
Utilizing Recursive Storage in Sparse Matrix-Vector
Multiplication—Preliminary Considerations

Michele Martone∗ Salvatore Filippone∗ Salvatore Tucci∗

michele.martone@uniroma2.it salvatore.filippone@uniroma2.it tucci@uniroma2.it

Marcin Paprzycki†? Maria Ganzha†‡

marcin.paprzycki@ibspan.waw.pl maria.ganzha@ibspan.waw.pl

∗University of Rome “Tor Vergata”, Italy †Polish Academy of Sciences, Poland
?Warsaw Management Academy, Poland ‡University of Gdańsk, Poland

Abstract

Computations with sparse matrices on “multicore
cache-based” computers are affected by the irregular-
ity of the problem at hand, and performance degrades
easily. In this note we propose a recursive storage
format for sparse matrices, and evaluate its usage
for the Sparse Matrix-Vector (SpMV) operation on
two multicore and one multiprocessor machines. We
report benchmark results showing high performance
and scalability comparable to current state of the art
implementations.

1 Introduction

In this note we consider sparse matrix-vector mul-
tiplication (SpMV). This operation is at the core of
most iterative algorithms for sparse linear algebra
problems [9]. While we focus on the SpMV, consid-
erations presented here are applicable also to other
operations involving sparse matrices. Note that we
are concerned with “cache-based computing architec-
tures”, therefore omitting hybrid architectures like the
Sony/Toshiba CBE (Cell Broadband Engine) or GPU
(Graphical Processing Unit)-based.To make use of the
available floating point performance, sparse matrix
codes have to confront a number of problems, like:
1) high ratio of integer to floating point operations
(caused by the utilization of indirect addressing), lead-
ing to underutilization of floating point unit(s) within
the processor; 2) low reutilization of data (low tempo-
ral locality of memory references), resulting in satura-
tion of the memory bandwidth and causing processor
stalls; 3) ever-growing depth of memory hierarchy and
complication of processor architecture, particularly in
the case of multicore processors. A fundamental tech-
nique to address these problems is called register block-
ing, which represents sparse matrices by storing ad-
jacent nonzero elements in small rectangular blocks.

Two prominent register blocked matrix formats are
the blocked variants of the Compressed Sparse Rows
(CSR) and the Compressed Sparse Columns (CSC)
formats, called respectively Block Compressed Sparse
Rows (BCSR) and Block Compressed Sparse Columns
(BCSC) (see [5] for a discussion of register block-
ing). When utilizing register blocking, it is possible
to achieve a considerable speedup over non blocked
formats, although it is required for the matrices to al-
ready have a blocked structure. Matrices with such
structure typically originate from partial differential
equations discretized over physical domains (using
techniques such as finite differences, the Finite Ele-
ment Method (FEM), or the Finite Volume Method) [9,
ch.2]. However, there exists a large number of sparse
matrices without any block structure, whose represen-
tation in a blocked format would incur performance
loss. They can originate from: linear programming,
least squares problems, information retrieval, opti-
mization, or combinatorial problems. To deal with
such matrices efficiently and achieve multicore satisfac-
tory performance, we propose a variation of the tradi-
tional CSR/CSC data structures, which we name Re-
cursive CSR/CSC (RCSR/RCSC). This format, and
its utilization in the implementation of the SpMV op-
eration, is described in detail in the next section. We
follow with the experimental setup used in benchmark-
ing. In section 4 we discuss the performance data
collected when running our code, and compare its be-
haviour to that of a state of the art code by Buluc et.al
[1]. Finally, in section 5, we outline future research di-
rections related to our matrix data structures.

2 A Recursive Storage

2.1 Matrix Partitioning

It is known that implementation of linear algebra
algorithms based on recursively stored dense matri-



Figure 1: Z/Zb sorted coordinates for 2x2, 4x4,
8x8,16x16 sized dense matrices.

ces can be advantageous ([3]). However, little work
has been done in trying to apply similar techniques
to sparse matrices. Therefore, we have developed re-
cursive variants of both CSR and CSC sparse matrix
storage formats. Here, we present the main modifi-
cations necessary to the matrix assembly procedure
(which became recursive):

• at the root level, the nonzero input elements are
sorted in such a way to favour temporal locality
of computations during the SpMV

• at the intermediate levels submatrices are parti-
tioned recursively if specific criteria concerning
number of nonzero elements and the submatrix
size are met

• at the leaf level, submatrices end up with standard
CSR/CSC structures

There exist multiple ways to assemble sparse matri-
ces according to the above “schema.” In this work
we seek specifically to 1) allow the recursive subdivi-
sion into submatrices; 2) this subdivision should pro-
ceed in a quad-tree (i.e.: in quadrants) fashion. More-
over, we want the partitioning method to be adaptive
to the machine cache size and (possibly) to other de-
tails of the processor architecture. Therefore, for com-
putational and implementation ease, we have chosen
a variant of Z-ordering (or Z-Morton, after G. Mor-
ton [4]), for the nonzero elements sorting at the root
level of recursive matrix assembly. Let x, y ∈ N, be
the Cartesian coordinates of a point in N2, and T
be a function T : (x, y) ∈ N2 → z ∈ N. Then, we
can define the T -permutation ΠT of a vector V =
<(i0, j0), (i1, j1), ..., (inz, jnz)> as the vector (assum-
ing no duplicates in V ) ΠT (V ) = <π0, π1, ..., πnz>
such that π0<π1<...<πnz and πl<πk hold whenever
T (iπl

, jπl
)<T (iπk

, jπk
). Given i ∈ N, we define (adopt-

ing the notation of [8, section 2]) the 2-dilation of i,
→
i (”i dilated”) as the result of interleaving a 0 bit be-
tween each meaningful bit in the binary representation
of i. So, if i = 28−1 = 111111112 = FF16, its 2-dilation
is
→
i= 0101010101010101 = 555516. Alike, we define

←
i
def
= 2

→
i , which the left-shifted 2-dilation of i. Let

us now define the mapping Z as: Z(i, j)
def
=
→
i +

←
j .

Figure 2: Z sorted coordinate for 5x5,6x6,7x7,9x9
sized dense matrices (imbalanced quad-partitions).

Figure 3: Zb sorted coordinates for 3x3,5x5,6x6,7x7
dense matrices, sized as non power of 2 (balanced
quad-partitions).

Above, if we take T to be Z and apply to the co-
ordinate vector V , then we induce a Z-order on V .
In Figure 1 we depict the resulting ordering of ele-
ments for some small dense matrices. Experiments
reported in [6] show that performing linear algebra on
Z(Morton) sorted elements can reduce page faults for
large dense matrices. We conjecture this to be true
also for sparse matrices, as the sparseness of elements
leads to non-linear (thus, not easily detectable by the
prefetch engines) access patterns. By forcibly limiting
the leaf matrix dimensions, while storing and tiling
them in a recursive Z fashion, we increase the local-
ity of memory accesses, regardless the matrix spar-
sity pattern. However, Z-ordering matrices, which are
not square or not sized as powers of 2 leads to im-
balanced partitionings (see Figure 2, where we depict
small dense matrices with “singleton” leaves). To ad-
dress this issue, we have modified the Z-ordering algo-
rithm to handle non square matrices and non-power-
of-two sized matrices. We call our modification bal-
anced Z ordering, or Zb. Let the matrix size be m× k
and i, j a nonzero coordinate. Let lbits(i) be the in-
dex of the highest bit in the binary representation of i:
lbits(i)

def
= blog2(i)c, and let βmk be lbits(min(m, k)).

Then define: µ : i,m, βmk ∈ N → i∗ ∈ N as
µ(i,m, βmk)

def
= γ(i, bm/2c) · (2βmk +µ(i−bm/2c,m−

bm/2c, βmk−1))+(1−γ(i, bm/2c))µ(i, bm/2c, βmk−1).
With γ(x, y) = 1 when x>y and 0 otherwise.

The Zb order function of interest is then defined as:
Zb(i, j,m, k)

def
= Z(µ(i,m, βmk), µ(j, k, βmk)) .

Figure 3 shows the Zb-ordered elements of some
small dense matrices. Note that using Zb instead Z
has a downside: Zb is not bijective; but this is not a
problem as long as we do not rely on this and use Zb

ordering for sorting purposes only (which is our case).



Figure 4: Matrices ASIC 320k(upper two) and torso1
(lower two) δ-partitioned on a 1MB-sized outermost
cache machine (M1) (left), and on a 2MB-sized out-
ermost cache machine (M3) (right).

Knowing values of m, k, in a Zb-ordered coordinates
array, we can use binary search to easily locate split
points delimiting the four submatrices. Then we parti-
tion submatrices after recursively locating split points.
To prevent indefinite recursive splitting, we adopted
a recursion decision function. Currently, this function
(δ) is a heuristic working with matrix dimensions m, k,
number of nonzeros nnz, outermost machine cache size
cs, numerical and pointer element size es and ws.

eab(m, k, nnz, es, ws)
def
=

es ∗ (nnz + nnz +m) + ws(m+ nnz)

δ(m, k,nnz, cs, es, ws)
def
=

true, if eab(m, k, nnz, es, ws)> α cs, or

true, if nnz ∗ es>β cs
false, otherwise

Here, eab is an estimate of the accessed bytes dur-
ing a CSR SpMV on a (sub) matrix with the given
parameters. Term es ∗ (nnz+ nnz+m) takes into ac-
count the nnz accessed multiplicand vector elements,
the nnz matrix elements, and m written output vector
elements. The ws ∗ (m+nnz) term takes into account
the m row pointer indices and the nnz column index
elements.

Figure 4 depicts two matrices partitioned with
this heuristic, on machines with differing outermost
cache size. Since our heuristic relies on the count of
contiguous nonzeros, we are indeed applying a variant

of cache blocking ([7]). This heuristic does not take into
account many other possible factors, such as: the cache
line size, the matrix pattern, or whether the submatrix
is full rank or not.We will investigate this issue in the
future.

2.2 Sparse Matrix-Vector Multiplication

We define the SpMV of a matrix A and a vector
x, updating vector y, as y ← y + Ax. If A is stored
recursively in four submatrices A11, A12, A21, A22, it is
natural to implement the SpMV operation as follows:∣∣∣∣A11 A12

A21 A22

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣ =
∣∣A11 A12

∣∣ ∣∣∣∣x1

x2

∣∣∣∣ +
∣∣A21 A22

∣∣ ∣∣∣∣x1

x2

∣∣∣∣
(1)

=
∣∣∣∣A11x1

A12x2

∣∣∣∣ +
∣∣∣∣A21x1

A22x2

∣∣∣∣ (2)

Therefore, our SpMV algorithm for the
RCSR/RCSC proceeds by descending a quad-
tree of submatrices, and performing computation at
the leaf level only (where the conventional CSR/CSC
SpMV algorithms are applied). As stated above,
in section 2.1, we have developed criteria to control
size of leaf matrices, thus limiting the recursion
overhead (actually, the cost of descending a tree
of pointers).Figure 4 represent leaf matrices after
the recursive partitioning and a line indicating the
order in which they are visited during the SpMV
operation. As noted above, the main goal of our
work is to deal with multicore processors (and, in
general, introduce parallelism into the operations like
the SpMV). In this note we evaluate a very simplistic
approach to parallelization, which is limited to two
processors/cores. Specifically, we implement it by
overlapping the computation of two terms in (2), using
the OpenMP #pragma omp parallel for directive
(in a fixed 2-fold loop); applied to the upper and
lower pairs of matrix quadrants. Thus, the two-core
execution of the SpMV will spawn two execution
threads, of which the first will visit submatrices in the
upper two quadrants of the matrix, and the second
one will visit the lower two. In the near future we
plan to investigate ways of obtaining robust scalable
recursive SpMV.

3 Experimental Setup

For space reasons we report results obtained on a
limited experimental setup. In our experiments, we
run SpMV (defined as y ← y + Ax) on the (non-
symmetric) matrices reported in Table 4. They orig-
inate from the University of Florida Sparse Matrix



machine model cpus/ data caches
cores

M1 AMD Opteron 246 2/1 2xL1,2xL2:
1.0GHz L2:1M/16-w/64B

L1:64KB/2-w/64B
M2 AMD Athlon 64 X2 2xL2:

Processor 6000 1/2 L2:1MB/16-w/64B
3.0GHz L1:64KB/2-w/64B

M3 AMD Opteron 2354 2/4 2xL3,2x4xL2,2x4xL1:
Quad-Core L3:2MB/32-w/64B
2.2GHz L2:512KB/16-w/64B

L1:64KB/2-w/64B

Table 1: Test machines.

machine name compiler
M2 gcc version 4.1.2

M1,M3 gcc version 4.3.2

all gcc version 4.2.4

(Cilk Arts build 8503)

Table 2: Compilers on test machines.

Collection [2]. Our (RCSR/RCSC) SpMV kernel im-
plementations have been ran with and without multi-
core parallelism, and are compared against the CSB
prototype code released by authors of [1]. We have
chosen to benchmark against CSB because, just like
RCSR/RCSC, it was conceived to be used in a multi-
core context. The CSB stores Z-sorted elements in
sparse blocks of 2k size, whereas the RCSR/RCSC
stores Zb-sorted submatrices of arbitrary size; we find
this duality interesting for comparison purposes. The
CSB code is parallelized with the CILK++ system,
which extends the C++ language and requires applica-
tions to be compiled by its special compiler. Then, the
executable program file is linked to the CILK++ run-
time load balancer. The codes were run on the 64 bit
machines shown in Table 1; the used compiler versions
are in Table 2; compilation flags in Table 3. We chose
not to use machine specific optimization flags because
of slight incompatibilities between the CILK++ com-
piler and compilers available in the Fedora Linux dis-
tributions installed on our machines. Both codes use
double as the numerical type, 32 bit integer indices,
and 64 bit pointers. With each experiment, we also
report the measured performance of CSR/CSC (our
implementation) and the CSC implementation of Bu-
luc et al. [1] (in the plots we mark the measurements of

implementation compilation flags
CSR/CSC/RCSR/RCSC (C99) -O3 -fopenmp -std=c99

CSB*/CSC* (CILK++) -O3 -fno-rtti -fno-exceptions

Table 3: Relevant (non-warnings) compiler flags used.

matrix rows columns non zeros n.z./r. n.z./c.
ASIC 320k 321821 321821 2635364 8.19 8.19
Rucci1 1977885 109900 7791168 3.94 70.893
cont11 l 1468599 1961394 5382999 3.67 2.74
neos 479119 515905 1526794 3.19 2.96
rail4284 4284 1096894 11284032 2633.99 10.287
rajat31 4690002 4690002 20316253 4.33 4.33
sls 1748122 62729 6804304 3.89 108.47
sme3Dc 42930 42930 3148656 73.34 73.34
spal 004 10203 321696 46168124 4524.96 143.51
stomach 213360 213360 3021648 14.16 14.16
torso1 116158 116158 8516500 73.32 73.32

Table 4: Test matrices.

their code as CSC* and CSB*). We have modified the
timing function of the CSB code to use a double (in-
stead of int) variable, to limit precision loss (millisec-
onds are measured). Both codes use the gettimeofday
POSIX function for timing. Performance is expressed
in Millions of FLoating Point Operations per Second
(MFLOPS) As conventional for the SpMV, we count
two floating point operations for each matrix nonzero.
We perform 100 SpMV kernel runs for each sample
and report the best value (we have observed that in
all cases best value differs from the average no more
than 2%). Note that the actual CSB prototype code
leaves apart portions of matrices, and thus taking into
account this leftover in the computation would likely
lead to somewhat differing results. We should also
note that during benchmarks, the M3 machine was
also (lightly) loaded as a web server, and this could
have affected adversely our measurements.

4 Experimental Results

Figures 5,6,7, summarize performance data col-
lected running experiments with matrices found in
Table 4 on machines reported in Table 1. Looking
at them, we are interested primarily in: 1) scalabil-
ity of RCSR/RCSC against that of CSB (from one to
two cores), 2) performance of single core RCSR/RCSC
against non recursive versions CSR/CSC, 3) perfor-
mance of single core RCSR/RCSC against single core
CSB, 4) which matrices perform better for which stor-
age formats, 5) whether RCSR/RCSC is better than
CSB on a particular machine. We observe that: 1)
Generally, we find the scalability of our recursive par-
titioning comparable to that of CSB. RCSR/RCSC
speedup ranges from 1.29 (M1, neos, RCSR) to 1.97
(M3, spal 004, RCSR), while CSB* both worst (0.91,
torso1) and best (1.98, cont11 l) speedups occur on
M1. We observe that M1 favours the 2-core CSB*
code over the RCSR/RCSC; both in terms of mean
speedup (1.68 vs. 1.45) and mean performance (308.9



M
F

lo
ps

/s
ec

SpMV performance

CSB*1
CSB*2
CSC*1

CSC1
CSR1
RCSC1

RCSC2
RCSR1
RCSR2

ASIC
_3

20
k

Ruc
ci1

co
nt

11
_l

ne
os

ra
il4

28
4

ra
jat

31
sls

sm
e3

Dc

sp
al_

00
4

sto
m

ac
h

to
rs

o10
20

0
40

0
60

0
80

0

Figure 5: Results on M2.

MFLOPS; +9% more than the RCSR/RCSC). We
conjecture this to be an advantage of CILK++ over
plain OpenMP on M1’s multiprocessor architecture.
On the newer machines (M3,M2) we observe the two-
core RCSR/RCSC to perform (4̃50 and 5̃47 MFLOPS
vs 407.9 and 525.7) and scale (1.75 vs 1.65) (although
very slightly) better than CSB. Please note that (see
section 2.2) our current parallelization strategy does
not assure load balance among the two processors: the
first level recursive partitioning is influenced by the
matrix dimensions only, thus introducing load imbal-
ance for matrices with disparity of nonzero element
count between the upper and lower quadrants. How-
ever, most of testbed matrices are quite balanced (51%
on nonzeros in the upper quadrant, 49% in the lower
one), except for ASIC 320k: (57%/43%), and torso1:
(48%/52%). We observe that notwithstanding this im-
balance, matrix ASIC 320k scales up well, even better
than other matrices. 2) We observe that the utiliza-
tion of recursive partitioning usually impairs the per-
formance on single core, when compared to the non re-
cursive counterpart. Consider matrix Rucci1. When
using RCSR, it reaches only about half of the (quite
good, on all three machines) performance of CSR. The
same holds for RCSC. This performance drop is justi-
fied by the average nonzero per row count; for Rucci1,
less than 4 elements. Indeed, with the current parti-
tioning policy based on the δ decision function (which
does not take in consideration the number nonzeros
per row), a matrix like this, which is quite big (as it

M
F

LO
P

S

SpMV performance

CSB*1
CSB*2
CSC*1

CSC1
CSR1
RCSC1

RCSC2
RCSR1
RCSR2

A
S

IC
_3

20
k

R
uc

ci
1

co
nt

11
_l

ne
os

ra
il4

28
4

ra
ja

t3
1

sl
s

sm
e3

D
c

sp
al

_0
04

st
om

ac
h

to
rs

o10
10

0
20

0
30

0
40

0

Figure 6: Results on M1.

exceeds several times the outermost cache size of our
machines) becomes partitioned into a significant num-
ber of smaller matrices (341 on M1, 85 on M3), thus
increasing both tree traversal overhead, and possibly
introducing very scarcely populated matrices, with a
consequent high index overhead. Similar arguments
hold also for cont11 l, sls, rajat, neos. 3) Simi-
lar observations concerns CSB too, which outperforms
RCSR/RCSC on a single core. The CSB format per-
forms better, because while it is based on submatrices
partitioning, it does not incur in any recursion over-
head.

A possible way to improve performance of the
RCSR/RCSC would be taking in consideration a
nonzero per row or per column count based threshold
to prevent unnecessary subdivisions (unless the num-
ber of partitions is less than the number of computing
cores). 4) The best performing matrix on all ma-
chines was torso1, stored in our recursive CSR for-
mat, in both single and two cores cases (see, Table
5). Indeed, matrices gaining the most from (single
or multicore) RCSR/RCSC are rail4208, sme3Dc,
spal 004, stomach, torso1. These are also the ma-
trices with highest nonzeros per row count (as high
as 4524.96 for the spal 004). On the other hand,
we observe that CSR/RCSR beats CSC/RCSC in al-
most all cases (except Rucci1 and sls). The rea-
son is the differing read/write pattern of column and
row based SpMV kernels. For algorithmic reasons,
CSC/RCSC perform one write per matrix nonzero el-



machine best (1 core) best (2 cores)
MFLOPS format matrix MFLOPS format matrix

M1 359.9 CSR torso1 470.8 RCSR torso1
M2 554.7 CSR torso1 914.9 RCSR torso1
M3 385.8 RCSR torso1 714.5 RCSR torso1

Table 5: Matrices/codes best performing, for each machine in our test set.

M
F

lo
ps

/s
ec

SpMV performance

CSB*1
CSB*2
CSC*1

CSC2
CSR2
RCSC1

RCSC2
RCSR1
RCSR2

ASIC
_3

20
k

Ruc
ci1

co
nt

11
_l

ne
os

ra
il4

28
4

ra
jat

31
sls

sm
e3

Dc

sp
al_

00
4

sto
m

ac
h

to
rs

o1

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Figure 7: Results on M3.

ement, while CSR/RCSR perform one per matrix row.
Because both (Rucci1 and sls) matrices are tall (rows
� columns), the higher write rate of CSC/RCSC is
not a problem, as compressing columns rather than
rows decreases greatly memory traffic of row indices.
This performance behaviour suggests us that com-
paring the nonzeros per column to the nonzeros per
row count could give us hints on the memory traffic
to be expected from a partitioning. Unlike row and
column-based representations, CSB is not impacted by
these parameters, as at the lower (cache block) level,
it does not bias toward either rows or columns. 5)
As we have observed earlier, measurements collected
on M1 favour the CSB format, while machines M2,
M3 favour RCSR/RCSC (see, Table 5). This may be
a consequence of both good load balancing capabili-
ties and low parallelization overhead of CILK++, as
the overhead during the task recreation on the sec-
ond processor on M1 should be higher than the one
incurred on the two cores involved on M2 and M3.

5 Conclusions and Future Research

In this note we propose a recursive sparse matrix
storage format favouring performance on multicore
cache-based computers, achieved (also) by adapting
to some relevant machine parameters. We have exper-
imentally evaluated it on two multicore machines and
a two-processor one, comparing scalability and perfor-
mance to another state of the art storage format(CSB),
with satisfactory results. Other strengths of our ap-
proach are: i)a natural way to organize a sparse
matrix — it could pay off during the implementation
of other (non-SpMV) operations; ii)the simplicity of
its current parallelization schema; and the potential
for high peak performance (especially with column or
row biased matrices); iii)the use of standard OpenMP
rather than specialized compilers, for parallelization;
However, the current state of the partitioning policy
leaves room for improvement: i) could be modified
to choose on CSR or CSC at leaf level, if estimated
as profitable ii)could take into account the number
of computing cores and make sure there are enough
partitions; In the near future, we plan to improve the
matrix partitioning and SpMV parallelization strategy
to overcome these limitations, and evaluate other
sparse matrix algorithms in a recursive fashion.

References

[1] A. Buluc, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E.
Leiserson. Parallel sparse matrix-vector and matrix-transpose-
vector multiplication using compressed sparse blocks. 2009.

[2] T. Davis. University of florida sparse matrix collection. (92),
2009. submitted to ACM TOMS.

[3] E. Elmroth, F. Gustavson, I. Jonsson, and B. K̊agström. Re-
cursive blocked algorithms and hybrid data structures for dense
matrix library software. SIAM Review, 1:3–45, 2004.

[4] G.M.Morton. A computer oriented geodetic data base and a
new technique in file sequencing. Tech. Rep., Mar. 1966.

[5] E. J. Im, K. Yelick, and R. Vuduc. Sparsity: Optimization
framework for sparse matrix kernels. International Journal of
High Performance Computing Applications, 18(1):135, 2004.

[6] K. P. Lorton and D. S. Wise. Analyzing block locality in morton-
order and morton-hybrid matrices. SIGARCH Computer Ar-
chitecture News, (35), 2007.

[7] R. Nishtala, R. Vuduc, J. W. Demmel, and K. A. Yelick. When
cache blocking sparse matrix vector multiply works and why.
Applicable Algebra in Engineering, Communication and Com-
puting.

[8] R. Ramani and D. S. Wise. Converting to and from dilated
integers. IEEE Trans. on Computers, pages 567–573, 2008.

[9] Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd
edition. SIAM, Philadelpha, PA, 2003.


