
Decomposition and Metaoptimization
of Mutation Operator in Differential Evolution

Karol Opara1 and Jaros law Arabas2

1 Systems Research Institute, Polish Academy of Sciences
2 Institute of Electronic Systems, Warsaw University of Technology

karol.opara@ibspan.waw.pl,jarabas@elka.pw.edu.pl

Abstract. Metaoptimization is a way of tuning parameters of an op-
timization algorithm with use of a higher-level optimizer. In this paper
it is applied to the problem of choosing among possible mutation range
adaptation schemes in Differential Evolution (DE). We consider a new
version of DE, called DE/rand/∞. In this algorithm, differential mu-
tation is replaced by a Gaussian one, where the covariance matrix is
determined from the contents of the current population. We exploit this
property to separate the adaption of search directions from the adap-
tation of mutation range. The former is characterized by a norm of the
covariance matrix while the latter can be expressed as a normed covari-
ance matrix multiplied by the scaling factor. Such separation allows us
to introduce a few schemes of direct, explicit control of the mutation
range and to compare them with the basic, implicit scheme present in
DE/rand/∞. To ensure fair comparisons all versions of DE/rand/∞ are
first metaoptimized and then assessed on the CEC’05 benchmark.

Keywords: differential evolution, metaoptimization, adaptation of mu-
tation

1 Introduction

Tuning an optimization algorithm consists in finding values of its parameters
that ensure its maximal performance. This can be seen as an optimization prob-
lem in the space of parameters. The process of applying an optimizer to tune
parameter values of another optimization method is called metaoptimization and
has been used since at least 1980’s [2]. In this paper it is applied to the problem
of choosing the most effective mutation adaptation scheme in a novel modifi-
cation of differential evolution algorithm DE/rand/∞ which we introduced in
[7]. Each variant of the algorithm is tested on a subset of CEC’05 benchmark

This is a manuscript of an article Opara K., Arabas J., Decomposition and Metaoptimization

of Mutation Operator in Differential Evolution, Lecture Notes in Computer Science, Volume

7269/2012, 2012, pp. 110-118.

This manuscript has the same content as the article. The original publication is available at

www.springerlink.com. http://www.springerlink.com/content/h13006632pw13034/.

2 Decomposition and Metaoptimization of Differential Mutation

functions [11] in order to choose the best-performing one. Reliable comparison
of variants of algorithm requires tuning parameters for each of them, which can
be achieved by means of metaoptimization. Maximizing performance for a set
of test functions can be a noisy multiobjective optimization task with both dis-
crete and continuous variables, which are often subject to constraints. For these
reasons, metaoptimization is a non-trivial and very computationally expensive
task.

This paper aims at summarizing experiences of choosing mutation opera-
tor for DE/rand/∞ with use of metaoptimization. In classical DE, both range
and direction of mutation are implicitly adopted through the use of difference
vectors. Introduction of DE/rand/∞ algorithm (section 2) allows to explicitly
control mutation range without hindering the property of adaptation of search
directions. In this paper a few explicit methods of controlling mutation range
are defined and compared with the original, implicit adaptation scheme. Each of
the resulting DE/rand/∞ variants becomes then subject to a metaoptimization
procedure discussed in section 3. The paper is concluded with a discussion of
the metaoptimized parameter values.

2 From DE/rand/1 to DE/rand/∞

DE/rand/1. Differential evolution (DE) is a simple and effective continuous
stochastic optimizer [9], whose outline is presented as Algorithm 1. The fitness
function is denoted by f , Pt is the population in generation t and Pt

i denotes
the i-th individual. The algorithm takes three parameters: population size NP ,
crossover probability CR and scaling factor F which is used for mutation.

For every individual Pt
i, another individual Pt

i1
is randomly selected. A mu-

tant ui is created by adding a scaled difference between two other randomly
picked individuals Pt

i2
and Pt

i3
to individual Pt

i1
.

ui ← Pt
i1 + F · (Pt

i2 −Pt
i3) (1)

The mutant ui is then crossed-over with individual Pt
i. Differential mutation

is directly dependent on the spread of current population through the use of
the difference vectors F · (Pt

i2
− Pt

i3
). This leads to an implicit adaptation of

range and direction of differential mutation. In our opinion, this adaptation
mechanism coupled with the greedy local selection scheme are the main reasons
for high performance of DE.

DE method, which uses mutation operator defined in equation (1) is called
DE/rand/1, since there is only one difference vector and the index i1 is chosen
randomly with uniform distribution. Observe that scaled difference vector F ·
(Pt

i2
−Pt

i3
) is a random variable, whose distribution depends on the population

contents and can be expressed by means of convolution of distributions [7]. Fig.
1 a) shows a population spread in a two-dimensional space, while Fig. 1 b)
presents the corresponding difference vector distribution. This distribution is
symmetric with respect to origin, has zero mean and its covariance matrix is

Decomposition and Metaoptimization of Differential Mutation 3

proportional to the covariance matrix of vectors in the current population.

cov
(
F · (Pt

i2 −Pt
i3)
)

= 2F 2cov(Pt) (2)

Equation (2) shows that range and direction of differential mutation is implicitly
dependent on contents of the current population Pt.

Algorithm 1 Differential Evolution

Initialize parameters: CR, F , and NP
Initialize population P0, t← 0
while stop condition not met do

for all i ∈ {1, 2, ..., NP} do
ui ← mutation(F ; i,Pt)
oi ← crossover(CR;Pt

i,ui)
if f(oi) ≤ f(Pt

i) then
Pt+1

i ← oi

else
Pt+1

i ← Pt
i

end if
end for
t← t + 1

end while
return arg minif(Pt

i)

Fig. 1. Population scattered in the search space a), corresponding difference vector
distribution b)

DE/rand/∞ [7]. Differential mutation may be generalized by using k difference
vectors [9], which is denoted by DE/rand/k (k = 1 and k = 2 are the most

4 Decomposition and Metaoptimization of Differential Mutation

common choices).

ui ← Pt
i1 + F · (Pt

i2 −Pt
i3) + F · (Pt

i4 −Pt
i5) + ...+ F · (Pt

i2k
−Pt

i2k+1
) (3)

Indices i, i1, i2, ..., i2k+1 are required to be pairwise distinct. If we drop this
assumption, then picking each difference vector F · (Pt

j1
−Pt

j2
) would be equiv-

alent to realization of a random variable. Its distribution is determined by the
current population Pt and exemplified in Fig. 1. Hence, summing k difference
vectors is equivalent to summing k independent, identically distributed random
variables with zero mean and covariance matrix given by (2). The covariance
matrix of difference vectors for DE/rand/k equals 2kF 2cov(Pt) which implies
that the range of change introduced by the mutation (3) will increase with k.
This effect can be eliminated by dividing the sum by

√
k:

ui ← Pt
i1 +

F√
k

k∑
j=1

(
Pt

i2j −Pt
i2j+1

)
(4)

On the basis of central limit theorem the distribution of the normed sum of
difference vectors 4 weakly converges to the normal distribution with zero mean
and the covariance matrix equal to 2F 2cov(Pt). Consequently, under assumption
that k →∞ one can replace 4 by:

ui ← Pt
i1 +
√

2F · v∞, where v∞ ∼ N
(
0, cov(Pt)

)
. (5)

Thus, if we drop the assumption that indices i, i1, ..., i2k+1 must be pairwise
distinct, we can replace the differential mutation by the Gaussian mutation
with zero mean and covariance matrix proportional to the covariance matrix
of the current population. Our earlier analyzes [7] show that performance of
DE/rand/∞/bin is comparable to DE/rand/1/bin and may be improved by
coupling with an exploitative mutation operator DE/best/1.

Decomposition of mutataion Formula (5) can be reformulated as follows:

ui ← Pt
i1 + F ·

√
2||cov(Pt)|| · vi, where vi ∼ N

(
0,

cov(Pt)

||cov(Pt)||

)
(6)

Observe that mutation range is decomposed to a product of the scalar factor F
and a scalar describing the spread of the current population, which we measure
as the covariance matrix norm

√
||cov(Pt)||. Vector vi describes the direction of

differential mutation. Decomposition (6) allows us to separately analyze muta-
tion range and direction in DE/rand/∞.

Explicit control of mutation range. In this study we were interested in analysis
of the implicit adaptation mechanism in DE. Decomposition (6) shows that mu-
tation range in DE/rand/∞ is proportional to

√
||cov(Pt)||. A natural question

arises, how does it compare to other possible ways of controlling mutation range?
To answer this question we modified the scheme (6) by substituting the product

Decomposition and Metaoptimization of Differential Mutation 5

of the scaling factor and the root of covariance matrix norm with a function
dependent on the generation index.

ui ← Pt
i1 +
√

2F (t)s · vi, where vi ∼ N
(

0,
cov(Pt)

||cov(Pt)||

)
(7)

This provides explicit control over the mutation range while preserving adapta-
tion of search directions. The constant s adjusts the scaling factor to the size of
a feasible set. In this paper, each fitness function fi, i ∈ {1, 2, ..., 14} was con-
strained to a hypercube [li, ui]

n and the value of s for i-th problem was defined
as ui − li. Introduction of the s term allows to reinterpret the scaling factor F .
Intuitively speaking, F ≈ 1 means that the mutation range is approximately the
same as the size of the feasible set, F ≈ 0.1 mean that it is 10 times smaller
etc. We defined three variants of dynamic control of mutation range (7), namely
using a constant value, decreasing it linearly and exponentially—see Table 1.
In addition we also considered a noisy version of the const strategy and meth-
ods of periodic change along sawtooth saw and sine sin, but they performed
consistently worse.

3 Metaoptimization procedure

Choice of test problems. To our knowledge, there are no theoretical clues about
optimal mutation range adaptation. Performance of different methods of mu-
tation adaptation was hence measured on a benchmark of ten-dimensional test
problems introduced at the CEC’05 [11] conference. The CEC’05 benchmark
contains 5 unimodal functions, 7 basic multimodal ones as well as two multi-
modal complex functions. Apart from that, there are 11 hybrid functions, each
of whom is created as a weighted sum of 10 basic ones. In general, hybrid prob-
lems proved to be too complicated to be solved [3]. Therefore, we decided to
limit metaoptimization to the first 14 problems only. There are also newer and
more elaborated global optimization benchmarks, in particular BBOB [5]. We
decided to use CEC’05 mainly because it defines stopping condition based on
maximal number of function evaluations, which is convenient in case of dynamic
control of mutation range.

In this study an implementation of CMA-ES [4] was used as a metaoptimizer.
All investigated mutation range adaptation variants were started with the same
seed values of the random number generator.

Table 1. Mutation range adaptation schemes

Parameters Adaptation scheme

implicit NP ∈ N, F0 ∈ R F = F0, no norming;
mutation according to (5)

const NP ∈ N, F0 ∈ R F (t) = F0

lin NP ∈ N, F0 ∈ R F (t) = F0
tmax−t
tmax

exp NP ∈ N, F0, F1 ∈ R F (t) = F0

(
F1
F0

)t/tmax

6 Decomposition and Metaoptimization of Differential Mutation

Fig. 2. Derivation of metacriterion, a) raw error values plotted for 5 runs for each of 14
test problems; b) logarithms of the errors (8), medians connected with a dotted line,
metacriterion shown by the horizontal line

Metacriterion. Performance for each test problem was assessed on the basis of
the final optimization error after 105 function evaluations. The results for N = 14
investigated problems were aggregated to form a single-objective metaoptimiza-
tion criterion (metacriterion). Due to a random initialization and stochastic na-
ture of DE, final error values were nondeterministic. Therefore, each algorithm
was independently restarted k times. The median value of final optimization
errors for i-th test problem is denoted by εi. The metacriterion fm is defined as

fm =
1

N

N∑
i=1

(
m+ log10

(
10−m + εi

))
, (8)

where m = 3 is a parameter ensuring that the metacriterion takes nonnegative
values. It also provides a lower bound on the required error level 10−m. We
used the logarithmic transformation to reduce a risk that a single problem with
the highest error would dominate all other problems within the benchmark set.
For instance, in Fig. 2 a), error values for problems number 3 and 6 are of
several orders of magnitude greater than all others. Without the logarithmic
transformation, metaoptimizer would fit parameters to increase performance for
these two problems only.

Choosing the “best” mutation range adaptation scheme basing on bench-
mark results is justified when the same criterion is used in the metaoptimization
and in the evaluation of the final (metaoptimized) benchmark results. There is
however a possibility that parameters would be overfitted to the benchmark.
Yet, currently available benchmarks are still quite difficult to solve, even for the
state-of-the-art optimizers [3, 5], so overfitting is arguably not a real threat.

Metalandscapes. A metalandscape graph is the plot of the metacriterion values
versus its parameters. Fig. 3 a) shows the metalandscape of DE/rand/∞/none
(when CR = 1) with the implicit mutation (5). The scaling factor takes values

Decomposition and Metaoptimization of Differential Mutation 7

Table 2. Parameter values obtained through metaoptimization

Mutation Metaoptimized paremeter values

implicit NP = 11.5 · n, F0 = 0.54
const NP = 4.5 · n, F0 = 0.064
lin NP = 5.2 · n, F0 = 0.14
exp NP = 9.2 · n, F0 = 350, F1 = 8.3 · 10−9

F0 ∈ {0.4, 0.5, ..., 1.2} while the quotient (NP/n) of population size NP and
search space dimension n = 10 takes values (NP/n) ∈ {2, 3, 5, 10, 20, 50, 100}.
Fig. 3 b) presents analogous results published in [8] which were obtained for
DE/rand/1/bin for other set of test problems in n = 30 dimensions and for a
metacriterion defined as the weighted sum of final error values. Nevertheless, the
bent shapes of metalandscape are similar in both cases. This may suggest that
the metaoptimization method presented here yields robust results and that both
algorithms DE/rand/1 and DE/rand/∞ reveal a similar pattern of parameters’
influence on the performance on benchmarks. Additionally, conversion of the
linear scale to the logarithmic one, as in figures 3 b) and c), seems to improve
the conditioning of the metacriterion making it “easier to solve” and “more con-
vex”. Consequently, the metaoptimization procedure was applied to logarithms
of parameters rather than their raw values.

Interpretation of results. Table 2 contains parameter values obtained during the
metaoptimization. Their analysis may give some clues to further the DE/rand/∞
algorithm. First of all, only the implicit and exponential schemes yielded signif-
icantly better performance than any other method. Results of the Dunn’s and
Holm’s tests adjusted for multiple comparisons are summarized in Table 3, where
significance larger than 1− α = 0.95 is denoted by + and lack of it by ·.

In is noteworthy that for both winning methods population size was of the
order 10 · n which agrees well with the suggestions for tuning DE given e.g. by
Price and Storn [9]. Closer look at the exponential method reveals that the initial
mutation range value is huge (F0 = 350) and that it decreases to a very low level
(F1 = 8.3 · 10−9). Consequently, for one third of the optimization time, applying
differential mutation results in random sampling, since it is nearly entirely guided
by a constraint handling method. High performance of the exponential scheme
suggests that extending the initialization phase by a period of random sampling
compiled with the greedy parent-offspring selection may improve the overall
performance of DE/rand/∞.

Table 3. Statistical superiority tests: Dunn’s—left hand side, Holm’s—right hand side

implicit exp lin saw sin rand const

implicit · · · · + + + + + + + +
exp · · · · + · + · + · + +

8 Decomposition and Metaoptimization of Differential Mutation

(a) DE/rand/1/bin in 30 dimensions [8], linear scale

(b) DE/rand/∞/none in 10 dimensions, linear scale

(c) DE/rand/∞/none in 10 dimensions, log scale

Fig. 3. Metalandscapes for DE/rand/1/bin in linear scale (a) and DE/rand/∞ in linear
(b) and logarithmic (c) scales

Decomposition and Metaoptimization of Differential Mutation 9

4 Discussion

Analysis of mutation in DE. Parameter setting in DE has been subject of consid-
erable study [9], [8], as well as various modifications of mutation operators, some
of which are surveyed in [6]. Mutation range adaptation in DE was also enhanced
by introducing self-adaptation of parameters in jDE [1] and self-adaptation of
both parameters and the mutation strategy in SADE [10]. In general, research
on differential mutation concentrates on choosing the value of a scale factor F
or appropriate variants of mutation operators. The implicit dependence of mu-
tation range and direction on the spread of current population is usually kept as
an effective adaptation scheme. This paper provides decomposition (6) of mu-
tation operator in DE/rand/∞. Adaptation of mutation range and adaptation
of search directions can be therefore analyzed (or controlled) separately, which
provides new opportunities for improving DE. Similar decompositions can be
derived for other mutation operators, such as DE/rand/1 or DE/best/1. In such
cases the distribution of a random vector vi is not normal but depends on the
current population in a manner shown in Fig. 1.

Concluding remarks. In this paper we reported an ongoing research on adapta-
tion in DE. We used a metaoptimization approach to consider possible alterna-
tive methods to vary the mutation range. From the obtained results it appears
that the implicit adaptation method is indeed very effective. It appears however
that performance of DE could be improved by prolonging the population initial-
ization phase with a period of sampling with the uniform distribution from the
feasible area together with the local selection of results. Further research con-
centrates on finding functions which simultaneously control mutation range and
approximate the implicit adaptation scheme. In this way we hope to explicitly
model and analyze the process of mutation range adaptation in DE.

This study was partially supported by research fellowship within “Informa-
tion technologies: research and their interdisciplinary applications” agreement
number POKL.04.01.01-00-051/10-00

References

1. J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer. Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. Evolutionary Computation, IEEE Transactions on, 10(6):646–657, 2006.

2. J.J. Grefenstette. Optimization of control parameters for genetic algorithms. Sys-
tems, Man and Cybernetics, IEEE Transactions on, 16(1):122 –128, jan. 1986.

3. N. Hansen. Compilation of results on the 2005 CEC benchmark function set, 2006.

4. N. Hansen. The CMA evolution strategy webpage, November 2009.

5. N. Hansen, A. Auger, R. Ros, S. Finck, and P. Posik. Comparing results of 31
algorithms from the black-box optimization benchmarking BBOB-2009, 2010.

6. F. Neri and V. Tirronen. Recent advances in differential evolution: a survey and
experimental analysis. Artificical Intelligence Reviews, 33(1-2):61–106, 2010.

10 Decomposition and Metaoptimization of Differential Mutation

7. K. Opara and J. Arabas. Differential mutation based on population covariance
matrix. In R. Schaefer, editor, Parallel Problem Solving from Nature PPSN XI,
part I, volume 6238 of LNCS, pages 114–123. Springer, 2010.

8. M. Pedersen. Tuning & Simplifying Heuristical Optimization. PhD thesis, Univer-
sity of Southampton, 2010.

9. K. Price, R. Storn, and J. Lampien. Differential evolution. A practical approach
to global optimization. Springer, 2005.

10. A. Qin, V. Huang, and P. Suganthan. Differential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE Transaction on Evolutionary
Computation, 13(2):398–417, 2009.

11. P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, and S. Tiwari.
Problem definitions and evaluation criteria for the CEC 2005 special session on
real-parameter optimization. Technical report., 2005.

