrix/cores sample, we ran our RSB code,

performing 100 times the SpMV operation and report the

best result. However, timing variation was below 5%, so

our results were consistent. We measured timings using the

POSIX ([9]) gettimeofday() function. Figures in section

V depict results, expressed in MFlops (millions of floating

point operations per second). Conventionally, we counted 2

Flops per nonzero element for non-symmetric matrices, and

4 for symmetric. We use double precision arithmetic (C’s

TABLE I
SYMMETRIC MATRICES

matrix r c nnz nnz/r
af shell10 1508065 1508065 27090195 17.96
BenElechi1 245874 245874 6698185 27.24
bone010 986703 986703 36326514 36.82
crankseg 1 52804 52804 5333507 101.01
ct20stif 52329 52329 1375396 26.28
F1 343791 343791 13590452 39.53
fcondp2 201822 201822 5748069 28.48
kkt power 2063494 2063494 8130343 3.94
ldoor 952203 952203 23737339 24.93
mip1* 66463 66463 5209641 78.38
nd24k 72000 72000 14393817 199.91
s3dkq4m2 90449 90449 2455670 27.15

double type). Our measurements were performed with hot

caches; that is, we did not flush deliberately cache contents

between subsequent SpMV’s; therefore, to avoid artificially

high results, all measurements were performed on matrices

not fitting entirely in the caches.

TABLE II
GENERAL SQUARE MATRICES

matrix r c nnz nnz/r
atmosmodl 1489752 1489752 10319760 6.93
av41092 41092 41092 1683902 40.98
cage15 5154859 5154859 99199551 19.24
lhr71 70304 70304 1528092 21.74
patents 3774768 3774768 14970767 3.97
raefsky3 21200 21200 1488768 70.22
rajat31 4690002 4690002 20316253 4.33
rma10* 46835 46835 2374001 50.69
sme3Dc 42930 42930 3148656 73.34
torso1 116158 116158 8516500 73.32
venkat01 62424 62424 1717792 27.52
wb-edu 9845725 9845725 57156537 5.81

TABLE III
GENERAL NON SQUARE MATRICES

matrix r c nnz nnz/r
12month1 12471 872622 22624727 1814.19
c8 mat11 I 4562 5761 2462970 539.89
cont11 l 1468599 1961394 5382999 3.67
diego-MM-573x230k 573286 230401 41694697 72.73
GL7d19 1911130 1955309 37322725 19.53
neos* 479119 515905 1526794 3.19
rail2586 2586 923269 8011362 3097.97
rel9 9888048 274669 23667183 2.39
relat9 12360060 549336 38955420 3.15
Rucci1 1977885 109900 7791168 3.94
spal 004 10203 321696 46168124 4524.96
tp-6 142752 1014301 11537419 80.82

Our codes were compiled with the Intel icc version 11 on

M1, and gcc, version 4.3 on M2. In Section V-C we compare

our results to that obtained with a publicly available CSB

prototype ([2]). On both machines we compiled it using the

Cilk++ compiler; version (“Cilk Arts build 8503”),

based on the gcc (GNU C Compiler), v.4.2.4. To unify the
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TABLE IV
TEST MACHINES.

machine model cpus× data caches

cores

M1 Intel Xeon 5670 2×6 2xL3,2x6xL2,2x6xL1:
6-Core L3:12MB/16-w/64B
2.93GHz L2:256KB/8-w/64B

L1:32KB/8-w/64B
M2 AMD Opteron 2354 2× 4 2xL3,2x4xL2,2x4xL1:

Quad-Core L3:2MB/32-w/64B
2.2GHz L2:512KB/16-w/64B

L1:64KB/2-w/64B

test environment, all codes were compiled using the -O3 flag

only (besides the OpenMP enabling flags).

V. RESULTS

We structure the analysis of results as in [6]. Note that,

for brevity, we sometimes reference as RSB-k the k-threaded

RSB. In most cases we start by commenting the 8 threaded

performance, and proceed from discussing the particularly

problematic cases to the best performing ones.

A. Results, Unsymmetric Matrices

For the unsymmetric matrices on M1, we observe an

improvement when switching from RCSR to RSB in nearly

all of the test set matrices; up to 67% on square ones, and up

to 33% on non square ones (Fig. 1,2).

The only matrices “suffering” from the switch are: square

av41092 and raefsky3 (Fig. 1), non square c8 mat11 I and

diego-smtxMM-573x230k, and two borderline cases: rail2586

and sme3Dc.
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Fig. 1. Unsymmetric SpMV on M1, square matrices.

On machine M2 (Fig. 3,4), we see improvements up to

128% for square matrices, and 65% for non square ones, and

a single case of a performance drop: a 3% fall for the non

square matrix cont11 l.

In Fig. 6,7,8,9 we observe index usage saving almost

always. Out of 24 non-symmetric matrices, we experience

three cases where index usage raises: square matrix patents

(Fig. 6,8) and non square matrices, rel9, relat9 (Fig. 7,9). We
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Fig. 2. Unsymmetric SpMV on M1, non square matrices.
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Fig. 3. Unsymmetric SpMV on M2, square matrices.

note, however, that the effect of RSB is actually an improve-

ment of the performance on these matrices, notwithstanding

the increased index usage. Among these matrices, problematic

cases remain: patents performs better, but continues scaling

poorly, (remaining the “slowest” of our entire test set); relat9

suffers from poor scaling, too (especially on 8 cores M2); rel9

continue not scaling at all.

These matrices have a feature in common: a very low

nonzeroes/row elements ratio: 2.39 for rel9, 3.15 for relat9

(see Table III) 3.97 for patents (see Table II). Although for

such matrices one cannot expect high efficiency for either CSR

or COO formats, we have realized why this is also the case

for our recursive format (see [6], [5]), so now we present only

the particular case for RSB.

Although very poorly performing, patents, actually scales

up to 4 threads. In facts, patents is assembled in 37 COO

leaves, regardless the thread count. When working with 8

threads, we observe that scaling is inhibited: this means that

particular partitioning leaves a number of threads starving,

while most of row intervals are locked by other threads. This

is a situation occurring when the thread count approaches the

number of submatrices in disjoint row intervals (see Fig. 5);

and thus threads contend for available row intervals to operate

on. In the current formulation of RSB, further partitioning

of this matrix is not allowed, for it does not have enough
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Fig. 4. Unsymmetric SpMV on M2, non square matrices.

Fig. 5. On the left, matrix patents as partitioned on M1. On the right
(widened, for viewing convenience) diego-smtxMM-573x230k on M1. Both
in RSB format.

nonzeroes per row. On M2, the case for patents is similar:

while on 1,2,4,8 threads, the matrix is partitioned respectively

into 13,25,37,37 COO leaves.

The cases of rel9 and relat9 (Fig. 2,4) are similar. Since

relat9 has a little higher nonzeroes/row count than rel9, it

succeeds in scaling in a limited way (up to 30 COO leaves,

on both machines), but rel9 gets partitioned in 7 leaves only,

in all cases. Therefore, for rel9, more than 2 threads contend

for row locking on 7 submatrices, with no possible scaling.

Notice, however, that RSB is capable of allowing dual threaded

parallelism in these very sparse cases, whereas RCSR was not.

The cases we have just discussed are worst/limit cases, and

as such are not the primary target of our modifications, so we

tolerate them here, and use them for comparison means.

Although quite different, two matrices (sme3Dc, raefsky3)

suffer similar problems, when instantiated as RSB on M1. That

is, while they are well-performing on RCSR and loosing index

overhead from the RSB switch, they also get partitioned into

less leaves, giving rise to the same SpMV scalability problem.

In facts, while RCSR-8 partitions these matrices respectively

into 115 (113 CSRH, 2 COOH) and 94 (CSRH) leaves, RSB-8

produces 16 (all CSRH) and 13 (11 CSRH, 2 COOH) leaves.

Given the lock-based nature of our SpMV algorithm, and the

distribution of submatrices, RSB-8 suffers from contention

problems on both matrices. It is interesting to note that on

M2, these matrices get subdivided respectively in 115 and 94

leaves, and we observe in Fig. 3 that this suffices to scale and

experience, respectively, a 7% and a 6.7% improvement. Index

overhead shifts from 4.44. to 2.55 bytes/nonzero for sme3Dc,

and from 4.28 to 2.34 bytes/nonzero for raefsky3.

Matrix av41092 on M1 experiences the same problem

sme3Dc and raefsky3 did: insufficient partitioning. While M1

partitions this matrix in 10 (9 CSRH, 1 COOH) submatrices

only, M2, due to its smaller caches, partitions it in 72 leaves

(64 CSRH, 8 COOH). So, the halving in index overhead

experienced on M1 (from 4.65 to 2.27 bytes/nonzero) could

not bring advantage to RSB-8, while on M2, the 42% index

saving (from 4.5 to 2.61 bytes/nnz) allows for scaling and a

modest 3% performance increase.
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The remaining three cases with a missing improvement are

non square matrices c8 mat11 I, diego-smtxMM-573x230k,

and rail2586 (Fig. 2). Matrix c8 mat11 I, alike to the matrices

we have seen before on M1, suffers from poor partitioning,

here: RSB partitions it in respectively 1,4,10,13 leaves for

1,2,4,8 threads. On 8 threads, the 13 leaves are not enough

to ensure the parallel operation of all the threads, thus leaving

some of them starving. Similarly to the previous cases, M2
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divides the matrix in much more leaves, thus avoiding the

scaling problem.

The case for matrix diego-smtxMM-573x230k is different

(and interesting). On M1, this matrix performs best as RSCR,

while on M2, best as RSB. On both machines, though, while

not scaling up to 8 threaded RCSR, it scales (although very

slightly) for RSB, up to 8, but poorly. Poor scaling is evident:

RSB-8 on M1 is only 88% faster than RSB-1; on M2, only

123%. By looking at the number of submatrices, we could

not say their number is too low. It is only after inspecting the

distribution of submatrices (see Fig. 5), that we notice a big

unbalance: actually, most of the submatrices are located on the

top of the matrix, and it seems that RSB arranged submatrices

in “block rows”. Given the row-lock-based nature of our

SpMV algorithm, such a distribution is enough to destroy

the parallelism of the computation on this matrix. Here, after

completing the bigger-dimensioned submatrices across various

row intervals of the matrix, threads will try to acquire a lock

on the intervals located on the upper border, with no success

for most of them: only a few of them will be able to work at

a time, on the upper submatrices. Contention will last during

the whole computation for most of the threads, then, because

our current SpMV algorithm has no mechanism for concurrent

update of a single subvector.

Matrix rail2586 constitutes another special case. For being

wide, it fits particularly well when stored in a row-oriented

storage as CSR. However, for having its nonzeroes scattered

quite uniformly around the matrix, it would end up having very

sparse submatrices, if it had not as much as 3097 nonzeroes

per row, globally. But it happens that for being so wide, the

proper introduction of CSRH leaves is only possible after a

certain number of subdivisions. On M1 (Fig. 12), it happens

that there are not enough subdivisions for switching much of

the submatrices to CSRH. So, the use of RSB for rail2586

on M1 does not lighten the index overhead significantly (it

remains at about 4 bytes per nonzero), and the performance

remains the same (notwithstanding the submatrices reduction:

from RCSR’s 352, to RSB-8’s 55). For architectural reasons,

RSB on M2 ends up partitioning the matrix more finely, and

thus falling to switch to CSRH in 335, out of the 352 leaves of

RSB-8. The matrix is thus partitioned in number of matrices

which is the double of RCSR’s. However, in this case, the

performance gain expected from RSB is negligible: less than

1%. We conjecture that the flat distribution of submatrices in

the matrix, and its considerable width, cause a considerable

overhead to the memory subsystem, which in turn is forced

to continuously load elements from the right hand side vector,

which would barely fit in the cache.

We notice that some matrices gain a considerable speedup

from the RSB representation: rajat31 (56%), lhr71 (17%),

torso1 (18%) on M2 (Fig. 4), venkat01 (67%), cage15 (50%)

on M1 (Fig. 2), wb-edu on both (68% on M1, 43% on

M2). The assembled instances of these matrices as RSB

differs from RCSR, for the relevant number of COO/COOH

submatrices. On M2, rajat31 gets partitioned in 1534 leaves,

of which 896 COOH, and 126 COO; wb-edu in 4336 leaves,

of which 2511 COOH, 254 COO; torso1 in 357 leaves, of

which 39 COOH; lhr71 in 87 leaves, of which 34 COOH.

In all these cases, index overhead is cut down approximately

in a half. On matrices rajat31 and wb-edu, index overhead

falls down respectively from 12.3 to 3 bytes/nnz and from

11.15 to 3.12 bytes/nnz. This means that RSB cures cases

where RCSR alone produced subdivisions abusing from CSR

leaves; that is, producing CSR leaves with less nonzeroes than

rows. The case for matrix cage15 on M1 is alike, in that it

gets partitioned in 751 leaves, 132 of which are COO, 316

COOH, 6 CSR, 297 CSRH. With RSB, this configuration

of cage15 saves approximately 30% index overhead (from

6.3 bytes/nonzero), which is not much compared to other

cases. So probably, the gain is due to the fuller submatrices

(RSB-8 assembles 751 of them; RCSR as much as 4457).

Performance gain on torso1 is probably due only to index

overhead saving: in RSB-8 on M1, it gets partitioned in 59

CSRH leaves only, (from 176 CSR), saving 64% of indexing

overhead (from 4.6 bytes/nonzero, Fig. 6), which is quite

good.

B. Results, Symmetric Matrices

Bar plots in Fig. 10 and 11 present the comparative perfor-

mance results of RCSR and RSB for symmetric matrices. We

observe performance enhancements nearly in all cases. There

are three exceptions, though: crankseg 1, ct20stif, F1 on M1.
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We comment these exceptions first, and the remaining cases

next.

On M1, matrix F1 in RSB (Fig. 10) does not scale from

4 to 8 threads. On less than 8 threads, F1 is processed faster

with RCSR; e.g.: with 1 thread, F1 gets partitioned by RSB

in 10 submatrices only, all fullword CSR. But with 8 threads,

RSB partitions F1 in 72 leaves, of which 70 are CSRH and 2

COOH. With RCSR, a number of 573 leaves were obtained,

which is much more. Given the higher number of subdivisions,

load balancing in RCSR ran for sure smoother, while RSB

did fall in a lock contention problem here, it seems. Please

recall (See [5]) that our symmetric SpMV implementation

variant incurs in a higher locking overhead than unsymmetric.

On M2, the situation is almost reversed: for 8 cores, it is

RSB that partitions F1 in more leaves (573: 504 CSRH and

69 COOH), while RCSR divides the matrix in 278 leaves

only. The index overhead of RCSR is quite high on F1: 5.08

bytes/nnz on M2, 5.4 on M1; on RSB it is always less than

this, on both machines. However, the RSB index overhead

depends on the threads count: on M2 (Fig. 13) with more

threads, the overhead tends to grow too, from 2.6 to 3.3

bytes/nnz, suggesting that further subdivisions could degrade

performance. On the other hand, on M1, when going from

1 to 8 threads, this overhead decreases from 4.25 to 2.52

bytes/nnz (Fig. 12). These observations suggest us that the

performance improvement over 1-core RCSR (on both M1

and M2) is due to less index overhead, which itself is a

consequence of less submatrices fragmentation. We believe

that some optimum partitioning for 8 cores F1 is between

all of these four instances of RCSR/RSB on M2/M1; that

is, the algorithm should have partitioned F1 less coarsely on

RSB/M1, more coarsely on RCSR/M1, and so on.

The cases for matrices ct20stif and crankseg 1 (still on M1)

are different. With ct20stif we observe that 2-threaded RSB

fails from partitioning, thus cutting off two-cores parallelism

completely (Fig. 10). On more cores the heuristic succeeds

partitioning the matrix, but too coarsely to gain a sufficient

workload balance. Please note that this matrix is among the

smallest in our test set (1.3 · 106 nonzeroes), stressing the

limit of our rule of thumb (sizing matrices around the cache

sizes). On both M1 and M2 machines, index usage for ct20stif

keeps very low: for RSB it ranges from 2.27 to 2.52 bytes

per nonzero, coming from RCSR’s approximate 4.5. With an

analogy to the previous case, on machine M2, partitioning is

finer than on M1, from the single thread case on (1-threaded

RSB partitions ct20stif to 7 submatrices), and an adequate

workload balancing follows. Thus with ct20stif on M2, we

do not loose the 8 threaded case, and RSB’s performance is

higher than RCSR’s. Here, the sparser leaf submatrices are

assembled as COOH (2 out of 7 on 8 cores M1, 2 out of 60

on M2), the remaining ones in CSRH. Notice that both F1

and ct20stif matrices had more than 25 nonzeroes/row, which

is quite sufficient to achieve good results with RCSR/RSB.

Matrix crankseg 1 is a little bit sparser (10 nnz/row). It suffers

from the same poor partitioning problem on M1, having

respectively 3,10,16,39 leaves for 1,2,4,8 threads, and loosing

30% of performance on 8 threads. On the other hand, on

M2, matrix crankseg 1 performs quite well, achieving an

improvement to RCSR. The improvement itself is about 21%

on 8 cores, when the matrix is partitioned in 37 COOH and

202 CSRH submatrices.

After having discussed the problematic cases, let’s look at

the remaining ones.

In one case there is almost no change: nd24k on M1

(Fig. 10). Here, RCSR partitions the matrix in 503 CSR leaves,

RSB in 87 CSRH leaves. The index overhead (Fig. 12) gets

almost halved (from 4 bytes bytes/nonzero). We are not aware

of the reason for the missing performance increase, here, but

note that this is our symmetric matrix with the higher nnz/row

count (199, see table I). On M2 (Fig. 11), the same matrix

witnesses a slight (5%) speedup, while being partitioned by

RSB in 503 (all CSRH, except 5 COOH ones) pieces, and

278 ones by RCSR. The index overhead (Fig. 13) similarly to

that of M1, halves from RCSR (4.2 bytes/nnz) to RSB (2.1

bytes/nnz). We conjecture that the 87 leaves on M1 somehow

limited parallelism, but we would need to investigate further

to confirm this.

In one case, on M1, RSB performance boosts up as high

as 66%, when compared to RCSR: it is for matrix s3dkq4m2

(Fig. 10). Here, RCSR partitions in 127 leaves, while RSB in

15 only (8 CSRH, 7 COOH). We observe the index overhead

(Fig. 12) is almost halved, switching from RCSR to RSB

(for > 1 threads). We deem that this speedup is due to a

case in which the matrix offers caching potential (the whole

result vector and a matrix portion): on M2, where the L3

cache is considerably smaller than on M1, the performance

of s3dkq4m2 improves by only 2%, passing from 63 leaves of

RCSR to 120 CSRH and 7 COOH leaves of RSB. Performing

a run with cold caches (that is, making sure that any location

caching the matrix or the involved vectors gets overwritten

between each SpMV), on M1 the performance of RSB is

approximately 7% lower, while on M2 it made no difference

(and the boost becomes 55%, rather than 66%). Please note

that the smallest symmetric matrix in the test set is not

s3dkq4m2 but ct20stif, which we have commented before.

When switching from RCSR to RSB on M2 (Fig. 11), we

observe speedups in all cases. Probably, L3 cache on M2,

smaller than on M1, induced too coarse partitionings, thus

limiting the scalability of our symmetric SpMV.

We can now comment the cases where the biggest improve-

ment was observed: af shell10 (30%), BenElechi1 (29%),

bone010 (24%), fcondp2 (20%), ldoor (19%) on M1 (Fig. 12),

and fcondp2 (28%), crankseg 1 (21%), ldoor (16%), F1 (12%)

on M2 (Fig. 13). For af shell10 on M1, we observe that

RSB instantiates 255 submatrices (192 CSRH, 48 COOH,

15 COO), while RCSR used to instantiate 1534 CSR leaves.

This matrix is also the one to experience the higher saving

in index overhead: from 5.22 to 2.5 bytes per nonzero (more

than 50%, Fig. 12). Matrix BenElechi1 gets partitioned by

RSB in 63 leaves: 32 CSRH, 30 COOH, 1 COO; by RCSR

in 382 CSR matrices. Index usage (Fig. 12) halves: from 4.66

to 2.25 bytes per non zero. Similarly to the af shell10 case,
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we experience a smaller number of leaf matrices, a more

appropriate leaf matrix selection, and a consequent reduction

in indexing overhead. On M2 (Fig. 11), the same matrix

improves only by 1.6%. By looking at its partitioning, we

notice that it is partitioned in 127 leaves by RCSR, which is

much less than RSB’s 255 leaves (238 CSRH, 16 COOH, 1

COO). For bone010, RCSR assembles 1316 CSR matrices;

RSB assembles 170 CSRH, 2 CSR, and 5 COO. Index usage

is reduced down from 4.6 to 2.5 bytes/nnz (Fig. 13). On

M2, RSB assembles 1054 CSRH, 279 COOH, and 5 COO

submatrices, while RCSR allocates 630 CSR leaves (index

overhead shifting from 4.53 to 2.55 bytes/nonzero). Again, it

seems the partitioning proceeded too deeply. Matrix fcondp2

is partitioned in 31 leaves (19 CSRH, 1 CSR, 11 COOH)

with RSB, and with RCSR in 255 leaves. Index overheads

falls from 4.63 to 2.42 bytes/nnz. On the same matrix, on

M2 the improvement is even higher, this time. Here, RSB

partitions in 257 leaves (182 CSRH, 75 COOH), while RCSR

in 127 leaves only. Index overhead falls from 4.56 to 2.5

bytes/nonzero. So, in contrast to the preceding cases, matrix

fcondp2 benefits from increased subdivision, on M2. Matrix

ldoor is partitioned in 157 leaves (122 CSRH, 5 CSR, 26

COOH, 4 COO, 3.14 bytes/nnz) by RSB, and 789 leaves by

RCSR (5.47 bytes/nnz, Fig. 12). On M2, the performance gain

is smaller than on M1 (16%, rather than 19%). Partitioning of

ldoor, here, produces 804 (471 CSRH, 329 COOH, 4 COO)

submatrices, while RCSR produces 431 leaves. Also index

overhead falls more gently: from 5.30 to 3.36 bytes/nnz.

We conclude by observing that there is a strong correlation

between the index saving and performance gain: milder index

savings on M2 showed milder performance improvements,

while bigger index savings on M1 were accompanied by

higher improvements.
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Fig. 10. Symmetric SpMV on M1.

C. Comparative analysis

Let us now look at the performance of all matrices as RCSR,

RCSRH, and RSB, using 8 threads. For unsymmetric matrices,

we also give performance results for the CSB prototype.

Unfortunately, we had to skip matrix cage15 (the one with

the highest nonzeroes count), because CSB was unable to
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Fig. 11. Symmetric SpMV on M2.
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Fig. 12. Index storage requirement (in bytes) per nonzero on M1 (symmetric
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instantiate it (the CSB implementation needed more memory

than the 24 GB available on M1).

We observe that for M2 (Fig. 15): matrices which favor RSB

most (over CSB) are c8 mat11 I,spal 004,wb-edu; one matrix

looses against RCSR (cont11 l); the majority of RSB cases is

faster than RCSR (19 matrices out of 20). Summarizing, RSB

performs faster than CSB (and is also the fastest among the

four cases) in 7 cases out of 20. CSB is the fastest in 12 cases;

in one case it is faster than RSB, but not the fastest one.

On M1 (Fig. 14) we observe that: RSB is much faster

than CSB on wb-edu and venkat01; 6 matrices seem to

perform very similarly in both CSB or RSB; the remain-

ing ones perform better in one of the two formats. Some

matrices loose performance in RSB, over RCSR: matri-

ces av41092,c8 mat11 I,cont11 l; (slightly) diego-smtxMM-

573x230k,sme3Dc; other matrices favor RSB over RCSR:

about 15, out of 20.

For space reasons, we omit figures showing comparative

performance for symmetric matrices on RCSR, RCSRH, RSB

formats, but include some general comments.

On M2, we notice RSB as the fastest format 5 times out of

12; on M1, 4 times. Here, RCSRH is the fastest in 7 cases; in

all cases, very near to RSB. On M1, we see a similar situation,

but notice a performance degradation in some additional cases:

they are due to the poor partitioning problem discussed in

Section V-B. In no case RCSR was the fastest format for
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symmetric matrices (exception made for the poorly scaling

three matrices) on M1: (crankseg 1, ct20stif, F1).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown a possible improvement of our

BLAS-oriented recursive storage for sparse matrices. We have

found that, by using index compression and format diversifica-

tion techniques, we can improve the floating point performance

of SpMV. We have also found that, for unsymmetric matrices,
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Fig. 15. Results for 8 cores on M2, comparing CSB, RCSR, RCSRH, and
RSB (unsymmetric matrices).

the performance of our modified format (RSB) is comparable

to that of a scalable sparse matrix format (CSB: currently for

unsymmetric only). During comparison with RCSR and CSB,

we noticed some particular cases that expose weak points of

both RSB and RCSR; consequently allowing us to identify

room for further improvement: (i) To redefine our format in

order to obtain some estimate on the parallelism expected

from a given partitioning (in Section V-B, we noticed that,

despite the apparently adequate partitioning, some instances of

matrices (e.g.: smaller symmetric) did not scale on 8-threaded

SpMV). (ii) To modify the SpMV algorithm to be more parallel,

by working around the need for row locking (e.g.: by using

temporary vectors, as CSB does [2, Sec.4], although this may

be challenging in our case). (iii) While our primary interest is

focused on bigger matrices, tuning the partitioning algorithm

for small matrices could prove useful to ensure parallelism in

these cases, too. (iv) Properly subdividing matrices which are

big, but with an extremely low nonzeroes/row ratio would be

challenging (and fruitful), as well.

Some ideas we have introduced should be developed further.

For instance, a more aggressive form of tuning could diversify

index types at the leaf level and continue using traditional CSR

or COO layouts, if profitable. Probably future architectures

(with much higher number of cores, and even higher risks for

stall due to higher memory latencies and longer instruction

pipelines) would render such approaches advantageous.

In summary, we can state that our work illustrates that

combinations of hierarchical indexing and index compres-

sion techniques can be useful to achieve high efficiency of

computing on sparse matrices (on general purpose hardware).

In this light, we see the RSB format as a candidate format

for a complete multicore sparse BLAS implementation (that

is, support for symmetric storage, solve operations, parallel

transposed SpMV, etc.).

Finally, we would like to thank Jamie Wilcox and Victor

Gamayunov from Intel EMEA Technical Marketing HPC Lab

for their technical support during experiments.
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