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Abstract. The Recursive Sparse Blocks (RSB) is a sparse matrix layout
designed for coarse grained parallelism and reduced cache misses when
operating with matrices, which are larger than a computer’s cache. By
laying out the matrix in sparse, non overlapping blocks, we allow for the
shared memory parallel execution of transposed SParse Matrix-Vector
multiply (SpMV ), with higher efficiency than the traditional Compressed
Sparse Rows (CSR) format. In this note we cover two issues. First, we
propose two improvements to our original approach. Second, we look
at the performance of standard and transposed shared memory parallel
SpMV for unsymmetric matrices, using the proposed approach. We find
that our implementation’s performance is competitive with that of both
the highly optimized, proprietary Intel MKL Sparse BLAS library’s CSR
routines, and the Compressed Sparse Blocks (CSB) research prototype.

1 Introduction and Related Work

Many scientific/computational problems require the solution of systems of par-
tial differential equations (PDEs). Often, discretization of these problems result
in sparse matrices. A common approach for the solution of sparse linear sys-
tems is through the use of iterative methods, whose computational core requires
sparse matrix-vector multiplication. In this document, we focus on the efficient
implementation of sparse matrix-vector multiplication, on cache based, shared
memory computers. In this context, we have recently proposed a sparse matrix
format, called Recursive Sparse Blocks (RSB) [3,4]. The central idea of RSB is
a recursive partitioning-based organization of matrices, with either Compressed
Sparse Rows (CSR) or Coordinate (COO) format leaves of a quad-tree structure
over matrices. In this paper, we present some optimizations to our RSB-based
SpMV implementation, and compare performance of the modified approach to
that of the Intel’s MKL proprietary Sparse BLAS implementation, and the pub-
licly available CSB (see [1]) prototype. To this end, we briefly recall the way
that the SpMV /SpMV T computational kernels work and behave on comput-
ers of our interest in § 2. Next, we introduce the proposed optimizations in § 3.
Finally in § 5, we discuss the efficiency of our prototype, by comparing it to the
mentioned highly efficient MKL’s CSR and CSB implementations.
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for l← 1 to s.nnz do1

i← s.IA(l);2

j ← s.JA(l);3

s.y(i + s.roff)← s.y(i + s.roff) + s.VA(l)s.x(j + s.coff);4

end5

Fig. 1. SpMV listing for a COO submatrix s

for l← 1 to s.nnz do1

i← s.IA(l);2

j ← s.JA(l);3

s.y(j + s.coff)← s.y(j + s.coff) + s.VA(l)s.x(i + s.roff);4

end5

Fig. 2. SpMV T listing for a COO submatrix s

2 SpMV and Transposed SpMV

We define the sparse matrix-vector multiply (SpMV ) operation as “y ← A x”
and its transposed version (SpMV T ) as “y ← AT x” (where A is a sparse
matrix, while x, y are vectors). With RSB, A is recursively partitioned into sub-
matrices, and then the individual N leaf submatrices s1 : sN are represented
in either COO or CSR format (eventually using 16 bits for the local indices);
for details, see [3,4]. The leaf submatrices are all disjoint; each submatrix s cov-
ers rows indices [s.roff : s.roff + s.rows] and column indices [s.coff : s.coff +
s.cols]. For this reason, the SpMV operation may be decomposed into the fol-
lowing N steps (for n = 1, ..., N) ysn.roff:sn.roff+sn.rows ← ysn.roff:sn.roff+sn.rows +
asn.roff:sn.roff+sn.rows,sn.coff:sn.coff+sn.colsxsn.coff:sn.coff+sn.cols. Note that some steps
may be executed in parallel by two or more threads. In the case with two different
threads i, j operating on two different submatrices sp, sq, updating the two y in-
tervals sp.roff : sp.roff + sp.rows and sq.roff : sq.roff + sq.rows is allowed, as long
as the intervals do not intersect. In the case when the two intervals intersect, a
race condition may occur; that is, concurrent updates of vector y may lead to in-
consistent results in the intersecting y subvector. In the same spirit, the SpMV T
operation may be decomposed into ysn.coff:sn.coff+sn.cols ← ysn.coff:sn.coff+sn.cols+
asn.coff:sn.coff+sn.cols,sn.roff:sn.roff+sn.rowsxsn.roff:sn.roff+sn.rows. Clearly, while in the
untransposed case the requirement for avoiding race conditions is on the rows in-
terval, in the transposed case the columns intervals of the participating submatri-
ces shall be disjoint. Our basic shared memory parallel algorithm for RSB/SpMV
is outlined in Fig. 5 (see also [4]); in the listing, at line 8, assume for the time
being s.rh = 0, s.rt = 0. Workload is partitioned among threads by means
of a parallel section (lines 5-15). Repeatedly, each participating thread picks
up a submatrix and updates the y array with its contribution to the product.
When picking up a submatrix, a thread locks y array’s interval correspond-
ing to the submatrix rows interval. The same listing is suitable for SpMV T,
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after a slight modification; namely, the pairwise exchange in all occurrences
of: s.roff and s.coff, s.rows and s.cols. The bulk of computation is executed
at the leaf level, when either COO or CSR submatrices are multiplied by the
corresponding subvector. See Fig. 3 for the CSR submatrices code (again, as-
sume s.rh = 0, s.rt = 0), and Fig. 1 for the COO version of the SpMV. For the
SpMV T, see listings Fig. 4 and Fig. 2. We use the most common variant of CSR
storing rows in ascending order, and column indices in ascending order within
each row. The COO submatrices of RSB are organized exactly in the same way.
A consequence of this layout ordered by rows is that for most real world matrices,
for each given nonzero coefficient ai,j , it is likely that the next stored nonzero
ai,j′ is quite near, i.e. with Δ = j′ − j reasonably small. If Δ < Cl/Ns, with Cl

the cache line length, and Ns the floating point number size, both expressed in
bytes, then after computing the contribution yi ← yi + aijxj (line 4 in Fig. 1,
line 4 in Fig. 3), loading of element xj′ will, with very high probability, only
require a single fetch from cache memory, with no further cache misses. Nor-
mally both CSR and COO SpMV algorithms are written such that the compiler
uses registers for the accumulation of the yi contribution, while updating the
yi memory location no more than once per submatrix. In the case of CSR and
listing Fig. 3, this is straightforward to achieve — it requires referencing a local
variable instead yi in the inner loop, and update of the yi location right after
the inner loop. In the case of COO listing, Fig. 1, one should reorganize in two
loops: an outer one cycling on rows, and an inner one cycling on a single row
nonzeroes. If the number of nonzeroes of a COO submatrix is likely to be less
than the number of rows, as is the case for our leaf matrices because of the
criteria for COO in [3], and discussion of hypersparsity in [2], we clearly have
a problem, since such a double loop would perform O(s.nnz + s.rows) control
instructions, which is always more than O(s.nnz) as in Fig. 1. In the case of
CSR submatrices, we are constrained to a O(s.nnz + s.rows) loop complexity
by the nature of CSR. However, here we have a guarantee that the number of
nonzeroes exceeds the number of rows (by the definition of RSB leaves—see [3]),
so the double loop is not a concern.

3 Two Optimizations to RSB SpMV /SpMV T

In this section we introduce two closely related modifications to our SpMV
/SpMV T algorithms for RSB. First, we note that our implementations for CSR

for i← 1 + s.rh to s.rows− s.rt do1

for l ← s.PA(i) to s.PA(i + 1)− 1 do2

j ← s.JA(l);3

s.y(i + s.roff)← s.y(i + s.roff) + s.VA(l)s.x(j + s.coff);4

end5

end6

Fig. 3. SpMV listing for a CSR submatrix s, with head/tail skipping
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for i← 1 + s.rh to s.rows− s.rt do1

for l ← s.PA(i) to s.PA(i + 1)− 1 do2

j ← s.JA(l);3

s.y(j + s.coff)← s.y(j + s.coff) + s.VA(l)s.x(i + s.roff);4

end5

end6

Fig. 4. SpMV T listing for a CSR submatrix s, with head/tail skipping

(Fig. 3, Fig. 4, considering s.rh, s.rt, s.ch, s.ct set to zero) visit the whole PA
(rows pointer) array once, reading exactly s.rows+1 locations. From [3] we have
that for a matrix A stored in RSB, any of its submatrices s is stored in CSR only

if s.nnz > s.rows (or κs
def
= s.nnz

s.rows > 1). In such a situation, storage of s uses

exactly ICSR(s)
def
= s.nnz + s.rows+ 1 indices, and these ICSR(s) indices are all

read from memory during SpMV /SpMV T. Even if A has no empty rows (rows
with only zeroes), we have no guarantee that the same applies to any given s,
especially given the way RSB recursive subdivision of matrices works. Moreover,
it is very likely that for most matrices of interest to us, there will be some s.rh
empty heading rows. Similarly, it is reasonable to assume that there are some s.rt
empty tail rows also. Values of s.rh, s.rt may be easily computed at matrix build
time, and may be used in Fig. 3 and Fig. 4 to work on the non-empty interval
of rows only, and simply skipping iterations on the empty ones. For a square

submatrix s having rε(s)
def
= s.rh + s.rt, the use of this row skipping technique

allows reducing the amount of indices read up to 50% (consider a square s with
s.nnz = s.rows+1 nonzeroes distributed on two rows) with 4 byte indices and up
to 66% with 2 bytes indices. In a more common situation, say rε(s) = s.rows/νs
(for some νs), one would save s.rows/νs accesses out of s.rows(κs + 1) + 1. For
s.rows� 1, the saved fraction is 1

κsνs
; for realistic cases, e.g.: κs = 2, νs = 2, this

amounts to 25%, which is not bad. A good property of this optimization is that
in the case of no empty rows, there is no runtime performance loss compared to
the base implementation. We also observe that this optimization is valid for both
SpMV and SpMV T. The second optimization also relies on the computation of
s.rh/s.rt, but is applied to the outer parallel algorithm shown in Fig. 5. The base
version of this algorithm considers to be zero both s.rh, s.rt, on all submatrices;
thus when a submatrix is picked up by a thread, the entire s.roff...s.roff+ s.rows
interval of the output vector y may have to be updated, and therefore is locked.
But if a submatrix s has s.rh empty heading rows, and s.rt empty tail rows, then
rows outside the s.roff + s.rh...s.roff + s.rows− s.rt range will not be modified;
therefore we observe that only the corresponding subvector of y must be really
locked. We apply our optimization by locking only the effective rows interval,
thus allowing for a reduced degree of resource contention among threads and en-
hancing potential parallelism. The worst case is when s.rh = 0 and s.rt = 0, and
this is no worse than (indeed, identical to) without the optimization. The best
case may be when Ns submatrices extending on the same rows range exists, but
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S ← [s0, s1, . . . , sN−1] /*an array of terminal submatrices, in any order*/ ;1

B ← [0, 0, .., 0] /*a zero bit for each submatrix*/ ;2

n ← 0 /*count of visited submatrices so far*/;3

while n < N do4

begin parallel ;5

s← pick an unvisited submatrix s from S;6

/*(should have picked up s← S[i], with B[i] = 0)*/ ;7

[f, l]← [s.roff +s.rh , s.roff +s.rows−s.rt] ;8

if locked([f . . . l]) then cycle ;9

lock([f . . . l]) /*we lock y on s’s effective rows interval*/ ;10

/*perform SpMV on s and x[s.coff:s.coff+s.cols] into y[f : l]*/ ;11

y[f : l]← y[f : l] + s · x[s.coff :s.coff +s.cols] ;12

B[i]← 1;n← n + 1 ;13

unlock([f . . . l]) ;14

end parallel;15

end16

Fig. 5. Multithreaded SpMV for leaf submatrices of a RSB matrix, with head/tail
skipping

each submatrix has its nonzeroes laid out only on a contiguous group of rows,
in a way that there is no intersection of non-empty row intervals, for any given
pair of submatrices. In this limit case, all of the submatrices may be processed
in parallel, with potential Ns-fold parallelism. For a more realistic case, consider
a pair of matrices s, s′, whose nonzeroes have no common row (think of a case
when a large banded matrix is subdivided), but both have the same row offset
(s.roff = s′.roff) and extension (s.rows = s′.rows). In this case, we double the
potential parallelism with little effort. This optimization may also be applied to
the transposed SpMV, if we use the empty heading columns s.ch, instead of s.rh,
empty tail columns s.ct instead of s.rt, and swap usage of s.roff with s.coff in
Fig. 5.

4 Experimental Setup and Methodology

For space reasons we report only a limited set of experimental data. We chose
to use a sample of large (exceeding hardware cache), sparse square matrices
obtained from the University of Florida Sparse Matrix Collection (see [5]). Ma-
trices information is summarized in Table 1. We report results of experiments
performed on an Intel Xeon 5670, supporting up to 12 hardware threads, with
3 levels of cache memory (sized respectively 32KB/256KB/12MB). Our codes
were implemented in C99, and compiled with Intel’s ICC v.12.0.2 compiler, with
the optimization -O3 flag (no machine specific optimization flags were used). Our
parallel RSB implementation using OpenMP is compared against the CSR imple-
mentation present in the proprietary Intel MKL 10.3-2 library, and the publicly
available CSB (see Buluç et al. [1]) prototype (compiled with the special purpose
CILK++ compiler, version 8503, with -O3 -fno-rtti -fno-exceptions flags).
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Table 1. List of matrices used in the experiments, with their row/column dimensions
(r/c), nonzeroes count (nnz), average nonzeroes per row (nnz/r) count

matrix r c nnz nnz/r

cage15 5154859 5154859 99199551 19.24
circuit5M dc 3523317 3523317 19194193 5.45
fem hifreq circuit 491100 491100 20239237 41.21
GL7d18 1955309 1548650 35590540 18.20
patents 3774768 3774768 14970767 3.97
RM07R 381689 381689 37464962 98.16
TSOPF RS b2383 38120 38120 16171169 424.22
wikipedia-20070206 3566907 3566907 45030389 12.62

Here we also use explicit loop unrolling (four-fold) on the COO and inner CSR
loops of our codes. We express the performance of a computation in MFLOPS
(that is, time efficiency); we count 2 operations for each nonzero of a matrix
involved in the multiplication by a vector.

5 Results

Let us now discuss the experimental results. In Fig. 6 we report results obtained
using 12 threads; in Fig. 7 results for a single thread. The first thing we note, is
that the MKL (CSR) results for SpMV T are consistently lower than for SpMV.
This performance gap is due to the row-major layout of CSR, which requires
the transposed update of the results array to be written at random locations
(unlike the normal update, which reads random locations of the multiplicand
vector, but updates a sequentially accessed array). This gap is almost absent in
the case of CSB: recall (see [1]) the unbiased Z-ordering in its sparse blocks. Re-
garding the SpMV /SpMV T gap, RSB falls in between MKL and CSB, due to
its storage of consecutive rows of sparse submatrices. We notice that running in
parallel (Fig. 6), the aforementioned efficiency gap is much more pronounced for
CSR. The reason for this is the lack, in the CSR format, of immediate informa-
tion for the serialization of the threads write instructions in updating the result
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Fig. 6. SpMV and SpMV T performance, 12 threads
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Fig. 7. SpMV and SpMV T performance, 1 thread
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Fig. 8. Bytes per stored nonzero for CSB, CSR, and RSB-1/RSB-12

vector. CSB and RSB are structured in blocks, offering a coarse grained way to
parallelization of SpMV T. Summarizing, for the chosen set of matrices, RSB
performs always better than CSB and MKL with a single thread, and almost al-
ways, in parallel runs. In interpreting performance results for the three formats
(especially when running in parallel, when the CPU-memory communications
channels are likely to be saturated), we may consider the bytes per indexing
nonzero metric. Since RSB’s index usage depends on the subdivisions/threads
count, in Fig. 8 we report this value for both single and 12 threaded runs. For
CSB, we report the size of the arrays allocated in the source code, although we
do not take into account here the block pointers array (see [1]), which also con-
tributes as index-related memory traffic. It is straightforward to see that usually,
RSB’s higher performance cases in Fig. 6 coincide with the shortest index usage
cases, and vice-versa. We also note that the relative performance of CSB/MKL
seems related to the average indexing usage.

6 Concluding Remarks

In this paper, we have proposed two simple optimizations to our RSB algorithms
for SpMV /SpMV T, and performed experiments on large sparse matrices.
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Since the two optimizations have no potential negative impact, and since their
benefit is difficult to quantify in advance, we skipped the comparison to the past
code versions, and compared the code directly to two different, efficient SpMV
implementations: Intel MKL’s CSR and CSB (see Buluç et al. [1]). Our main
finding is that the block structure of RSB allows the parallel implementations
of both SpMV /SpMV T to be efficient without the prominent performance
gap which is inherent in a CSR implementation (in this case, MKL’s). We also
find confirmation that RSB’s hybrid structure (a recursive layout on outside,
with a row-major layout on the inside) is advantageous when performing SpMV
/SpMV T on large matrices serially. Furthermore, the technique of enhancing
RSB’s parallelism by using empty rows information applies to triangular solve
and symmetric SpMV kernels as well.

We wish to thank Pawe�l Gepner and Jamie Wilcox at Intel Corporation for
giving us access and technical support for the machine used in the experiments.
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