
Integrating Jade and MAPS for the development
of Agent-based WSN applications

Mariusz Mesjasz and Domenico Cimadoro and Stefano Galzarano and Maria
Ganzha and Giancarlo Fortino and Marcin Paprzycki

Abstract Recent years have seen rapid advancements in wireless sensor networks
(WSNs) and software agents resulting, among others, in maturation of their technol-
ogy platforms. Furthermore, benefits of combining these research areas have been
analyzed. The MAPS agent platform allows fusion of agents and WSN’s. However,
due to the hardware limitation, MAPS misses important functionalities needed, for
instance, in advanced decision support. Such functions are available, among oth-
ers, in the JADE agent platform, geared towards more powerful computing devices.
Therefore, integration of MAPS and JADE had to be considered. The aim of this
paper is to discuss technical issues involved in achieving this goal.

1 Introduction

Nowadays, wireless sensor networks (WSNs) and (multi-)agent systems (MAS) be-
came popular and fast advancing research areas. Furthermore, it has been suggested
that combining WSN’s and MAS’s can bring about a new generation of intelligent
systems [?, ?, ?]. One of the observable advances in both areas is the rapid matu-
ration of their technology platforms. Currently, there exist four Java-based mobile
agent platforms for WSNs: MAPS [?, ?], TinyMAPS [?], AFME [?] and MASPOT

Mariusz Marek Mesjasz
Warsaw University of Technology, Warsaw, Poland e-mail: mesjaszm@gmail.com

Domenico Cimadoro, Stefano Galzarano, Giancarlo Fortino
DEIS – University of Calabria, Rende (CS), Italy e-mail: g.fortino@unical.it

Maria Ganzha
Systems Research Institute Polish Academy of Sciences and University of Gdansk, Poland e-mail:
Maria.Ganzha@ibspan.waw.pl

Marcin Paprzycki
Systems Research Institute Polish Academy of Sciences, Warsaw, Poland e-mail: Marcin.
Paprzycki@ibspan.waw.pl

1

2 Authors Suppressed Due to Excessive Length

[?]. MAPS will be introduced in Section 2 whereas TinyMAPS is a compact and
constrained version of MAPS ported on the Sentilla JCreate sensor platform [?].
The AFME framework, is a lightweight version of the AgentFactory framework,
ported onto the Sun SPOT [?]. However, AFME was not specifically designed for
WSNs and, in particular, for the Sun SPOT environment. MASPOT is a brand new
mobile agent system natively designed for the Sun SPOTs. It remains to be seen if
its Sourceforge code base will be maintained and updated.

Observe that the hardware capabilities of most sensor networks are restricted by
the sensor miniaturization, and the battery life. Therefore, regardless of the WSN-
agent platform, agents cannot be expected to perform resource-consuming tasks
(e.g. extensive data analysis needed for complex decision support), which require
more robust hardware and software. Therefore, in a system supporting a glider pi-
lot (see, [?, ?]) we have proposed a hybrid approach. There, we have decided to
proceed with a design of a system, in which MAPS agents are responsible for man-
aging on-board sensors, while JADE agents ([?]) run on a smart device and are re-
sponsible for the meta-level “intelligence.” For the resulting GliderAgent system we
have designed and implemented an initial version of the gateway supporting MAPS-
JADE integration (inter-communication). The gateway was later consolidated and
enhanced. The aim of this paper is to discuss, in detail, technical issues involved in
its design and implementation.

However, before we proceed, let us note that the mentioned hybrid design can
be used in a large number of intelligent systems useful in many application do-
mains such as e-health, smart homes, smart grid, or military scenarios. There, the
agent-based WSN subsystem will be dealing with low-level functionalities, e.g.
sensor data preprocessing, information routing, or power management. Conversely,
the meta-level agent-based subsystem will facilitate data analysis, data mining, or
preparation of updated strategies for agents in the WSN subsystem. Hence, the meta-
level subsystem will provide the core intelligence of the system.

The remaining parts of the paper are organized as follows. Sections 2 and 3
provide brief introduction of MAPS and JADE agent platforms. The MAPS-JADE
Gateway architecture is described in detail in Section 4, whereas preliminary eval-
uation can be found in Section 5. Finally, concluding remarks, including on-going
work, complete the paper.

2 MAPS agent framework

MAPS [?, ?] is a Java-based framework developed for the Sun SPOT technology to
enable agent-oriented programming of WSN applications. It has been conceptual-
ized around the following requirements:

• Component-based lightweight agent server architecture to avoid heavy concur-
rency and agents cooperation models.

• Lightweight agent architecture to efficiently execute and migrate agents.

Integrating Jade and MAPS for the development of Agent-based WSN applications 3

• Minimal core services involving agent migration, agent naming, agent communi-
cation, timing and sensor node resources access (sensors, actuators, flash mem-
ory, switches and battery).

• Plug-in-based architecture extensions, through which other services can be de-
fined in terms of one or more dynamically installable components implemented
as single or cooperating (mobile) agent/s.

The MAPS architecture (see Fig. 1) is based on components that interact through
events and facilitate message transmission, agent creation, agent cloning, agent mi-
gration, timer handling, and access to sensor nodes.

Fig. 1 MAPS architecture – an overview

In particular, the main components of MAPS are:

• Mobile Agent (MA) – the basic high-level component, defined by the application
programmer.

• Mobile Agent Execution Engine (MAEE), which manages execution of MAs us-
ing an event-based scheduler (enabling lightweight concurrency). MAEE inter-
acts with other components, to fulfill service requests issued by MAs (e.g. mes-
sage transmission, sensor reading, timer setting).

• Mobile Agent Migration Manager (MAMM), which supports agents migration
through the Isolate hibernation/dehibernation mechanism provided by the Sun
SPOT environment [?]. While MAs hibernation and serialization involve data
and execution state, the code has to reside at the destination node (this is a current
limitation of the Sun SPOTs which do not support dynamic class loading and
code migration).

• Mobile Agent Communication Channel (MACC), enables inter-agent communi-
cations based on asynchronous messages supported by the radiogram protocol.

4 Authors Suppressed Due to Excessive Length

• Mobile Agent Naming (MAN), provides agent naming based on proxies, for sup-
porting MAMM and MACC in their operations. MAN also manages the (dy-
namic) list of the neighbor sensor nodes (updated through a beaconing mecha-
nism based on broadcast of messages).

• Timer Manager (TM), supporting the timer service for timing MA operations.
• Resource Manager (RM), which enables access to the resources of the Sun SPOT

node: sensors, switches, leds, battery, and flash memory.

3 JADE

The Java Agent DEvelopment framework ([?]) is one of the most popular Java-based
agent platforms, which complies with the Foundation for the Intelligent Physical
Agents ([?]) specifications. The JADE agent platform is composed of a single Main
Container and multiple Agent Containers, which can be distributed across different
hosts. The Main Container contains the Agent Management System (AMS) agent
and the Directory Facilitator (DF) agent. The AMS agent supervises the platform,
manages the life-cycle of all agents inside it, and provides the white pages service
(a registry of currently existing agents; including their Agent Identifiers (AID), used
for communication). The DF agent provides an optional yellow pages service (a
registry of services provided by the agents registered in the AMS).

All actions undertaken by agents are encapsulated within Behaviours, which are
executed sequentially in the agent’s main thread. However, if an agent has to per-
form a time-consuming operation (or wait for required resources), JADE allows a
ThreadedBehaviour, which is executed in another thread and does not block the
agent. JADE agents communicate via ACLMessages, which comply with the FIPA
ACL Message Structure Specification [?]. In order to send an ACLMessage, an agent
has to register an ontology and a codec. The ontology is used to demarcate data in-
side the ACLMessage. The codec encapsulates content, or extracts data from the
message (based on the internal structure of the message – message header – and
the ontology). The ACLMessage is composed of a header and one or more message
elements. The message header is always present, and contains information neces-
sary to properly deal with the message (e.g. the source AID, the target AID, message
type, ontology, language (codec), performative, etc.). In JADE, message elements
can be of a primitive type (e.g., boolean, int, string), or of an aggregate type (any
user-defined structure composed of primitive or aggregate elements). Aggregate el-
ements are usually represented as Java classes included in the ontology. Message
elements form a content of the ACLMessage, which can is represented depending
on the codec. For example, a codec can write data in a human readable form (XML,
strings), or as a byte code.

Integrating Jade and MAPS for the development of Agent-based WSN applications 5

4 Gateway Architecture

As stated above, the JADE/MAPS gateway (or, simply, the gateway) has been imple-
mented to provide a communication mechanism between JADE and MAPS agents.
It facilitates bi-directional translation between JADE ACL messages and MAPS
Events and supports routing of communication between the two agent platforms.
The gateway is composed of two abstract parts – the JADE part and the MAPS part,
responsible for communication with their own platforms. These two parts interact
within the gateway using translation mechanisms. The JADE part of the gateway
is a JADE agent. It was a natural choice, because JADE agents can autonomously
perform complex tasks. Furthermore, it was established that the translation and rout-
ing mechanism should be accomplished with the more powerful environment, thus
resulting in assigning this role to a JADE agent that runs on a PC (as the primary
target environment).

For the MAPS part, there was no simple way to connect the gateway to the MAPS
platform. Placing any part of the gateway on a Sun SPOT device could result in a
communication bottleneck due to its limited resources. Since it is impossible to run
MAPS agents without the MAPS Execution Engine, to allow its execution outside of
the Sun SPOT devices (e.g. on a PC), the MAPS platform would have to be rewrit-
ten. However, implementation of a fully functional PC-based MAPS platform would
not help solving the cross-platform communication problem. Instead, it was enough
to reimplement selected parts of the MAPS Execution Engine that (i) are respon-
sible for communication over the radio, and (ii) manage the list of remote MAPS
agents. Hence, the gateway was developed as a semi-functional MAPS Execution
Engine without the capability of running actual MAPS agents.

Let us now describe the JADE-MAPS communication from three perspectives:
(1) communication within JADE, (2) communication within MAPS, and (3) passing
information between the two platforms.

Recall that the gateway is a JADE agent. Therefore, it can be directly accessed
by other JADE agents via the AMS and DF services (see section 3), and can com-
municate with them using ACL messages. However, to facilitate JADE-MAPS com-
munication, the gateway provides a special ontology (GatewayOntology), which de-
scribes actions that need to be performed by the gateway: Register, Unregister, Ge-
tRemoteAgent and SendMessage. Each action is represented by a Java class, which
is used to fill the content of an ACLMessage. The ACL message containing one of
these actions has the performative set to REQUEST. The gateway can respond to
such messages with an INFORM message, containing a confirmation of execution
of the requested action (and a list of MAPS agents, in the case of GetRemoteAgents),
or with a FAILURE message containing a string, specifying the cause of the failure
(see Fig. 2). If the JADE agent requests communication by sending the SendMes-
sage action, the gateway may optionally send an additional INFORM message with
a response from a MAPS agent (an instance of the ReceivedMessage class, also
included in the GatewayOntology).

A JADE agent, which wants to communicate with MAPS agents, has to register
itself within the gateway. To do this, the agent has to send an ACL message spec-

6 Authors Suppressed Due to Excessive Length

Fig. 2 A sequence diagram which represents a typical communication with the gateway

ifying the Register action. When the gateway receives such a message, it creates
a unique MAPS ID (for the sender’s AID) and sends it within a MAPS REFRESH
message to the MAPS Execution Engines, to allow agent synchronization across the
platform. Next, the gateway adds a pair (AID, MAPS ID) to its list of local agents.
These agent identifiers are used during the message translation process. All regis-
tered JADE agents should unregister themselves at the end of their life-cycle by
sending an ACL message with the Unregister action. In response, the gateway re-
moves the pair (AID, MAPS ID) from the memory and sends a MAPS REFRESH
message to the MAPS Execution Engines, informing that a given MAPS ID is no
longer valid.

From the MAPS perspective, the gateway is just another MAPS Execution En-
gine. To facilitate this, the gateway broadcasts a MAPS PUBLISH message, which
(1) makes the gateway available within the MAPS platform, (2) discovers all avail-
able Sun SPOT devices that run MAPS, and (3) initializes the lists of MAPS agents.
This list is later updated, based on the communication between the gateway and the
other MAPS Execution Engines.

The JADE agents are accessible to the MAPS agents by their MAPS IDs, which
correspond to their AIDs. The MAPS agents are not aware that the gateway (and the
JADE agents) belong to a different platform. Hence, communication between the
MAPS and the JADE agents is simplified to communication between MAPS agents.

The translation mechanism “combines” the two platforms and is invoked when
the gateway receives a message, which has to be translated either into an ACL mes-
sage, or into a MAPS Event. The translation begins with the creation of an appropri-
ate message header. Since an ACL message and a MAPS Event are very different,
the gateway had to introduce a common communication standard. As presented in

Integrating Jade and MAPS for the development of Agent-based WSN applications 7

Fig. 3 An example of the simple translation mechanism. The ACLMessages has been encoded by
the SLCodec.

Fig. 3, the ACL message contains the message header and a SendMessage action,
which not only requests to send a message, but also provides additional information
encapsulated within the Message concept. The Message concept includes a source
AID, a target MAPS ID, a message name (here, topic 41 means that this is an ordi-
nary message), a message type (occurrence time 1, means “now”) and parameters.
Obviously, this information is MAPS-specific and does not have an equivalent in
the ACL message (for example, the message name TEMPERATURE does not match
any property in the ACL message). A corresponding MAPS Event header is created,
based on this information. The only field that requires translation is the agent AID
(valid only inside the JADE platform). Here, the gateway translates the AID based
on the list of (AID, MAPS ID) pairs (e.g. in Fig. 3, the gateway found the pair (Pe-
ter@192.168.1.3:1099/JADE, 0000.98765XYZW) and used it in the corresponding
MAPS Event).

The translation from a MAPS Event to an ACL message is the reverse process.
The gateway starts with an empty ACLMessage class of the type INFORM. The AID,
corresponding to the target MAPS ID (from the MAPS Event), is set as the receiver
of this message. However, the gateway has to specify the context of the MAPS Event
(the message name and the message type). Since the ACL message header does not
contain the MAPS-specific information, the GatewayOntology provides a predicate
called ReceivedMessage (denoted by the string “Message-for-you”). The predicate
contains only one field, which stores the Message concept. This Message concept

8 Authors Suppressed Due to Excessive Length

is filled with MAPS information by the gateway. Notice that the ACL messages,
presented in Fig. 3, differ from each other to a small extent. Namely, the ACL mes-
sage type changes from REQUEST to INFORM and, respectively, the content of the
message is changed from the SendMessage action to the ReceivedMessage predi-
cate. Otherwise, the translation mechanism does not alter the internal structure of
MAPS Events.

Fig. 4 A component diagram of the gateway.

Technically, the gateway uses three threads: (i) CommunicationChannelReceiver
(CCR), (ii) CommunicationChannelSender (CCS), and (iii) the Agent Main Thread
(see Fig. 4). The CCR and the CCS originate from the MAPS Execution Engine
source code, and are used inside the gateway as separate ThreadedBehaviours. The
CCR has to be run as a separate thread due to the asynchronous communication
within the MAPS platform. The execution of the CCS as a different thread guarantees
the absence of communication bottleneck, as discovered during tests on an earlier
version of the gateway (see [?]).

Each time the CCS receives a MAPS Event, the datagram must be checked for
the destination address. If the MAPS Event is addressed to another MAPS agent or
an Execution Engine within the MAPS platform, it is forwarded directly. However,
if the MAPS Event has to be delivered to a JADE agent (with a MAPS ID available
in the gateway), then it is sent to the Agent Main Thread for further processing.

For each message, the agent main thread has to determine its destination. If this is
a local JADE-to-JADE message, it is processed inside the JADE part of the gateway.
If the message has to be sent to a MAPS agent, then the translation mechanism is in-
voked and the corresponding MAPS Event is put in the CCR queue, to be forwarded
to an appropriate MAPS Execution Engine. Note that the gateway introduces two
restrictions: (a) two JADE agents inside the same gateway cannot communicate with
each other via MAPS Events, and (b) there is no confirmation that a MAPS agent
will receive, or respond to, an ACL message. The first restriction is to reduce the
workload of the gateway. The second restriction is due to lack of a mechanism to
monitor message traffic in the radio network used by the MAPS platform.

Integrating Jade and MAPS for the development of Agent-based WSN applications 9

5 Preliminary performance test

To check the performance of the gateway, we executed a communication test be-
tween a number of agent pairs. Each pair was composed of one JADE and one
MAPS agent. This test was designed to flood the system with ACL messages and
MAPS Events. During the test, we incremented the number of agent pairs from
1 to 20. Frequency of message transmission was set to 500 milliseconds, and the
message size was 8 bytes (representing the standard size of the value of tempera-
ture) plus the size of the message header. The Forwarding Time (FT) was measured,
and represents the time needed by the gateway to forward a message from the Jade
agent, plus the time needed to receive a reply form the MAPS agent (“round-trip”
communication). Specifically, during each experiment, a sender (JADE agent) sends
a message to a receiver (MAPS agent) to request the value of the temperature, and
receives a response. Each test lasted 5 minutes to complete, and a total of 20 exper-
iments have been carried out to obtain a good confidence measure.

-20

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20

A
V

G
(F

or
w

ar
di

ng
 ti

m
e)

 [
m

s]

agents

Local test
Local test linear trend

Distributed test
Distributed test linear trend

Fig. 5 Forwarding time for multiple agents.

The experimental results are presented in Fig. 5. The FTs for the distributed test
(agents on different machines) are greater than the ones obtained on a single host
(due to the use of the RMI protocol to communicate between JADE agents and the
gateway). This is the reason why the linear trend corresponding to the local test
grows faster and its slope is steeper. Moreover, the increase in the number of agents
results in a greater variation of the FT. Evaluation shows also the performance degra-
dation due to the time-consuming operations (serialization and radio stream-based
communication) performed by the Sun SPOT libraries. Hence, the performance of
the gateway is highly influenced by the Sun SPOT emulator (the Solarium).

10 Authors Suppressed Due to Excessive Length

6 Concluding remarks

In this paper we have proposed and described a gateway component providing inter-
communication capabilities between MAPS and JADE agent platforms. The impor-
tance of such gateway is in providing better support for the development of in-
telligent WSN systems, where the small footprint MAPS agents facilitate sensor
management, whereas JADE agents infuse the system with intelligence. In the near
future, we plan to carry out more complete performance evaluations of the gateway,
and to include it in the JADE plug-in repository.

References

1. Fipa acl message structure specification. http://www.fipa.org/specs/fipa00061/

SC00061G.html
2. The foundation for intelligent physical agents (FIPA). http://www.fipa.org/ (2010.03.13)
3. Mobile Agent Platform for Sun SPOT (MAPS), documentation and software. http://maps.
deis.unical.it (2011)

4. Sentilla developer community. http://www.sentilla.com/ (2011)
5. Sun Small Programmable Object Technology (Sun SPOT), documentation and software.
http://www.sunspotworld.com (2012)

6. Aiello, F., Fortino, G., Galzarano, S., Gravina, R., Guerrieri, A.: An analysis of java-based
mobile agent platforms for wireless sensor networks. Multiagent and Grid Systems 7(6), 243–
267 (2011)

7. Aiello, F., Fortino, G., Galzarano, S., Vittorioso, A.: TinyMAPS: a lightweight Java-based
Mobile Agent System for Wireless Sensor Networks. In: Proceedings of the 5th International
Symposium on Intelligent Distributed Computing (IDC2011), Studies in Computational Intel-
ligence, vol. 382, pp. 161–170. Springer-Verlag, Berlin, Heidelberg (2011)

8. Aiello, F., Fortino, G., Gravina, R., Guerrieri, A.: A java-based agent platform for program-
ming wireless sensor networks. The Computer Journal 54(3), 439–454 (2011)

9. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a fipa-compliant
agent framework. Softw., Pract. Exper. 31(2), 103–128 (2001)

10. Domanski, J.J., Dziadkiewicz, R., Ganzha, M., Gab, A., Mesjasz, M.M., Paprzycki, M.: Imple-
menting glideragent—an agent-based decision support system for glider pilots. In: Software
Agents, Agent Systems and Their Applications, pp. 222–244 (2012)

11. Gab, A., Adreout, P., Ganzha, M., Paprzycki, M.: Glideragent-a proposal for an agent-based
glider pilot support system. In: Proceedings of the 15th International Conference on Methods
and Models in Automation and Robotics (MMAR), pp. 55–60. IEEE Press (2010)

12. Lopes, R., Assis, F., Montez, C.: MASPOT: A Mobile Agent System for Sun SPOT. In:
Proceedings of the 2011 Tenth International Symposium on Autonomous Decentralized Sys-
tems, ISADS ’11, pp. 25–31. IEEE Computer Society, Washington, DC, USA (2011). DOI
10.1109/ISADS.2011.10

13. Muldoon, C., O’Hare, G., O’Grady, M., Tynan, R.: Agent migration and communication in
WSNs. In: 2008 Ninth International Conference on Parallel and Distributed Computing, Ap-
plications and Technologies, pp. 425–430. IEEE (2008)

14. Rogers, A., Corkill, D.D., Jennings, N.R.: Agent technologies for sensor networks. IEEE
Intelligent Systems 24, 13–17 (2009). DOI http://doi.ieeecomputersociety.org/10.1109/MIS.
2009.22

15. Vinyals, M., Rodrı́guez-Aguilar, J.A., Cerquides, J.: A survey on sensor networks from a
multi-agent perspective. The Computer Journal 54(3), 455–470 (2010)

